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Preface

This text is an outgrowth of lectures given at the University of Windsor,
Canada. One of our main objectives is updating the undergraduate analysis
as a rigorous postcalculus course. While such excellent books as Dieudonné’s
Foundations of Modern Analysis are addressed mainly to graduate students,
we try to simplify the modern Bourbaki approach to make it accessible to
sufficiently advanced undergraduates. (See, for example, §4 of Chapter 5.)

On the other hand, we endeavor not to lose contact with classical texts,
still widely in use. Thus, unlike Dieudonné, we retain the classical notion of a
derivative as a number (or vector), not a linear transformation. Linear maps
are reserved for later (Volume II) to give a modern version of differentials.
Nor do we downgrade the classical mean-value theorems (see Chapter 5, §2) or
Riemann—Stieltjes integration, but we treat the latter rigorously in Volume II,
inside Lebesgue theory. First, however, we present the modern Bourbaki theory
of antidifferentiation (Chapter 5, §5 ff.), adapted to an undergraduate course.

Metric spaces (Chapter 3, §11 f.) are introduced cautiously, after the n-
space E™, with simple diagrams in E? (rather than E®), and many “advanced
calculus”-type exercises, along with only a few topological ideas. With some
adjustments, the instructor may even limit all to E™ or £? (but not just to the
real line, E'), postponing metric theory to Volume II. We do not hesitate to
deviate from tradition if this simplifies cumbersome formulations, unpalatable
to undergraduates. Thus we found useful some consistent, though not very
usual, conventions (see Chapter 5, §1 and the end of Chapter 4, §4), and
an early use of quantifiers (Chapter 1, §1-3), even in formulating theorems.
Contrary to some existing prejudices, quantifiers are easily grasped by students
after some exercise, and help clarify all essentials.

Several years’ class testing led us to the following conclusions:

(1) Volume I can be (and was) taught even to sophomores, though they only
gradually learn to read and state rigorous arguments. A sophomore often
does not even know how to start a proof. The main stumbling block
remains the €, -procedure. As a remedy, we provide most exercises with
explicit hints, sometimes with almost complete solutions, leaving only
tiny “whys” to be answered.

(2) Motivations are good if they are brief and avoid terms not yet known.
Diagrams are good if they are simple and appeal to intuition.



X Preface

(3) Flexibility is a must. One must adapt the course to the level of the class.
“Starred” sections are best deferred. (Continuity is not affected.)

(4) “Colloquial” language fails here. We try to keep the exposition rigorous
and increasingly concise, but readable.

(5) It is advisable to make the students preread each topic and prepare ques-
tions in advance, to be answered in the context of the next lecture.

(6) Some topological ideas (such as compactness in terms of open coverings)
are hard on the students. Trial and error led us to emphasize the se-
quential approach instead (Chapter 4, §6). “Coverings” are treated in
Chapter 4, §7 (“starred”).

(7) To students unfamiliar with elements of set theory we recommend our
Basic Concepts of Mathematics for supplementary reading. (At Windsor,
this text was used for a preparatory first-year one-semester course.) The
first two chapters and the first ten sections of Chapter 3 of the present
text are actually summaries of the corresponding topics of the author’s
Basic Concepts of Mathematics, to which we also relegate such topics as
the construction of the real number system, etc.

For many valuable suggestions and corrections we are indebted to H. Atkin-
son, F. Lemire, and T. Traynor. Thanks!

Publisher’s Notes

Text passages in blue are hyperlinks to other parts of the text.

Chapters 1 and 2 and §§1-10 of Chapter 3 in the present work are summaries
and extracts from the author’s Basic Concepts of Mathematics, also published
by the Trillia Group. These sections are numbered according to their appear-
ance in the first book.

Several annotations are used throughout this book:

* This symbol marks material that can be omitted at first reading.

=> This symbol marks exercises that are of particular importance.

About the Author

Elias Zakon was born in Russia under the czar in 1908, and he was swept
along in the turbulence of the great events of twentieth-century Europe.

Zakon studied mathematics and law in Germany and Poland, and later he
joined his father’s law practice in Poland. Fleeing the approach of the German
Army in 1941, he took his family to Barnaul, Siberia, where, with the rest of
the populace, they endured five years of hardship. The Leningrad Institute of
Technology was also evacuated to Barnaul upon the siege of Leningrad, and
there he met the mathematician I. P. Natanson; with Natanson’s encourage-
ment, Zakon again took up his studies and research in mathematics.

Zakon and his family spent the years from 1946 to 1949 in a refugee camp
in Salzburg, Austria, where he taught himself Hebrew, one of the six or seven
languages in which he became fluent. In 1949, he took his family to the newly
created state of Israel and he taught at the Technion in Haifa until 1956. In
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Chapter 1
Set Theory

§81-3. Sets and Operations on Sets. Quantifiers

A set is a collection of objects of any specified kind. Sets are usually denoted
by capitals. The objects belonging to a set are called its elements or members.
We write « € A if z is a member of A, and x ¢ A if it is not.

A ={a, b, ¢, ...} means that A consists of the elements a, b, ¢, .... In
particular, A = {a, b} consists of a and b; A = {p} consists of p alone. The
empty or void set, B, has no elements. Equality (=) means logical identity.

If all members of A are also in B, we call A a subset of B (and B a superset
of A), and write A C B or B D A. It is an axiom that the sets A and B are
equal (A = B) if they have the same members, i.e.,

AC B and B C A.

If, however, A C B but B € A (i.e., B has some elements not in A), we call A
a proper subset of B and write A C B or B D A. “C” is called the inclusion
relation.

Set equality is not affected by the order in which elements appear. Thus
{a, b} = {b, a}. Not so for ordered pairs (a, b).> For such pairs,

(a,b) = (x,y) iff> a=xandb=y,
but not if a = y and b = z. Similarly, for ordered n-tuples,
(a1, ag, ..., an) = (21, T2y ..oy ) T ap=xp, k=1,2,...,n.

We write {z | P(z)} for “the set of all x satisfying the condition P(x).”
Similarly, {(z, y) | P(z, y)} is the set of all ordered pairs for which P(z, y)
holds; {x € A | P(z)} is the set of those = in A for which P(z) is true.

1 See Problem 6 for a definition.
2 Short for if and only if; also written <=>.
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For any sets A and B, we define their union A U B, intersection A N B,
difference A — B, and Cartesian product (or cross product) A x B, as follows:

AU B is the set of all members of A and B taken together:
{r|x€Aorxe B}
AN B is the set of all common elements of A and B:
{r e A|xz e B}.
A — B consists of those € A that are not in B:
{re A|z ¢ B}.
A x B is the set of all ordered pairs (x, y), with z € A and y € B:
{(z,y) |z € A,y € B}

Similarly, Ay x Ag X - - - x A, is the set of all ordered n-tuples (z1, ..., x,) such
that z € Ag, k=1,2, ..., n. We write A for A x A x --- x A (n factors).

A and B are said to be disjoint iff AN B = @ (no common elements).
Otherwise, we say that A meets B (AN B # (). Usually all sets involved are
subsets of a “master set” S, called the space. Then we write —X for § — X,
and call —X the complement of X (in S). Various other notations are likewise
in use.

Examples.
Let A={1, 2, 3}, B={2, 4}. Then
AUB=1{1,2,3,4}, AnB=1{2}, A—B=/{1,3)},
AxB= {(17 2)7 (17 4)7 (27 2)7 (27 4)7 (37 2)7 (37 4)}
If N is the set of all naturals (positive integers), we could also write

A={ze N |z <4}

Theorem 1.

(a) AUA=A; AnNA=A;

(b) AUB=BUA, ANB=BnNA;

(¢c) (AUB)UC =AU (BUC); (ANB)NC=ANn(BNCQC);
(d) (AuB)NC=(ANC)U(BNC);
(e) (ANB)UC =(AUC)N(BUCQC).

3 The word “or” is used in the inclusive sense: “P or Q” means “P or Q or both.”
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The proof of (d) is sketched in Problem 1. The rest is left to the reader.

Because of (c), we may omit brackets in AUBUC and AN BNC; similarly
for four or more sets. More generally, we may consider whole families of sets,
i.e., collections of many (possibly infinitely many) sets. If M is such a family,
we define its union, | J M, to be the set of all elements z, each belonging to at
least one set of the family. The intersection of M, denoted (M, consists of
those x that belong to all sets of the family simultaneously. Instead, we also
write

(J{X | X € M} and (){X | X € M}, respectively.
Often we can number the sets of a given family:
Ay, Agy ooy Any e

More generally, we may denote all sets of a family M by some letter (say, X)
with indices ¢ attached to it (the indices may, but need not, be numbers). The
family M then is denoted by {X;} or {X; | ¢ € I}, where i is a variable index
ranging over a suitable set I of indices (“index notation”). In this case, the
union and intersection of M are denoted by such symbols as

U{Xi|i€I}:UXi:UXi:UXi§

ﬂmﬂmu:ﬂ&:ﬂ&:ﬂ&.

i€l

If the indices are integers, we may write

LWJ Xn, G Xn, ﬁ X,, etc.
n=1 n=1

n=~k

Theorem 2 (De Morgan’s duality laws). For any sets S and A; (i € I), the
following are true:

ms—U&:ﬂw—&y(ms—ﬂm:Uw—my

i

(If S is the entire space, we may write —A; for S — A4;, —|J 4; for S —J A;,
etc.)
Before proving these laws, we introduce some useful notation.

Logical Quantifiers. From logic we borrow the following abbreviations.

“Wx e A) ...” means “For each member z of A, it is true that ....”
“(z € A) ...” means “There is at least one = in A such that ....”

“(Fz e A) ...” means “There is a unique = in A such that ....”
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The symbols “(Vz € A)” and “(3x € A)” are called the universal and
ezistential quantifiers, respectively. If confusion is ruled out, we simply write
“Va), “(3zx),” and “(3!z)” instead. For example, if we agree that m, n
denote naturals, then

“Yn) (3m) m>n”

means “For each natural n, there is a natural m such that m > n.”

some more examples.

Let M = {A; | i € I} be an indexed set family. By definition, € |J A;
means that z is in at least one of the sets A;, i € I. In other words, there is at
least one index i € I such that © € A;; in symbols,

(Fiel) zeA.

We give

Thus we note that
zelJA iff [(Fiel)ze Al
iel
Similarly,

ze (A iff [(Viel)xe A

Also note that = ¢ |J A; iff z is in none of the 4;, i.e.,
Similarly, z ¢ () A; iff z fails to be in some A;, i.e.,
(3i) x¢ A, (Why?)
We now use these remarks to prove Theorem 2(i). We have to show that
S — JA; has the same elements as [|(S — 4;), i.e, that v € S — A4, iff
xz € (S — A;). But, by our definitions, we have
reS—|JAi—=lxes z¢|JAl
<~ (Vi) [z €8S, v & A
— (Vi)z e S—A4,
=aze((S-A),
as required.
One proves part (ii) of Theorem 2 quite similarly. (Exercise!)
We shall now dwell on quantifiers more closely. Sometimes a formula P(z)

holds not for all z € A, but only for those with an additional property Q(z).
This will be written as

(Vo e Al Q(x) P(z),
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where the vertical stroke stands for “such that.” For example, if NV is again
the naturals, then the formula

VzeN|z>3) =>4 (1)

means “for each z € N such that x > 3, it is true that x > 4.” In other words,
for naturals, z > 3 = x > 4 (the arrow stands for “implies”). Thus (1) can
also be written as

(VzeN) z>3=z>4

In mathematics, we often have to form the negation of a formula that starts
with one or several quantifiers. It is noteworthy, then, that each universal
quantifier is replaced by an existential one (and vice versa), followed by the
negation of the subsequent part of the formula. For example, in calculus, a real
number p is called the limit of a sequence x1, o, ..., Ty, ... iff the following
is true:

For every real € > 0, there is a natural k (depending on ¢) such that, for
all natural n > k, we have |z, — p| < e.

If we agree that lower case letters (possibly with subscripts) denote real num-
bers, and that n, k denote naturals (n, k € N), this sentence can be written
as

Ve>0) 3k) (Vn>k) |z,—p|<e. (2)

Here the expressions “(Ve > 0)” and “(Vn > k)” stand for “(Ve | € > 0)”
and “(Vn |n > k)7, respectively (such self-explanatory abbreviations will also
be used in other similar cases).

Now, since (2) states that “for all € > 0” something (i.e., the rest of (2)) is
true, the negation of (2) starts with “there is an € > 0” (for which the rest of
the formula fails). Thus we start with “(3¢ > 0)”, and form the negation of
what follows, i.e., of

3k) (Vn>k) |z,—p|l<e.

This negation, in turn, starts with “(Vk)”, etc. Step by step, we finally arrive
at
(3e>0) (Vk) Bn>k) |z,—p|>e.

Note that here the choice of n > k may depend on k. To stress it, we often
write ny for n. Thus the negation of (2) finally emerges as

(B3e>0) (Vk) Bng > k) |zn, —p| >e. (3)

The order in which the quantifiers follow each other is essential. For exam-
ple, the formula
(VneN)(3meN) m>n
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(“each n € N is exceeded by some m € N”) is true, but
(3meN) (YneN) m>n

is false. However, two consecutive universal quantifiers (or two consecutive
existential ones) may be interchanged. We briefly write

“Va,ye A) for “(Vz € A) (Vy € A))
and

“(Fz,y € A) for “(Jxz € A) (Jy € A),” etc

We conclude with an important remark. The universal quantifier in a for-
mula

(VzeA) P(x)

does not imply the existence of an z for which P(z) is true. It is only meant
to imply that there is no x in A for which P(z) fails.

The latter is true even if A = ); we then say that “(Va € A) P(z)” is
vacuously true. For example, the formula § C B, i.e.,

Vze®) zeB,

1s always true (vacuously).

Problems in Set Theory

1. Prove Theorem 1 (show that x is in the left-hand set iff it is in the
right-hand set). For example, for (d),

€ (AUB)NC <= [z € (AUB) and z € C]
< [(xeAorzeB), and z € C]
<~ |(zreA zeC)or (xe B, xzel)).

2. Prove that
(i) =(=4) =4
(il) ACBiff —-B C —A.
3. Prove that
A-B=AN(-B)=(—-B)—(—-A)=-[(-A)UBJ.
Also, give three expressions for ANB and AUB, in terms of complements.

4. Prove the second duality law (Theorem 2(ii)).

§81-3. Sets and Operations on Sets. Quantifiers 7

5. Describe geometrically the following sets on the real line:

(i) {z |z <0} (i) {z [ [«] <1};
(iii) {z | |z —a] < e}; (iv) {z|a <z <Db};
(v) {z | 2| < 0}.

6. Let (a, b) denote the set
{{a}, {a, b}}
(Kuratowski’s definition of an ordered pair).

(i) Which of the following statements are true?
(a) a € (a, b); (b) {a} € (a, b);
(¢) (a, a) = {a}; (d) b€ (a, b);
(e) {b} € (a, b); f) {a, b} € (a, b).

(ii) Prove that (a, b) = (u, v) iff a = u and b = v.

[Hint: Consider separately the two cases a = b and a # b, noting that {a, a} =
{a}. Also note that {a} # a.]

7. Describe geometrically the following sets in the xy-plane.

(1) {(z, y) |z <y}

(i) {(z, y) | 2> +9* <1}

(i) {(z, y) | max(|z[, |y[) < 1};

(iv) {(z, v) |y > 2}

) {(z, y) | 2] + ]yl < 4};

(vi) {(z, y) | (= 2)> + (y+5)* <9}
(vii) {(z, y) |z =0}
(viii) {(z, y) | 2* = 2zy +y* < 0};

(ix) {(z, y) | 2* = 22y + y* = 0}.

8. Prove that
(i) (AUB)xC=(AxC)U(Bx(C);
(i) (ANB)x (CND)=(AxC)n(B x D);
(iil) (X xY)—(X'xY)=[(XNX)x (Y -Y)U[(X -X")xY].

[Hint: In each case, show that an ordered pair (x, y) is in the left-hand set iff it is
in the right-hand set, treating (z, y) as one element of the Cartesian product.]

9. Prove the distributive laws
1) AnUX: =UMANX;);
(i) AUNX; =N(AU X;);
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(iif) (NX:) —A=N(X;—A);
(iv) (UX) —A=UX; - A);
)
i)

=

v) N X, uNy; = ﬂ”(X UY)
vi) UXinUY; =U, ;(XinYj).
10. Prove that

/-\

A)) x B=J(A; x B
(11)( A)) x B=(A; x B
(i) (M;A4:) x (N B;) = N;;(Ai x Bi);
(iv) (U; 4i) x (U, Bj) = U, ;(Ai x By).

§84-7. Relations. Mappings

In §§1-3, we have already considered sets of ordered pairs, such as Cartesian
products A x B or sets of the form {(z, y) | P(z, y)} (cf. §§1-3, Problem 7).
If the pair (z, y) is an element of such a set R, we write

(z,y) € R,

treating (z, y) as one thing. Note that this does not imply that x and y taken
separately are members of R (in which case we would write z, y € R). We call
x, y the terms of (z, y).

In mathematics, it is customary to call any set of ordered pairs a relation.
For example, all sets listed in Problem 7 of §§1-3 are relations. Since relations
are sets, equality R = S for relations means that they consist of the same
elements (ordered pairs), i.e., that

(z,y) € R<= (z,y) €S.

If (z,y) € R, we call y an R-relative of z; we also say that y is R-related
to = or that the relation R holds between z and y (in this order). Instead of
(z, y) € R, we also write xRy, and often replace “R” by special symbols like
<, ~, ete. Thus, in case (i) of Problem 7 above, “zRy” means that z < y.

Replacing all pairs (x, y) € R by the inverse pairs (y, z), we obtain a new
relation, called the inverse of R and denoted R™!. Clearly, zR™'y iff yRz;
thus

R ={(z, y) | yRe} = {(y, x) | 2Ry}

4 Here we work with two set families, {X; | i € I} and {Y; | j € J}; similarly in other
such cases.
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Hence R, in turn, is the inverse of R™!; i.e.,
(R°H™' =R

For example, the relations < and > between numbers are inverse to each other;
so also are the relations C and 2 between sets. (We may treat “C” as the name
of the set of all pairs (X, Y) such that X CY in a given space.)

If R contains the pairs (z, 2), (y, ¥'), (2, 2’), ..., we shall write

_(z oy =\, (1 4 1 3
R_ (le y/ Z, )7 €.g., R_ (2 2 1 1 N (1)

To obtain R~!, we simply interchange the upper and lower rows in (1).

Definition 1.

The set of all left terms x of pairs (x, y) € R is called the domain of R,
denoted Dg. The set of all right terms of these pairs is called the range
of R, denoted D’,. Clearly, x € Dp iff zRy for some y. In symbols,

z € D < (y) zRy; similarly, y € D < (3z) zRy.

In (1), Dg is the upper row, and D', is the lower row. Clearly,

Dp-1 = D% and D, = Dg.

141
R:<2 2 1)’

Dg =D 1 ={1,4} and Dy = Dp—r = {1, 2}.

For example, if

then

Definition 2.

The image of a set A under a relation R (briefly, the R-image of A) is the
set of all R-relatives of elements of A, denoted R[A]. The inverse image
of A under R is the image of A under the inverse relation, i.e., R71[A].
If A consists of a single element, A = {x}, then R[A] and R~![A] are also
written R[r] and R~![z], respectively, instead of R[{x}] and R™![{z}].

Example.

Let

1112233337
R’(l 34534135 1)’A*{1’2}’B*{274}~
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Then
R[] = {1, 3, 4}; R[2] = {3, 5}; R[3] =1{1, 3, 4,5}
R[5] = 0; RT'M1]={1,3,7}  R'[2]=0;
R3] =1{1, 2, 3}; R™[4] = {1, 3}; R[A] = {1, 3, 4, 5};
RYA=1{1,3,7}; R[B]={3,5}

By definition, R[x] is the set of all R-relatives of . Thus
y € R[z] iff (z,y) € R;ie., zRy.
More generally, y € R[A] means that (z, y) € R for some z € A. In symbols,
y€ R[A] < 3z € A) (z,y) € R.
Note that R[A] is always defined.
‘We shall now consider an especially important kind of relation.

Definition 3.

A relation R is called a mapping (map), or a function, or a transfor-
mation, iff every element € Dp has a unique R-relative, so that R[z]
consists of a single element. This unique element is denoted by R(x) and
is called the function value at = (under R). Thus R(z) is the only member
of R[xz].!

If, in addition, different elements of Dr have different images, R is called a
one-to-one (or one-one) map. In this case,
z #vy (z, y € Dr) implies R(x) # R(y);
equivalently,
R(z) = R(y) implies x = y.

In other words, no two pairs belonging to R have the same left, or the same
right, terms. This shows that R is one to one iff R™', too, is a map.? Mappings
are often denoted by the letters f, g, h, F, 1, etc.

! Equivalently, R is a map iff (x, y) € R and (z, z) € R implies that y = 2. (Why?)
2 Note that R—! always exists as a relation, but it need not be a map. For example,

_ (1 2 3 4
f_<2338>

1_(2 3 3 8
f_<1234>

is not. (Why?) Here f is not one to one.

is a map, but
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A mapping f is said to be “from A to B” iff Dy = A and D} C B; we then
write

f:A— B (“f maps A into B”).
If, in particular, Dy = A and D} = B, we call f a map of A onto B, and we

write
f: A— B (“f maps A onto B”).

onto

If f is both onto and one to one, we write

f:A«— B

onto

(f: A +— B means that f is one to one).

All pairs belonging to a mapping f have the form (x, f(z)) where f(x) is
the function value at z, i.e., the unique f-relative of x, x € Dy. Therefore, in
order to define some function f, it suffices to specify its domain Dy and the
function value f(x) for each v € Dy. We shall often use such definitions. It is
customary to say that f is defined on A (or “f is a function on A”) iff A = Dy.

Examples.
(a) The relation
R ={(z, y) | z is the wife of y}

is a one-to-one map of the set of all wives onto the set of all husbands.
R~! is here a one-to-one map of the set of of all husbands (= D) onto
the set of all wives (= Dp).

(b) The relation
f={(z, y) | y is the father of z:}

is a map of the set of all people onto the set of their fathers. It is not one
to one since several persons may have the same father (f-relative), and

so & # &' does not imply f(z) # f(z').

(c) Let
(1 2 3 4
9=\2 2 3 8)°

Then g is a map of Dy = {1, 2, 3, 4} onto D = {2, 3, 8}, with

g(1) =2, g(2) =2, g(3) =3, g(4) =8.

(As noted above, these formulas may serve to define g.) It is not one to
one since g(1) = g(2), so g~ is not a map.
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(d) Consider
f: N = N, with f(z) = 2z for each = € N.3

By what was said above, f is well defined. It is one to one since = # y
implies 2z # 2y. Here Dy = N (the naturals), but D) consists of even
naturals only. Thus f is not onto N (it is onto a smaller set, the even
naturals); f~! maps the even naturals onto all of N.

The domain and range of a relation may be quite arbitrary sets. In partic-
ular, we can consider functions f in which each element of the domain Dy is
itself an ordered pair (x, y) or n-tuple (z1, @2, ..., ). Such mappings are
called functions of two (respectively, n) variables. To any n-tuple (z1, ..., )
that belongs to Dy, the function f assigns a unique function value, denoted by
f(z1, ..., zp). It is convenient to regard z1, x2, ..., T, as certain variables;
then the function value, too, becomes a variable depending on the z1, ..., z,.
Often Dy consists of all ordered n-tuples of elements taken from a set A,
ie., Dy = A™ (cross-product of n sets, each equal to A). The range may
be an arbitrary set B; so f: A™ — B. Similarly, f: A x B — C is a function
of two variables, with Dy = A x B, D} C C.

Functions of two variables are also called (binary) operations. For example,
addition of natural numbers may be treated as a map f: N x N — N, with
fl@,y)=z+vy.

Definition 4.
A relation R is said to be
(i) reflexive iff we have xRz for each x € Dp;
(ii) symmetric iff Ry always implies yRx;

(iii) transitive iff xRy combined with yRz always implies xRz.

R is called an equivalence relation on a set A iff A = Dg and R has all the
three properties (i), (ii), and (iii). For example, such is the equality relation on
A (also called the identity map on A) denoted

IA:{(.’L’,y)|$€A,$=y}.

Equivalence relations are often denoted by special symbols resembling equality,
such as =, ~, ~, etc. The formula xRy, where R is such a symbol, is read

“x is equivalent (or R-equivalent) to y,”

3 This is often abbreviated by saying “consider the function f(x) = 2z on N.” However,
one should remember that f(z) is actually not the function f (a set of ordered pairs) but
only a single element of the range of f. A better expression is “f is the map x — 2x on N”
or “f carries x into 2z (x € N).”
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and R[z] = {y | zRy} (i.e., the R-image of x) is called the R-equivalence class
(briefly R-class) of x in A; it consists of all elements that are R-equivalent to
z and hence to each other (for xRy and xRz imply first yRx, by symmetry,
and hence yRz, by transitivity). Each such element is called a representative
of the given R-class, or its generator. We often write [z] for R[z].

Examples.

(a’) The inequality relation < between real numbers is transitive since
r <yandy < zimplies z < z;
it is neither reflexive nor symmetric. (Why?)
(b') The inclusion relation C between sets is reflexive (for A C A) and tran-
sitive (for A C B and B C C implies A C ('), but it is not symmetric.

(¢’) The membership relation € between an element and a set is neither re-
flexive nor symmetric nor transitive (z € A and A € M does not imply
z e M).

(d") Let R be the parallelism relation between lines in a plane, i.e., the set of
all pairs (X, V), where X and Y are parallel lines. Writing || for R, we
have X || X, X || Y implies Y || X, and (X || Y and Y || Z) implies
X || Z, so R is an equivalence relation. An R-class here consists of all
lines parallel to a given line in the plane.

(¢’) Congruence of triangles is an equivalence relation. (Why?)
Theorem 1. If R (also written =) is an equivalence relation on A, then all
R-classes are disjoint from each other, and A is their union.

Proof. Take two R-classes, [p] # [¢]. Seeking a contradiction, suppose they
are not disjoint, so
(3z) z€p|and z € [g];

i.e., p = x = q and hence p = ¢q. But then, by symmetry and transitivity,
yebley=pey=qeycld

i.e., [p] and [q] consist of the same elements y, contrary to assumption [p] # [q].
Thus, indeed, any two (distinct) R-classes are disjoint.
Also, by reflexivity,
Ve eA) z=ux,

i.e., € [z]. Thus each = € A is in some R-class (namely, in [z]); so all of A is
in the union of such classes,

Ac Rl
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Conversely,
(Vz) R[z]C A

since
y € R[z] = zRy = yRx = (y, ) € R=>y € D = A,

by definition. Thus A contains all R[z], hence their union, and so

A={JR[z]. O

Problems on Relations and Mappings

1. For the relations specified in Problem 7 of §§1-3, find D, D}, and R~
Also, find R[A] and R™1[A] if

(a) A= {3} (b) A= {1}
(c) A= {0} (d) A =10
(e) A={0,3, —15}; (f) A={3,4,7,0, -1, 6};

(g) A={x| 20 <z < 5}.

2. Prove that if A C B, then R[A] C R[B]. Disprove the converse by a

counterexample.
3. Prove that
(i) R[AU B] = R[A]U R|[BJ;
(ii) R[ANB] C R[A]N R[B];
(iii) R[A — B] 2 R[A] — R[B].

Disprove reverse inclusions in (ii) and (iii) by examples. Do (i) and (ii)
with A, B replaced by an arbitrary set family {A; | ¢ € I}.

4. Under which conditions are the following statements true?
(i) Rlz] = 0; (it) R™'[z] = 0;
(i) R[A] = 0; (iv) R4 = 0.
5. Let f: N — N (N = {naturals}). For each of the following functions,

specify f[N], i.e., D}, and determine whether f is one to one and onto
N, given that for all z € N,

() fle)=2% (i) f2) =1 (iil) f(z) = || +3;
(iv) f(z) = 22 (v) f(z) =4z +5.
Do all this also if N denotes
(a) the set of all integers;
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(b) the set of all reals.

. Prove that for any mapping f and any sets A, B, A; (i € I),

(a) fHAUB] = ‘1[ JU Bl
(b) f7HANB] = f~HAIN f7B];
(c) f7HA-B]= ‘1[A]—f‘1[B];
(d) f7HU; Al = U £7HA;
(e) f7HM; Al = £7HA]L

Compare with Problem 3.
[Hint: First verify that z € f~1[A] iff # € Dy and f(z) € A]

. Let f be a map. Prove that

(a) fIFHA] € 4

(b) FI/~HAl = Aif AC D)

(c) if AC Dy and f is one to one, A = f~1[f[A]].
Is fJAINB C fl[AN f71[B]]?

. Is R an equivalence relation on the set J of all integers, and, if so, what

are the R-classes, if
(a) R={(x, y)|x — y is divisible by a fixed n};
(b) R={(z, ) |~y is odd};
(¢) R={(z,y) |z —y is a prime}.

(z, y, n denote integers.)

. Is any relation in Problem 7 of §§1-3 reflexive? Symmetric? Transitive?
10.

Show by examples that R may be

(a) reflexive and symmetric, without being transitive;
(b) reflexive and transitive without being symmetric.

Does symmetry plus transitivity imply reflexivity? Give a proof or
counterexample.

§8. Sequences!

By an infinite sequence (briefly sequence) we mean a mapping (call it u) whose
domain is N (all natural numbers 1, 2, 3, ...); D, may also contain 0.

! This section may be deferred until Chapter 2, §13.
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A finite sequence is a map u in which D,, consists of all positive (or non-
negative) integers less than a fized integer p. The range D), of any sequence u
may be an arbitrary set B; we then call u a sequence of elements of B, or in

B. For example,
123 4 ... n ..
”‘(2 46 8 ... 2 > (L)

is a sequence with

Instead of u(n) we usually write u, (“index notation”), and call u,, the nth
term of the sequence. If n is treated as a variable, u,, is called the general term
of the sequence, and {u,} is used to denote the entire (infinite) sequence, as
well as its range D), (whichever is meant, will be clear from the context). The
formula {u,} C B means that D C B, i.e., that u is a sequence in B. To
determine a sequence, it suffices to define its general term u,, by some formula
or rule.? In (1) above, u, = 2n.

Often we omit the mention of D, = N (since it is known) and give only the
range D). Thus instead of (1), we briefly write

2,4,6,...,2n, ...

or, more generally,

UL, U2y « vy Uny vvv s

Yet it should be remembered that u is a set of pairs (a map).

If all u,, are distinct (different from each other), u is a one-to-one map. How-
ever, this need not be the case. It may even occur that all u,, are equal (then u
is said to be constant); e.g., u,, = 1 yields the sequence 1, 1,1, ..., 1, ..., i.e,

123 ... n ...
“_(1 11 .1 ) @)
Note that here u is an infinite sequence (since D,, = N), even though its
range D! has only one element, D! = {1}. (In sets, repeated terms count
as one element; but the sequence u consists of infinitely many distinct pairs

(n, 1).) If all u,, are real numbers, we call u a real sequence. For such sequences,
we have the following definitions.

2 However, such a formula may not exist; the u,, may even be chosen “at random.”
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Definition 1.

A real sequence {uy,} is said to be monotone (or monotonic) iff it is either
nondecreasing, i.e.,
(V n) Un S Un+41,

or nomincreasing, i.e.,
(Vn) wup > uptr.

Notation: {u,}t and {u,}|, respectively. If instead we have the strict
inequalities u, < wun41 (respectively, u, > un41), we call {u,} strictly
monotone (increasing or decreasing).

A similar definition applies to sequences of sets.

Definition 2.

A sequence of sets Ay, Aa, ..., Ay, ...
either expanding, i.e.,

is said to be monotone iff it is

(vn) An c An+la

or contracting, i.e.,
(V 77,) An 2 An+1.

Notation: {A,}1 and {4, }], respectively. For example, any sequence of
concentric solid spheres (treated as sets of points), with increasing radii,
is expanding; if the radii decrease, we obtain a contracting sequence.

Definition 3.

Let {u,} be any sequence, and let
ng<ng <---<np <---

be a strictly increasing sequence of natural numbers. Select from {w,}
those terms whose subscripts are ni, ns, ..., ng, .... Then the sequence
{un, } so selected (with kth term equal to wy,, ), is called the subsequence
of {u,}, determined by the subscripts ng, k=1, 2, 3, ....

Thus (roughly) a subsequence is any sequence obtained from {u,} by drop-
ping some terms, without changing the order of the remaining terms (this is
ensured by the inequalities n1 < ne < --- < ng < --- where the ny are the
subscripts of the remaining terms). For example, let us select from (1) the
subsequence of terms whose subscripts are primes (including 1). Then the
subsequence is

2,4, 6,10, 14, 22, ...,

ie.,
Up, U2, U, U5, U7, ULLy « - .-
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All these definitions apply to finite sequences accordingly. Observe that
every sequence arises by “numbering” the elements of its range (the terms): u
is the first term, us is the second term, and so on. By so numbering, we put
the terms in a certain order, determined by their subscripts 1, 2, 3, ... (like
the numbering of buildings in a street, of books in a library, etc.). The question
now arises: Given a set A, is it always possible to “number” its elements by
integers? As we shall see in §9, this is not always the case. This leads us to
the following definition.

Definition 4.

A set A is said to be countable iff A is contained in the range of some
sequence (briefly, the elements of A can be put in a sequence).

If, in particular, this sequence can be chosen finite, we call A a finite
set. (The empty set is finite.)

Sets that are not finite are said to be infinite.

Sets that are not countable are said to be uncountable.

Note that all finite sets are countable. The simplest example of an infinite
countable set is N = {1, 2,3, ...}.

§9. Some Theorems on Countable Sets!

We now derive some corollaries of Definition 4 in §8.
Corollary 1. If a set A is countable or finite, so is any subset B C A.
For if A C D), for a sequence u, then certainly B C A C D).
Corollary 2. If A is uncountable (or just infinite), so is any superset B D A.
For, if B were countable or finite, so would be A C B, by Corollary 1.
Theorem 1. If A and B are countable, so is their cross product A x B.

Proof. If Aor Bis @, then A x B = (), and there is nothing to prove.

Thus let A and B be nonvoid and countable. We may assume that they fill
two infinite sequences, A = {a,}, B = {b,} (repeat terms if necessary). Then,
by definition, A x B is the set of all ordered pairs of the form

(an, bm), n, m e N.

Call n+m the rank of the pair (a,, b,,). For each r € N, there are r — 1 pairs
of rank r:

(al, br_1), ((12, br_g), ey (ar_l, bl) (1)

! This section may be deferred until Chapter 5, §4.
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We now put all pairs (a,, by,) in one sequence as follows. We start with
(a1, b1)

as the first term; then take the two pairs of rank three,

(a1, b2), (az, b1);

then the three pairs of rank four, and so on. At the (r — 1)st step, we take all
pairs of rank 7, in the order indicated in (1).

Repeating this process for all ranks ad infinitum, we obtain the sequence of
pairs

(al, bl), (ah 62)7 (61,27 bl)7 (CLl, bs), (ag, bz), (a37 61)7 ey

in which uy = (aq, b1), us = (a1, b2), etc.

By construction, this sequence contains all pairs of all ranks r, hence all pairs
that form the set A x B (for every such pair has some rank r and so it must
eventually occur in the sequence). Thus A X B can be put in a sequence. [

Corollary 3. The set R of all rational numbers? is countable.

Proof. Consider first the set @ of all positive rationals, i.e.,
n
fractions —, with n, m € N.
m

We may formally identify them with ordered pairs (n, m), i.e., with N x N.
We call n + m the rank of (n, m). As in Theorem 1, we obtain the sequence
1121 2 31 2 3 4
172173 2 1743 21
By dropping reducible fractions and inserting also 0 and the negative rationals,
we put R into the sequence

1 1 1 1
0, 1, -1, 3 "3 2, —2, 30~ 3, =3, ..., asrequired. O
Theorem 2. The union of any sequence {A,} of countable sets is countable.

Proof. As each A, is countable, we may put
Ap ={an1, an2y -+, Gy - e

(The double subscripts are to distinguish the sequences representing different
sets Ap.) As before, we may assume that all sequences are infinite. Now, | J,, An
obviously consists of the elements of all A,, combined, i.e., all apm, (n, m € N).
We call n 4+ m the rank of a,,, and proceed as in Theorem 1, thus obtaining

UAn = {61117 @12, a21, @13, A22, a31, }
n

2 A number is rational iff it is the ratio of two integers, p/q, q¢ # 0.
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Thus (J,, An can be put in a sequence. [
Note 1. Theorem 2 is briefly expressed as
“Any countable union of countable sets is a countable set.”

(The term “countable union” means “union of a countable family of sets”, i.e., a
family of sets whose elements can be put in a sequence {4,}.) In particular,
if A and B are countable, so are AU B, AN B, and A — B (by Corollary 1).

Note 2. From the proof it also follows that the range of any double se-
quence {anm} is countable. (A double sequence is a function u whose domain
D, is N x N;say,u: N x N — B. If n, m € N, we write w,, for u(n, m);
here Upm = anm-)

To prove the existence of wuncountable sets, we shall now show that the

interval
0,1)={z|0<z<1}

of the real axis is uncountable.
We assume as known the fact that each real number x € [0, 1) has a unique
infinite decimal expansion
0.21, Tay ooy Tpy vy
where the z,, are the decimal digits (possibly zeros), and the sequence {x,}
does not terminate in nines (this ensures uniqueness).
Theorem 3. The interval [0, 1) of the real azis is uncountable.

Proof. We must show that no sequence can comprise all of [0, 1). Indeed,
given any {u,}, write each term w,, as an infinite decimal fraction; say,

Up = 0.Gn1, An2y -« vy Qpmy - - - -
Next, construct a new decimal fraction
z=0.21, T2, ..., Tn, ...,

choosing its digits z,, as follows.

If apy, (i-e., the nth digit of u,) is 0, put z,, = 1; if, however, a,, # 0, put
zp = 0. Thus, in all cases, T, # ann, i.€., z differs from each u, in at least one
decimal digit (namely, the nth digit). It follows that z is different from all u,,
and hence is not in {u, }, even though z € [0, 1).

Thus, no matter what the choice of {u,,} was, we found some z € [0, 1) not
in the range of that sequence. Hence no {u,} contains all of [0, 1). O

Note 3. By Corollary 2, any superset of [0, 1), e.g., the entire real axis, is
uncountable. See also Problem 4 below.

3 For example, instead of 0.49999. .., we write 0.50000. ...
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Note 4. Observe that the numbers a,,,, used in the proof of Theorem 3 form
the diagonal of the infinitely extending square composed of all a,,,. Therefore,
the method used above is called the diagonal process (due to G. Cantor).

Problems on Countable and Uncountable Sets
1. Prove that if A is countable but B is not, then B — A is uncountable.
[Hint: If B — A were countable, so would be
(B—A)UADB. (Why?)
Use Corollary 1.]
2. Let f be a mapping, and A C Dy. Prove that
(i) if A is countable, so is f[A];
(ii) if f is one to one and A is uncountable, so is f[A].
[Hints: (i) If A = {uy}, then
FIA] = {f(w1), f(u2), ..., f(un), ... }.
(ii) If f[A] were countable, so would be f~'[f[A]], by (i). Verify that
FHrA = A
here; cf. Problem 7 in §§4-7.]

3. Let a, b be real numbers (a < b). Define a map f on [0, 1) by
f@)=a+z(b-a).

Show that f is one to one and onto the interval [a, b) = {z | a < 2 < b}.
From Problem 2, deduce that [a, b) is uncountable. Hence, by Problem
1, so is (a, b) ={z | a < z < b}.

4. Show that between any real numbers a, b (a < b) there are uncountably
many irrationals, i.e., numbers that are not rational.
[Hint: By Corollary 3 and Problems 1 and 3, the set (a, b)) — R is uncountable.
Explain in detail.]

5. Show that every infinite set A contains a countably infinite set, i.e., an
infinite sequence of distinct terms.

[Hint: Fix any a; € A; A cannot consist of a; alone, so there is another element
a2 € A—{a1}. (Why?)

Again, A # {a1, a2}, so there is an a3 € A — {a1, a2}. (Why?) Continue thusly ad
infinitum to obtain the required sequence {a,}. Why are all a,, distinct?)

*6. From Problem 5, prove that if A is infinite, there is a map f: A — A

that is one to one but not onto A.

[Hint: With a, as in Problem 5, define f(an) = an+1. If, however, x is none of the
an, put f(z) = x. Observe that f(z) = a1 is never true, so f is not onto A. Show,
however, that f is one to one.]
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*7. Conversely (cf. Problem 6), prove that if there is a map f: A — A that
is one to one but not onto A, then A contains an infinite sequence {a,}
of distinct terms.

[Hint: As f is not onto A, there is a; € A such that a; ¢ f[A]. (Why?) Fix a; and
define

a2 = f(a1), a3 = f(a2), ..., ant1 = f(an), ... ad infinitum.
To prove distinctness, show that each a,, is distinct from all a,, with m > n. For a1,
this is true since a1 ¢ f[A], whereas am € f[A] (m > 1). Then proceed inductively.]

Chapter 2
Real Numbers. Fields

§81-4. Axioms and Basic Definitions

Real numbers can be constructed step by step: first the integers, then the
rationals, and finally the irrationals.! Here, however, we shall assume the
set of all real numbers, denoted E', as already given, without attempting to
reduce this notion to simpler concepts. We shall also accept without definition
(as primitive concepts) the notions of the sum (a + b) and the product, (a - b)
or (ab), of two real numbers, as well as the inequality relation < (read “less
than”). Note that z € E* means “z is in E1)” i.e., “z is a real number.”

It is an important fact that all arithmetic properties of reals can be deduced
from several simple axioms, listed (and named) below.

AXIOMS OF ADDITION AND MULTIPLICATION

I (closure laws). The sum x + y, and the product xy, of any real numbers
are real numbers themselves. In symbols,
(Vz,y € BY) (r+y) € E" and (zy) € B
II (commutative laws).
(Vz,y€ FY) z+y=y+zand zy=yz.
IIT (associative laws).
(Va,y, z€ EY) (z+y)+z=a+(y+2) and (zy)z = 2(yz).

IV (existence of neutral elements).

(a) There is a (unique) real number, called zero (0), such that, for all
real x, x +0 = x.

1 See the author’s Basic Concepts of Mathematics, Chapter 2, §15.


http://www.trillia.com/zakon1.html

24 Chapter 2. Real Numbers. Fields

(b) There is a (unique) real number, called one (1), such that 1 # 0
and, for all real x, x -1 = x.

In symbols,
(a) (N0e€E) (Ve EY) o+0=u;
(b) (A1 eE) Vxek) z-1=x,1+#0.

(The real numbers 0 and 1 are called the neutral elements of addition and
multiplication, respectively.)

V (existence of inverse elements).

(a) For every real x, there is a (unique) real, denoted —x, such that
z+ (—z) =0.

(b) For every real x other than 0, there is a (unique) real, denoted x1,
such that x - 271 = 1.

In symbols,
(a) (Vo e BY) N—z € EY) x+(—z)=0;
(b) (Vo e EB' |z #£0) Q2 € BY) a2l =1

(The real numbers —x and x~! are called, respectively, the additive in-
verse (or the symmetric) and the multiplicative inverse (or the reciprocal)
of z.)

VI (distributive law).

(Vl’, y7Z€E1) (I+y)Z:1’Z+y2

Ax1oMs OF ORDER

VII (trichotomy). For any real x and y, we have
eitherx <y ory <z orxz=y
but never two of these relations together.
VIII (transitivity).

(Va,y, 2z€ EY) z <y andy < z implies x < 2.

IX (monotonicity of addition and multiplication). For any z, y, z € E', we
have
(a) = <y impliesz + 2z <y—+ z;
(b) z <y and z > 0 implies xz < yz.

An additional axiom will be stated in §§8-9.
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Note 1. The uniqueness assertions in Axioms IV and V are actually re-
dundant since they can be deduced from other axioms. We shall not dwell on
this.

Note 2. Zero has no reciprocal; i.e., for no x is 0x = 1. In fact, 0z = 0.

For, by Axioms VI and 1V,

0z 4+ 0x = (0 + 0)z = 0z = 0z + 0.

Cancelling Oz (i.e., adding —0z on both sides), we obtain 0z = 0, by Axioms III
and V(a).

Note 3. Due to Axioms VII and VIII, real numbers may be regarded as
given in a certain order under which smaller numbers precede the larger ones.
(This is why we speak of “axioms of order.”) The ordering of real numbers can
be visualized by “plotting” them as points on a directed line (“the real axis”)
in a well-known manner. Therefore, E' is also often called “the real azis,” and
real numbers are called “points”; we say “the point x” instead of “the number
x.”

Observe that the axioms only state certain properties of real numbers without
specifying what these numbers are. Thus we may treat the reals as just any
mathematical objects satisfying our axioms, but otherwise arbitrary. Indeed,
our theory also applies to any other set of objects (numbers or not), provided
they satisfy our axioms with respect to a certain relation of order (<) and
certain operations (+) and (-), which may, but need not, be ordinary addition
and multiplication. Such sets exist indeed. We now give them a name.

Definition 1.
A field is any set F' of objects, with two operations (+) and (-) defined
in it in such a manner that they satisfy Axioms I-VI listed above (with
E! replaced by F, of course).

If F is also endowed with a relation < satisfying Axioms VII to IX, we
call F' an ordered field.

In this connection, postulates I to IX are called azioms of an (ordered) field.

By Definition 1, E' is an ordered field. Clearly, whatever follows from the
axioms must hold not only in E' but also in any other ordered field. Thus
we shall henceforth state our definitions and theorems in a more general way,
speaking of ordered fields in general instead of E' alone.

Definition 2.

An element z of an ordered field is said to be positive if x > 0 or negative
ifz <0.

Here and below, “x > y” means the same as “y < x.” We also write
“r <y” for “z <y or x =y”; similarly for “x > y.”
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Definition 3.
For any elements z, y of a field, we define their difference
r—y=z+(-y)
If y # 0, we also define the quotient of x by y

also denoted by z/y.

Note 4. Division by 0 remains undefined.
Definition 4.

For any element x of an ordered field, we define its absolute value,
2] { T if >0 and
x|l =
—x ifx<0.
It follows that |x| > 0 always; for if x > 0, then
|z] =2 > 0;

and if x < 0, then
|z| = —z > 0. (Why?)

Moreover,
—[a] <@ < o],
for,
if x > 0, then |z| = z;
and

if # <0, then = < |z| since |z| > 0.
Thus, in all cases,
z < |z|.
Similarly one shows that

—|z] < z.

As we have noted, all rules of arithmetic (dealing with the four arithmetic
operations and inequalities) can be deduced from Axioms I through IX and
thus apply to all ordered fields, along with E'. We shall not dwell on their
deduction, limiting ourselves to a few simple corollaries as examples.?

2 For more examples, see the author’s Basic Concepts of Mathematics, Chapter 2, §§3-4.
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Corollary 1 (rule of signs).
(i) a(=b) = (—a)b = —(ab);
(ii) (—a)(—=b) = ab.
Proof. By Axiom VI,
a(=b) +ab=a[(=b) + bl =a-0=0.

Thus
a(=b) +ab=0.

By definition, then, a(—b) is the additive inverse of ab, i.e.,
a(—b) = —(ab).
Similarly, we show that
(—a)b = —(ab)
and that
—(—a) = a.
Finally, (ii) is obtained from (i) when a is replaced by —a. O
Corollary 2. In an ordered field, a # 0 implies
a®>=(a-a) > 0.
(Hence 1 =12 >0.)
Proof. If a > 0, we may multiply by a (Axiom IX(b)) to obtain
a-a>0-a=0,1ie., a?>0.

If a < 0, then —a > 0; so we may multiply the inequality ¢ < 0 by —a and
obtain
a(—a) < 0(—a) =0;

i.e., by Corollary 1,
—a? <0,

whence

a®>>0. O

8§85—-6. Natural Numbers. Induction

The element 1 was introduced in Axiom IV(b). Since addition is also assumed
known, we can use it to define, step by step, the elements

=1+1,3=2+1, 4=3+1, etc.
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If this process is continued indefinitely, we obtain what is called the set N of
all natural elements in the given field F'. In particular, the natural elements of
E! are called natural numbers. Note that

(VneN) n+1€eN.
*A more precise approach to natural elements is as follows.! A subset S of
a field F is said to be inductive iff
(i) 1€ S and
(i) (VzeS)z+1eS.
Such subsets certainly exist; e.g., the entire field F' is inductive since

le Fand Vz e F)xz+1€F.

Define N as the intersection of all inductive sets in F'.

*Theorem 1. The set N so defined is inductive itself. In fact, it is the “small-
est” inductive subset of F (i.e., contained in any other such subset).

Proof. We have to show that
(i) 1€ N, and
(ii) (WVzxeN)z+1€eN.

Now, by definition, the unity 1 is in each inductive set; hence it also belongs
to the intersection of such sets, i.e., to N. Thus 1 € N, as claimed.

Next, take any € N. Then, by our definition of N, z is in each inductive
set S; thus, by property (ii) of such sets, also  + 1 is in each such S; hence
r + 1 is in the intersection of all inductive sets, i.e.,

r+1€N,

and so N is inductive, indeed.

Finally, by definition, N is the common part of all such sets and hence
contained in each. [

For applications, Theorem 1 is usually expressed as follows.

Theorem 1’ (first induction law). A proposition P(n) involving a natural n
holds for all n € N in a field F if

(1) it holds for n =1, i.e., P(1) is true; and
(ii) whenever P(n) holds for n = m, it holds for n =m+ 1, i.e.,

P(m) = P(m+1).

1 At a first reading, one may omit all “starred” passages and simply assume Theorems 1’
and 2’ below as additional axioms, without proof.
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*Proof. Let S be the set of all those n € N for which P(n) is true,

S={neN|P(n)

We have to show that actually each n € N isin S, i.e., N C S.

First, we show that S is inductive.
Indeed, by assumption (i), P(1) is true; so 1

.

es.
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Next, let z € S. This means that P(x) is true. By assumption (ii), however,

this implies P(x + 1), i.e., z + 1 € S. Thus

leSand VzeS)z+1€S;

S is inductive.

Then, by Theorem 1 (second clause), N C S, and all is proved. O

This theorem is used to prove various properties of N “by induction.”

Examples.

(a) If m, n € N, then also m+n € N and mn € N.

To prove the first property, fix any m € N. Let P(n) mean

m+neN (neN).

Then

(i) P(1) is true, for as m € N, the definition of N yields m +1 € N,

ie., P(1).
(ii) P(k) = P(k+1) for k € N. Indeed,

Pky==m+keN=(m+k)+1eN
=m+(k+1)e N= Pk+1).

Thus, by Theorem 1’, P(n) holds for all n; i.e.,

(VneN) m+neN

for any m € N.
To prove the same for mn, we let P(n)

mean

mneN (neN)

and proceed similarly.

(b) Ifne N, thenn—1=0o0orn—1€ N.
For an inductive proof, let P(n) mean

n—1=0orn—1€N

Then proceed as in (a).

(n€eN).
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(¢) In an ordered field, all naturals are > 1.
Indeed, let P(n) mean that
n>1 (neN).
Then
(i) P(1) holds since 1 = 1.
(ii) P(m)= P(m+1) for m € N, since
Pm)=m>1= (m+1)>1= P(m+1).
Thus Theorem 1’ yields the result.
(d) In an ordered field, m, n € N and m > n impliesm —n € N.
For an inductive proof, fix any m € N and let P(n) mean
m—n<0Qorm—-neN (neN)
Use (b).
(e) In an ordered field, m,n € N and m <n+ 1 implies m < n.

For, by (d), m > n would imply m —n € N, hence m —n > 1, or
m > n+ 1, contrary tom < n + 1.

Our next theorem states the so-called well-ordering property of N.

Theorem 2 (well-ordering of N). In an ordered field, each nonvoid set A C N
has a least member (i.e., one that exceeds no other element of A).

Proof outline.? Given ) # A C N, let P(n) be the proposition “Any subset
of A containing elements < n has a least member” (n € N). Use Theorem 1/
and Example (e¢). O

This theorem yields a new form of the induction law.

Theorem 2’ (second induction law). A proposition P(n) holds for alln € N
in an ordered field if

(i) P(1) holds and

(ii") whenever P(n) holds for all naturals less than some m € N, then P(n)
also holds for n = m.

Proof. Assume (i') and (ii’). Seeking a contradiction,® suppose there are some
n € N (call them “bad”) for which P(n) fails. Then these “bad” naturals form
a nonvoid subset of N, call it A.

2 For a more detailed proof, see Basic Concepts of Mathematics, Chapter 2, §5, Theo-
rem 2.

3 We are using a “proof by contradiction” or “indirect proof.” Instead of proving our
assertion directly, we show that the opposite is impossible, being contradictory.
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By Theorem 2, A has a least member m. Thus m is the least natural for
which P(n) fails. It follows that all n less than m do satisfy P(n). But then,
by our assumption (ii’), P(n) also holds for n = m, which is impossible for, by
construction, m is “bad” (it is in A). This contradiction shows that there are
no “bad” naturals. Thus all is proved. [

Note 1. All the preceding arguments hold also if, in our definition of N
and all formulations, the unity 1 is replaced by 0 or by some k (£k € N).
Then, however, the conclusions must be changed to say that P(n) holds for all
integers n > k (instead of “n > 17). We then say that “induction starts with
k.

An analogous induction law also applies to definitions of concepts C(n).

A notion C(n) involving a natural n is regarded as defined for each n € N
(in EY) if

(1) it is defined for n =1 and

(ii) some rule is given that expresses C(n+ 1) in terms of C(1), ..., C(n).
(Note 1 applies here, to00.)

C(n) itself need not be a number; it may be of quite general nature.

We shall adopt this principle as a kind of logical axiom, without proof
(though it can be proved in a similar manner as Theorems 1’ and 2'). The un-
derlying intuitive idea is a “step-by-step” process—first, we define C'(1); then,
as C(1) is known, we may use it to define C'(2); next, once both are known,
we may use them to define C'(3); and so on, ad infinitum. Definitions based

on that principle are called inductive or recursive. The following examples are
important.

Examples (continued).

(f) For any element z of a field, we define its nth power z™ and its n-multiple
nx by

(i) 2! =1z ==z
(ii) 2"t = 2™z (respectively, (n + 1)x = nx + 2).

We may think of it as a step-by-step definition:
z! = x, z? = azlsm z = 121‘7 etc.
(g) For each natural number n, we define its factorial n! by
=1 (n+ ! =nl(n+1)

e.g., 2l =11(2) =2, 3 = 2! (3) = 6, etc. We also define 0! = 1.
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(h) The sum and product of n field elements x1, x2, ..., T, denoted by

n n
Zwk and H Tr
k=1 k=1
or
Ty + a2+ -+ x, and x125 - - - T,, respectively,

are defined recursively.
Sums are defined by

1
(i) Zazk =71
k=1
n+1 n
(i) Y a = (ka> + Ty, n=1,2,....
k=1

k=1

Thus
1+ 2+ x3 = (1 + 22) + T3,

21+ xo + 23 + x4 = (21 + 22 + 23) + 24, ete.

Products are defined by

1
() [ e =2
k=1

n+1 n
(ii) H T = ( Ltk) *Tp41-
k=1 k=1
(i) Given any objects x1, x2, ..., Tp, ..., the ordered n-tuple
(:Ela X2y «ney 'T’rl)
is defined inductively by
(i) (#1) = x1 (i-e., the ordered “one-tuple” (x1) is z; itself) and

(i) (x1, x2, ..., Tp+1) = ((@1, .-+, @), Tp+1), L-e., the ordered (n+1)-
tuple is a pair (y, Tp41) in which the first term y is itself an ordered
n-tuple, (z1, ..., Z,); for example,

(21, 2, T3) = ((21, 22), T3), etc.

Problems on Natural Numbers and Induction

1. Complete the missing details in Examples (a), (b), and (d).

2. Prove Theorem 2 in detail.
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3. Suppose zx < yi, Kk =1,2, ..., in an ordered field. Prove by induction
on n that

n n
() D ok <) s
k=1 k=1

(b) if all x, yi are greater than zero, then
n n
H T < H Yk -
k=1 k=1

4. Prove by induction that
i) 1" =1
(ii) a<b=a" <b"ifa>0.
Hence deduce that
(iii) 0<a”<1if0<a<1;
(iv) a™ < b™ = a < b if b > 0; proof by contradiction.
5. Prove the Bernoulli inequalities: For any element ¢ of an ordered field,
(i) A+e)">1+neife>—1;
(i) l—e)">1—neife<l;n=1,2,3,....

6. For any field elements a, b and natural numbers m, n, prove that

(i) a™a" =amty (i) (a™)" =a™"
(iii)  (ab)™ = a"b™; (iv) (m+n)a =ma+ na;
(v) n(ma) = (nm) - a; (vi) n(a+b) =na+nbd.

[Hint: For problems involving two natural numbers, fix m and use induction on n].

7. Prove that in any field,
n
a" Tt —pntl = (q — b)Zakb”_k7 n=1,23,....
k=0

Hence for r # 1
1 —gpntl

n
Zark:ali
-T
k=0

(sum of n terms of a geometric series).

8. For n > 0 define

0, otherwise.
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Then prove by induction on n that

Verify Pascal’s law,

(i) (Vk|0<k<n) (Z)EN;and

(ii) for any field elements a and b,

(a+b)" = Z (Z) a7k, n e N (the binomial theorem).
k=0

What value must 0° take for (ii) to hold for all @ and b?

9. Show by induction that in an ordered field F' any finite sequence
Z1, ..., Ty has a largest and a least term (which need not be z; or
Zy). Deduce that all of N is an infinite set, in any ordered field.

10. Prove in E! that

(i)

(]
|

1
= En(n +1);

i
I

= én(n-ﬁ- 1)(2n + 1);

f\
=h
=
ko
|M:
L
>
(V)

1
k= Zn2(n +1)%

k= ;—On(n +1)(2n+1)(3n% 4+ 3n — 1).

M- 11

~
Il
—_

§7. Integers and Rationals

All natural elements of a field F', their additive inverses, and 0 are called the
integral elements of F', briefly integers.

An element x € F is said to be rational iff x = b for some integers p and ¢
(¢ # 0); x is drrational iff it is not rational.

We denote by J the set of all integers, and by R the set of all rationals, in
F. Every integer p is also a rational since p can be written as p/q with ¢ = 1.
Thus

R2>JDN.
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In an ordered field,
N={zeJ|z>0} (Why?)

Theorem 1. Ifa and b are integers (or rationals) in F, so are a +b and ab.

Proof. For integers, this follows from Examples (a) and (d) in §§5-6; one only
has to distinguish three cases:
(i) a, be N;
(ii) —a€ N, be N,
(ili) e € N, —=b € N.
The details are left to the reader (see Basic Concepts of Mathematics, Chap-
ter 2, §7, Theorem 1).
Now let @ and b be rationals, say,
a=Landb= C,
q S
where p, ¢, 7, s € J and ¢, s # 0. Then, as is easily seen,

+
ps = ar and ab = pr

qs qs’

atb=

where ¢gs # 0; and ¢s and pr are integers by the first part of the proof (since
p,q, T, s EJ).

Thus a + b and ab are fractions with integral numerators and denominators.
Hence, by definition, a b € R and ab € R. [

Theorem 2. In any field F, the set R of all rationals is a field itself, under
the operations defined in I, with the same neutral elements 0 and 1. Moreover,
R is an ordered field if F is. (We call R the rational subfield of F.)

Proof. We have to check that R satisfies the field axioms.

The closure law I follows from Theorem 1.

Axioms II, ITT; and VT hold for rationals because they hold for all elements
of F; similarly for Axioms VII to IX if F' is ordered.

Axiom IV holds in R because the neutral elements 0 and 1 belong to R;
indeed, they are integers, hence certainly rationals.

To verify Axiom V, we must show that —z and z~! belong to R if = does.
If, however,

p
L:a (p7q€‘]7(I7é0)7
then
4
—r=—,
q

where again —p € J by the definition of J; thus —z € R.
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If, in addition, = # 0, then p # 0, and

1

z="2 implies 7" = =. (Why?)
q

hSEES

Thus z—' € R. O

Note. The representation
p
== (pge )
q
is not unique in general; in an ordered field, however, we can always choose
q>0,ie,qg€N (takep <0if z <0).

Among all such ¢ there is a least one by Theorem 2 of §§5-6. If = = p/q,
with this minimal ¢ € N, we say that the rational x is given in lowest terms.

868-9. Upper and Lower Bounds. Completeness Axiom

A subset A of an ordered field F' is said to be bounded below (or left bounded)
iff there is p € F such that

VexeAd) p<ux
A is bounded above (or right bounded) iff there is ¢ € F such that
Vozed) z<gq.

In this case, p and ¢ are called, respectively, a lower (or left) bound and an
upper (or right) bound, of A. If both exist, we simply say that A is bounded
(by p and ¢). The empty set 0 is regarded as (“vacuously”) bounded by any p
and ¢ (cf. the end of Chapter 1, §3).

The bounds p and ¢ may, but need not, belong to A. If a left bound p
is itself in A, we call it the least element or minimum of A, denoted min A.
Similarly, if A contains an upper bound ¢, we write ¢ = max A and call g the
largest element or mazimum of A. However, A may well have no minimum or
maximum.

Note 1. A finite set A # () always has a minimum and a maximum
(see Problem 9 of §§5-6).

Note 2. A set A can have at most one maximum and at most one minimum.
For if it had two maxima ¢, ¢/, then

a<q
(since g € A and ¢’ is a right bound); similarly

¢ <gq
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so ¢ = ¢’ after all. Uniqueness of min A is proved in the same manner.

Note 3. If A has one lower bound p, it has many (e.g., take any p’ < p).
Similarly, if A has one upper bound ¢, it has many (take any ¢’ > q).

Geometrically, on the real axis, all lower (upper) bounds lie to the left (right)
of A; see Figure 1.

FIGURE 1

Examples.
(1) Let
A={1,-2, 7}
Then A is bounded above (e.g., by 7,8, 10, ...) and below (e.g., by
—2, -5, —12, ...).
We have min A = —2, max A = 7.

(2) The set N of all naturals is bounded below (e.g., by 1, 0, %, —1,...),
and 1 = min N; N has no maximum, for each ¢ € N is exceeded by some
neN (eg,n=q+1).

(3) Given a, b € F (a <), we define in F the open interval

(a,b) ={z |a <z <b}
the closed interval

[a, 0] ={z |a <z <D}
the half-open interval

(a, b)) ={x | a <z <b};
and the half-closed interval

[a, b) = {z | a <z < b}

Clearly, each of these intervals is bounded by the endpoints a and b;
moreover, a € [a, b] and a € [a, b) (the latter provided [a, b) # 0, i.e., a <
b), and a = min[a, b] = min[a, b); similarly, b = max[a, b] = max(a, b].
But [a, b) has no maximum, (a, b] has no minimum, and (a, b) has neither.
(Why?)

Geometrically, it seems plausible that among all left and right bounds of A
(if any) there are some “ closest” to A, such as u and v in Figure 1, i.e., a least
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upper bound v and a greatest lower bound u. These are abbreviated
lub A and glb A
and are also called the supremum and infimum of A, respectively; briefly,
v=supA, u=inf A.

However, this assertion, though valid in E', fails to materialize in many
other fields such as the field R of all rationals (cf. §§11-12). Even for E!, it
cannot be proved from Axioms I through IX.

On the other hand, this property is of utmost importance for mathematical
analysis; so we introduce it as an aziom (for E'), called the completeness
axiom. It is convenient first to give a general definition.

Definition 1.
An ordered field F is said to be complete iff every nonvoid right-bounded
subset A C F has a supremum (i.e., a lub) in F.
Note that we use the term “complete” only for ordered fields.

With this definition, we can give the tenth and final axiom for E?.

X (completeness axiom). The real field E' is complete in the above sense.
That is, each right-bounded set A C E' has a supremum (sup A) in E',
provided A # ).

The corresponding assertion for infima can now be proved as a theorem.

Theorem 1. In a complete field F (such as E'), every nonvoid left-bounded
subset A C F has an infimum (i.e., a glb).

Proof. Let B be the (nonvoid) set of all lower bounds of A (such bounds exist
since A is left bounded). Then, clearly, no member of B exceeds any member
of A, and so B is right bounded by an element of A. Hence, by the assumed
completeness of F', B has a supremum in F, call it p.

We shall show that p is also the required infimum of A, thus completing the
proof.

Indeed, we have

(i) p is a lower bound of A. For, by definition, p is the least upper bound of

B. But, as shown above, each = € A is an upper bound of B. Thus

VexeAd) p<uax.

(i1) p is the greatest lower bound of A. For p = sup B is not exceeded by any
member of B. But, by definition, B contains all lower bounds of A; so p
is not exceeded by any of them, i.e.,

p=glbA=infA. O
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Note 4. The lub and glb of A (if they exist) are unique. For inf A is,
by definition, the maximum of the set B of all lower bounds of A, and hence
unique, by Note 2; similarly for the uniqueness of sup A.

Note 5. Unlike min A and max A, the glb and lub of A need not belong to
A. For example, if A is the interval (a, b) in E' (a < b) then, as is easily seen,
a=inf A and b = sup 4,

though a, b ¢ A. Thus sup A and inf A may ezist, though max A and min A do
not.

On the other hand, if
g =max A (p = min A),
then also
g=sup A (p=inf A). (Why?)

Theorem 2. In an ordered field F', we have g =sup A (A C F) iff

(i) (Vzed) x<gqand

(i) each field element p < q is exceeded by some x € A; i.e.,

(Vp<q) Bze€A) p<u.

FEquivalently,
(it’) Ve>0)(Fze€A) g—e<z; (c€F).
Similarly, p = inf A iff
VxeAd) p<z and (Ve>0)(Fze€A) p+e>uz.

Proof. Condition (i) states that ¢ is an upper bound of A, while (ii) implies
that no smaller element p is such a bound (since it is exceeded by some z in
A). When combined, (i) and (ii) state that ¢ is the least upper bound.
Moreover, any element p < ¢ can be written as ¢ —e (¢ > 0). Hence (ii) can
be rephrased as (ii’).
The proof for inf A is quite analogous. [

Corollary 1. Let b € F and A C F in an ordered field F. If each element
x of A satisfies x < b (x > b), so does sup A (inf A, respectively), provided it
exists in F.

In fact, the condition
VeeA) z<b

means that b is a right bound of A. However, sup A is the least right bound,
so sup A < b; similarly for inf A.
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Corollary 2. In any ordered field, ) # A C B implies
sup A < sup B and inf A > inf B,

as well as
infA<supA,

provided the suprema and infima involved exist.

Proof. Let p = inf B and ¢ = sup B.
As ¢ is a right bound of B,

r < qforall x € B.
But A C B, so B contains all elements of A. Thus
re€A=xeB=x<g

so, by Corollary 1, also
sup A < ¢ =supB,

as claimed.
Similarly, one gets inf A > inf B.
Finally, if A # (), we can fix some x € A. Then

infA<z<supA,

and all is proved. O

Problems on Upper and Lower Bounds

1. Complete the proofs of Theorem 2 and Corollaries 1 and 2 for infima.
Prove the last clause of Note 4.

2. Prove that F' is complete iff each nonvoid left-bounded set in F' has an
infimum.

3. Prove that if A;, A, ..., A, are right bounded (left bounded) in F, so

1S
n
U
k=1

4. Prove that if A = (a, b) is an open interval (a < b), then
a = inf A and b = sup A.

5. In an ordered field F', let ) # A C F. Let ¢ € F and let cA denote the
set of all products cx (z € A); i.e.,

cA={cx |z e A}
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Prove that
(i) if ¢ > 0, then

sup(cA) = c¢-sup A and inf(cA) = ¢ - inf 4;
(ii) if ¢ < 0, then
sup(cA) = c¢-inf A and inf(cA) = ¢ sup A.

In both cases, assume that the right-side sup A (respectively, inf A) ex-
ists.

. From Problem 5(ii) with ¢ = —1, obtain a new proof of Theorem 1.

[Hint: If A is left bounded, show that (—1)A is right bounded and use its supremum.]

. Let A and B be subsets of an ordered field F. Assuming that the

required lub and glb exist in F', prove that
(i) if Vo € A) (Vy € B) x <y, then sup A < inf B;
(i) if (Vo € A) (Ay € B) x <y, then sup A < sup B;
(iii) if (Vy € B) (3z € A) © <y, then inf A < inf B.
[Hint for (i): By Corollary 1, (Vy € B) sup A < y, so sup A < inf B. (Why?)]

. For any two subsets A and B of an ordered field F, let A + B denote

the set of all sums x +y with z € A and y € B; i.e.,
A+B={z+y|x €A, ye B}
Prove that if sup A = p and sup B = ¢ exist in F, then
p +q=sup(A + B);

similarly for infima.
[Hint for sup: By Theorem 2, we must show that
(i) Vze A) Vy € B) x+y < p+ q (which is easy) and
(i) (Ve>0)(3zeA) ByeB)z+y>(p+q) —e.
Fix any € > 0. By Theorem 2,
(FzeA) (3yeB) p—§<xandq—%<y. (Why?)
Then

T+y> (p*g)Jr(q*%) =(p+a9—e,

as required.]

. In Problem 8 let A and B consist of positive elements only, and let

AB={zy |z € A, y € B}.
Prove that if sup A = p and sup B = ¢ exist in F, then
pq = sup(AB);
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similarly for infima.
[Hint: Use again Theorem 2(ii’). For sup(AB), take
0 <e < (p+q) min{p, ¢}
and

£
andy >q— ——;
p+q

>p—
z p
pTgq

show that
2

Ty >pq—e+ 5 > Pg—€.

_&
(p+9)
For inf(AB), let s = inf B and r = inf A; choose d < 1, with

&€

0<d< ——.
1+7r+s

Now take z € A and y € B with
rz<r+dandy<s+d,

and show that
rzy <rs—+e.

Explain!]

Prove that
(i) if (Ve >0) a>b—¢, thena >b;
(ii) if (Ve >0)a<b+e, thena <b.

Prove the principle of nested intervals: If [a,, by,] are closed intervals in
a complete ordered field F', with

[aru bn] 2 [an+17 bn+1}7 n= 17 2> IRER
then
ﬂ [an, bn] # 0.
n=1
[Hint: Let
A={a1, a2, ..., an, ... }.

Show that A is bounded above by each by,.
Let p = sup A. (Does it exist?)
Show that
(Vn) an <p by,

ie.,

P € [an, bn].]
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12. Prove that each bounded set A # () in a complete field F' is contained
in a smallest closed interval [a, b] (so [a, b] is contained in any other
[e, d D A).
Show that this fails if “closed” is replaced by “open.”
[Hint: Take a = inf A, b = sup A].
13. Prove that if A consists of positive elements only, then ¢ = sup A iff
(i) (VzeA)z<gqand
(ii) (Vd>1) (FzeA)g/d<a.

[Hint: Use Theorem 2.]

§10. Some Consequences of the Completeness Axiom

The ancient Greek geometer and scientist Archimedes was first to observe that
even a large distance y can be measured by a small yardstick x; one only has
to mark z off sufficiently many times. Mathematically, this means that, given
any z > 0 and any y, there is an n € N such that nx > y. This fact, known as
the Archimedean property, holds not only in E' but also in many other ordered
fields. Such fields are called Archimedean. In particular, we have the following
theorem.

Theorem 1. Any complete field F (e.g., E') is Archimedean.
That is, given any x, y € F (x > 0) in such a field, there is a naturaln € F
such that nx > y.

Proof by contradiction. Suppose this fails. Thus, given y, z € F (z > 0),
assume that there is no n € N with nx > y.
Then
(VneN) nx<y;

i.e., y is an upper bound of the set of all products nz (n € N). Let
A={nz|neN}

Clearly, A is bounded above (by y) and A # (); so, by the assumed com-
pleteness of F', A has a supremum, say, ¢ = sup A.

As ¢ is an upper bound, we have (by the definition of A) that nz < ¢ for all
n € N, hence also (n+ 1)z < g; i.e.,

ner<q—2x

forallm € N (sincene€ N =n+1€ N).

L However, there also are incomplete Archimedean fields (see Note 2 in §§11-12).
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Thus g — = (which is less than ¢ for > 0) is another upper bound of all nz,
i.e., of the set A.

This is impossible, however, since ¢ = sup A is the least upper bound of A.
This contradiction completes the proof. [J

Corollary 1. In any Archimedean (hence also in any complete) field F, the
set N of all natural elements has no upper bounds, and the set J of all integers
has neither upper nor lower bounds. Thus

VyeF)(3m,neN) —m<y<n.

Proof. Given any y € F, one can use the Archimedean property (with z = 1)
to find an n € N such that

n-1>y, ie,n>y.
Similarly, there is an m € N such that
m > —y, i.e., —m < y.

This proves our last assertion and shows that no y € F can be a right bound
of N (for y <n € N), or a left bound of J (for y > —m e J). O

Theorem 2. In any Archimedean (hence also in any complete) field F', each
left (right) bounded set A of integers () # A C .J) has a minimum (mazimum,
respectively).
Proof. Suppose ) # A C J, and A has a lower bound y.

Then Corollary 1 (last part) yields a natural m, with —m < y, so that

Vxed) -—-m<ua,

and so x +m > 0.

Thus, by adding m to each x € A, we obtain a set (call it A+m) of naturals.?

Now, by Theorem 2 of §§5-6, A 4+ m has a minimum; call it p. As p is the
least of all sums x +m, p—m is the least of all z € A; so p—m = min A exists,
as claimed.

Next, let A have a right bound z. Then look at the set of all additive inverses
—x of points z € A; call it B.

Clearly, B is left bounded (by —=z), so it has a minimum, say, v = min B.
Then —u = max A. (Verify!) O

In particular, given any @ € F' (F Archimedean), let [] denote the great-
est integer < x (called the integral part of x). We thus obtain the following
corollary.

2 This is the main point—geometrically, we have “shifted” A to the right by m, so that
its elements became positive integers: A +m C N.
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Corollary 2. Any element x of an Archimedean field F' has an integral part
[x]. It is the unique integer n such that

n<x<n+l1.

(It exists, by Theorem 2.)
Any ordered field has the so-called density property:
If a < bin F, there is € F such that a < z < b; e.g., take
a+b

We shall now show that, in Archimedean fields, x can be chosen rational,
even if a and b are not. We refer to this as the density of rationals in an
Archimedean field.

Theorem 3 (density of rationals). Between any elements a and b (a < b) of
an Archimedean field F (such as E'), there is a rational r € F with

a<r<b.

Proof. Let p = [a] (the integral part of a). The idea of the proof is to start
with p and to mark off a small “yardstick”

1
—<b—-a
n

several (m) times, until

p+ ™ lands inside (a, b);
n

then r = p + 7% is the desired rational.

We now make it precise. As F' is Archimedean, there are m, n € N such
that

1
n(b—a) > 1 and m<7) >a—p.
n
We fix the least such m (it exists, by Theorem 2 in §§5-6). Then

m m—1
a—p< e but

<a-—p
n

(by the minimality of m). Hence
m 1
a<p+—<a+-—<a+(b—a),
n n

since % < b— a. Setting
m
r=p + R
n
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we find
a<r<a+b—a=5 0

Note. Having found one rational 7,
a<ry<b,
we can apply Theorem 3 to find another r, € R,
ry <19 < b,
then a third r3 € R,
ro <13 < b,

and so on. Continuing this process indefinitely, we obtain infinitely many
rationals in (a, b).

§811-12. Powers With Arbitrary Real Exponents. Irrationals

In complete fields, one can define a” for any a > 0 and r € E! (for r € N, see
§85-6, Example (f)). First of all, we have the following theorem.

Theorem 1. Given a > 0 in a complete field F, and a natural number n € E*,
there always is a unique element p € F, p > 0, such that

7

" =a.
It is called the nth root of a, denoted

a or a'/™.
(Note that {/a > 0, by definition.)

A direct proof, from the completeness axiom, is sketched in Problems 1 and
2 below. We shall give a simpler proof in Chapter 4, §9, Example (a). At
present, we omit it and temporarily take Theorem 1 for granted. Hence we
obtain the following result.

Theorem 2. Every complete field F (such as E') has irrational elements,
i.e., elements that are not rational.

In particular, /2 is irrational .t

Proof. By Theorem 1, F' has the element
p =2 with p? = 2.

L As usual, we write v/a for ¥a.
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Seeking a contradiction, suppose v/2 is rational, i.e.,

Va="

n

for some m, n € N in lowest terms (see §7, final note).
Then m and n are not both even (otherwise, reduction by 2 would yield a
smaller n). From m/n = /2, we obtain

so m? is even.

Only even elements have even squares, however.? Thus m itself must be
even; i.e., m = 2r for some r € N. It follows that

4r2 = m? =202, ie., 2r2 =n?

and, by the same argument, n must be even.
This contradicts the fact that m and n are not both even, and this contra-
diction shows that v/2 must be irrational. O

Note 1. Similarly, one can prove the irrationality of /a where a € N and
a is not the square of a natural. See Problem 3 below for a hint.

Note 2. Theorem 2 shows that the field R of all rationals is not com-
plete (for it contains no irrationals), even though it is Archimedean (see Prob-
lem 6). Thus the Archimedean property does not imply completeness (but see
Theorem 1 of §10).

Next, we define a” for any rational number r > 0.
Definition 1.

Given a > 0 in a complete field F', and a rational number
m
r=— (myneNCE"),
n
we define
a" = Vam.
Here we must clarify two facts.
(1) If n =1, we have
" =a™ = Vam =a™.
2 For if m is odd, then m = 2q — 1 for some ¢ € N, and hence
m? = (20— 1) =4¢®> —4g+1=4q(q— 1) + 1

is an odd number.
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If m =1, we get

Thus Definition 1 agrees with our previous definitions of a™ and {/a
(m, n € N).

(2) If r is written as a fraction in two different ways,

then, as is easily seen,
o — 9 — T
vam =+VvaP =a,

and so our definition is unambiguous (independent of the particular rep-
resentation of ).
Indeed,

m
m_Pr implies mq = np,
n q

whence
™ = apn’
ie.,
()7 = ()"
cf. §§5—6, Problem 6.
By definition, however,
(Va™)" = a™ and (VaP)? = aP.
Substituting this in (a™)? = (aP)", we get
(Vamys = (Yarys,
whence
Vam = VaP.
Thus Definition 1 is valid, indeed.

By using the results of Problems 4 and 6 of §§5-6, the reader will easily
obtain analogous formulas for powers with positive rational exponents, namely,
a"a® =a"t%; (a")* = a"; (ab)" =a"b"; a" <a®if0<a<1andr>s;
a<biffa” <d" (a,b,7>0); a" >ca’ifa>landr>s 1" =1
Henceforth we assume these formulas known, for rational r, s > 0.

Next, we define a” for any real r > 0 and any element a > 1 in a complete
field F.
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Let A, denote the set of all members of F' of the form a®, with x € R and
O0<ax<r;ie.,
Agr = {a” | 0 < z < r, z rational}.

By the density of rationals in £ (Theorem 3 of §10), such rationals = do exist;
thus Ag- # 0.

Moreover, A, is right bounded in F. Indeed, fix any rational number y > r.
By the formulas in (1), we have, for any positive rational x < r,

a¥ = a"t ) = TV > "
since a > 1 and y — z > 0 implies
a’”" > 1.

Thus a? is an upper bound of all a® in Agy.
Hence, by the assumed completeness of F', sup A, exists. So we may define

a” = sup Ag,.>

We also put

If 0 <a <1 (sothat 2 > 1), we put
1\—" 1
a" = (—) and a™" = —,
a
where
1I\"
<_) :SupAl/a,'m
a

as above.
Summing up, we have the following definitions.
Definition 2.
Given a > 0 in a complete field F/, and r € E*, we define the following.
(i) If r > 0 and @ > 1, then

a” =sup A, = sup{a” | 0 < z <r, z rational}.

(if) fr >0and 0 < a <1, then a" = W, also written (1/a)™".

(iii) a=" =1/a". (This defines powers with negative exponents as well.)

3 Note that, if r is a positive rational itself, then a” is the largest a® with x < r (where a”
and a” are as in Definition 1); thus a” = max Ay, = sup Aqr, and so our present definition
agrees with Definition 1. This excludes ambiguities.
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We also define 0" = 0 for any real r > 0, and a = 1 for any a € F, a # 0;
0% remains undefined.

The power a” is also defined if a < 0 and r is a rational 7> with n odd
because a” = {/a™ has sense in this case. (Why?) This does not work for
other values of r. Therefore, in general, we assume a > 0.

Again, it is easy to show that the formulas in (1) remain also valid for powers
with real exponents (see Problems 8-13 below), provided F is complete.

Problems on Roots, Powers, and Irrationals
The problems marked by = are theoretically important. Study them!

1. Let n € N in E'; let p > 0 and a > 0 be elements of an ordered field F.
Prove that

(i) if p" > a, then (3z € F) p> x>0 and 2" > a;
(ii) if p* < a, then (32 € F) z > p and 2" < a.

[Hint: For (i), put
r=p—d, with 0 <d<p.

Use the Bernoulli inequality (Problem 5(ii) in §§5—6) to find d such that

2" =(p—d)" > a,

AL a
(1 - —) > 2
p p
Solving for d, show that this holds if

0<d<

pt—a
— <p. (Why does such a d exist?)

np™
For (ii), if p™ < a, then

1 1
pr o a
Use (i) with @ and p replaced by 1/a and 1/p.]
2. Prove Theorem 1 assuming that
(i) a> 1,
(ii) 0 < a <1 (the cases a =0 and a = 1 are trivial).
[Hints: (i) Let
A={zeFlz>1, 2" >a}.
Show that A is bounded below (by 1) and A # 0 (e.g., a + 1 € A—why?).
By completeness, put p = inf A.
Then show that p™ = a (i.e., p is the required ¥/a).
Indeed, if p™ > a, then Problem 1 would yield an z € A with

z < p=inf A. (Contradiction!)
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Similarly, use Problem 1 to exclude p" < a.
To prove uniqueness, use Problem 4(ii) of §§5—6.
Case (ii) reduces to (i) by considering 1/a instead of a.]

3. Prove Note 1.
[Hint: Suppose first that a is not divisible by any square of a prime, i.e.,
a = pi1p2 - Pm,

where the py are distinct primes. (We assume it known that each a € N is the
product of [possibly repeating] primes.) Then proceed as in the proof of Theorem 2,
replacing “even” by “divisible by pg.”
The general case, a = p2b, reduces to the previous case since v/a = pv/b.]
4. Prove that if r is rational and ¢ is not, then r + ¢ is irrational; so also
are rq, ¢/r, and r/q if r # 0.

[Hint: Assume the opposite and find a contradiction.]

=-5. Prove the density of irrationals in a complete field F: Ifa < b (a, b € F),
there is an irrational x € F with

a<xz<b

(hence infinitely many such irrationals ). See also Chapter 1, §9,
Problem 4.
[Hint: By Theorem 3 of §10,

(3reR) avV2<r<bV/2, r#0. (Why?)
Put = = r/\/2; see Problem 4].

6. Prove that the rational subfield R of any ordered field is Archimedean.
[Hint: I

k
z=—andy= (k, m, p, g € N),
m

ESHks}

then nz >y for n = mp + 1].

7. Verify the formulas in (1) for powers with positive rational exponents
T, S.

8. Prove that
(i) a"*t* = a"a® and
(ii) a"=* =a"/a* for r, s € E' and a € F (a > 0).%
[Hints: For (i), if 7, s > 0 and a > 1, use Problem 9 in §§8-9 to get
a"a® = sup Aqr sup Ags = sup(AarAas).
4In Problems 8-13, F' is assumed complete. In a later chapter, we shall prove the formulas

in (1) more simply. Thus the reader may as well omit their present verification. The problems
are, however, useful as exercises.
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Verify that

AarAas ={a®a? |z, y€ R, 0<az<r, 0<y<s}
={a®|2z€R, 0<z<r+s}=Aq, rts-

Hence deduce that

a"a® =sup(Aq, rys) = a"

by Definition 2.
For (ii), if r > s > 0 and a > 1, then by (i),
r—s_ S T

a a = a ;

SO

For the cases r < 0 or s < 0, or 0 < a < 1, use the above results and Defini-

tion 2(ii)(iii).]

. From Definition 2 prove that if » > 0 (r € E'), then

a>1l<=adad" >1

fora € F (a > 0).
Prove for r, s € E' that

(i) r<sead <a®ifa>1;

(i) r<sead >a®if0<a<l
[Hints: (i) By Problems 8 and 9,

as = a7‘+(s—7‘) —a"a’ " >a”

since a®~" >1ifa>1and s —r > 0.
(ii) For the case 0 < a < 1, use Definition 2(ii).]

Prove that ;
a\" a
(a-b)" =a"d" and (5) =5
for € E' and positive a, b € F.
[Hint: Proceed as in Problem 8.]
Given a, b > 0 in F and r € E', prove that
(i) a>bea” >b" if r >0, and
(ii) a>bea" <bifr<0.
[Hint:
a>b<:>%>1<:>(%)T>1

if r > 0 by Problems 9 and 11].
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13. Prove that
(a")* =a"*
forr, s € E' and a € F (a > 0).
[Hint: First let 7, s > 0 and @ > 1. To show that
(a")® =a" =sup Aq,rs =sup{a® |2,y € R, 0 < 2y < rs},
use Problem 13 in §§8-9. Thus prove that
(i) Vz,ye R|0<zy <rs) a®™ < (a”)®, which is easy, and
(ii) (Vd>1) 3z, yc R|0<zy <rs) (a")® < da™¥.
Fix any d > 1 and put b = a". Then
(a")® =b° =sup Aps =sup{b? |y € R, 0 <y < s}.
Hence there is some y € R, 0 < y < s such that
(a")* <d3(a")V. (Why?)
Fix that y. Now
a” =supAgr =sup{a” [z € R, 0 <z <r};

SO

1
HzeR|0<z<r) a" <d?wa®. (Why?)

Combining all and using the formulas in (1) for rationals x, y, obtain
1
(a")® < d%(a7')y < d%(dﬂa*)y = da”?,

thus proving (ii)].

§13. The Infinities. Upper and Lower Limits of Sequences

I. The Infinities. As we have seen, a set A # () in E! has a lub (glb) if 4
is bounded above (respectively, below), but not otherwise.

In order to avoid this inconvenient restriction, we now add to E! two new
objects of arbitrary nature, and call them “minus infinity” (—oo) and “plus
infinity” (+00), with the convention that —oco < +o00 and —oco < & < 400 for
all x € B

It is readily seen that with this convention, the laws of transitivity and
trichotomy (Axioms VII and VIII) remain valid.

The set consisting of all reals and the two infinities is called the extended
real number system. We denote it by E* and call its elements extended real
numbers. The ordinary reals are also called finite numbers, while +o0o are the
only two infinite elements of E*. (Caution: They are not real numbers.)

At this stage we do not define any operations involving +oco. (This will
be done later.) However, the notions of upper and lower bound, maximum,
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minimum, supremum, and infimum are defined in E* exactly as in E'. In
particular,

—oo =min E* and + oo = max E*.

Thus in E* all sets are bounded.

It follows that in E* every set A # 0 has a lub and a glb. For if A has none
in E', it still has the upper bound +oco in E*, which in this case is the unique
(hence also the least) upper bound; thus sup A = +00.} Similarly, inf A = —oc0
if there is no other lower bound.? As is readily seen, all properties of lub and glb
stated in §88-9 remain valid in E* (with the same proof). The only exception
is Theorem 2(ii’) in the case ¢ = +oo (respectively, p = —oc0) since +00 — €
and —oo + ¢ make no sense. Part (ii) of Theorem 2 is valid.

We can now define intervals in E* exactly as in E* (§§8-9, Example (3)),
allowing also infinite values of a, b, x. For example,

(—~o0,a)={r€F" | ~o<z<a}={z€E'|z<a);
(a,
(00, +00) ={r € E* | 00 < x < +oc} = EY;
[—00, +00] = {z € E* | —0o < x < +00}; ete.

)
+oo) ={zr € E'|a < x};
+00)

Intervals with finite endpoints are said to be finite; all other intervals are called
infinite. The infinite intervals

(—o0, a), (o0, a], (a, +00), [a, +00), a€ E*,
are actually subsets of E', as is (—oo, +00). Thus we shall speak of infinite
intervals in E' as well.

II. Upper and Lower Limits.? In Chapter 1, §§1-3 we already mentioned
that a real number p is called the limit of a sequence {z,} C E* (p = limzy,)
iff

Ve>0) (3 k) Vn>k) |z,—p|l<e le,p—e<ax,<p+e, (1)

where e € E' and n, k € N.
This may be stated as follows:

For sufficiently large n (n > k), x,, becomes and stays as close to p as we
like (“e-close”).

1 This is true unless A consists of —oo alone, in which case sup A = —oo.
2Tt is also customary to define sup () = —oo and inf ) = +oo. This is the only case where
sup A < inf A.

3 This topic may be deferred until Chapter 3, §14. It presupposes Chapter 1, §8.
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We also define (in E' and E*)

li_)m Ty =400 (Vac EY) 3k) (Vn>k) z,>aand (2)
lim 2, = —o0 <= (Vb€ EY (3k) (Vn>k) z,<b. (3)

Note that (2) and (3) make sense in E*, too, since the symbols +oo do not
occur on the right side of the formulas. Formula (2) means that x,, becomes
arbitrarily large (larger than any a € E! given in advance) for sufficiently large
n (n > k). The interpretation of (3) is analogous. A more general and unified
approach will now be developed for E* (allowing infinite terms x,,, t0o).

Let {x,} be any sequence in E*. For each n, let A4,, be the set of all terms
from x,, onward, i.e.,

{Zn, Tnt1, ...}
For example,
Ay ={x1, xa, ...}, Az ={x9, 23, ...}, etc.
The A, form a contracting sequence (see Chapter 1, §8) since
A1 D A2
Now, for each n, let
pn = inf A,, and ¢, = sup A,
also denoted
Pn = 131212 ) and ¢, = :L;E T

(These infima and suprema always exist in E*, as noted above.) Since 4, 2
A4, Corollary 2 of §68-9 yields

inf A, <infA,11 <supA,+1 <supA,.
Thus
P1<p2 < - <Pp <Ppt1 < <1 < qn < < g2 < qu, (4)
and so {p, }1T, while {¢,}{ in E*. We also see that each ¢, is an upper bound
of all p, and hence
Gm > sup p, (= lub of all p,).
This, in turn, shows that this sup (call it L) is a lower bound of all g,,, and so

L S inf Qm~
m

We put _
inf ¢,, = L.
m
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Definition 1.
For each sequence {z,} C E*, we define its upper limit L and its lower
limit L, denoted

L =limz, =limsupz, and L = limx, = liminf z,,
n—o0 T n—00

as follows.
We put (Vn)

qn = sup z and p, = inf xy,
k>n k2>n

as before. Then we set

L =limz, = infq, and L = limz, = supp,, all in E*. (4)
n n

Here and below, inf,, g, is the inf of all ¢, and sup,, p,, is the sup of all p,.
Corollary 1. For any sequence in E*,

infz, <limz, < lim 2, < sup z,.
n n
For, as we noted above,
L =supp, <infg,, = L.
n m

Also,
L>p,=inf A, > inf A; = inf x,, and

L < g, =supA, <supA; =supz,,
n

with A, as above.

Examples.
(a) Let
1
Ty = —.
n
Here
- {1 1 1 }_1 1 1
g1 = sup 72>-'~7n> - >q2*2>Qn n
Hence
= . . 1 1
L:qunzlnf{l,7,,..77,,..}=0,
n 2 n

as easily follows by Theorem 2 in §§8-9 and the Archimedean property.

(Verify!) Also,

1
p1 = inf — =

k>1k

el o1
O b2 =ju =0 po = a5 =0
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Since all p,, are 0, so is L = sup,, p,. Thus here L = L = 0.

(b) Consider the sequence

1 1
1, -1,2, —=, . ——
7 ) 7 2’ 7n’ n7
Here
1
pr=—-1=ps, p3=—5 =p4, ...; Pan—1= —— = Pan-
2 n
Thus
1 1
limz,, = supp, = sup{fl, —— ey — } =0.
- n 2 n

On the other hand, ¢, = +oo for all n. (Why?) Thus

lim 2, = inf ¢,, = +o0.
n

Theorem 1.
(i) If z, > b for infinitely many n, then

limz, >b as well.
(i) If xn < a for all but finitely many n,* then
limaz, <a as well.

Similarly for lower limits (with all inequalities reversed).

Proof.
(i) If &, > b for infinitely many n, then such n must occur in each set

Am = {Ih’Lu Tm+1y - - }

Hence
(Vm)  gm =sup Ay > b;
so L = inf g,, > b, by Corollary 1 of §§8-9.
m
(i) If z,, < a except finitely many n, let ng be the last of these “exceptional”

values of n.
Then for n > ng, x, < a, i.e., the set

A =A{Zn, Tpt1, -}

41n other words, for all except (at most) a finite number of terms z,. This is stronger
than just “infinitely many n” (allowing infinitely many ezceptions as well). Caution: Avoid
confusing “all but finitely many” with just “infinitely many.”
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is bounded above by a; so
(Vn>ng) gn=supA, <a.

Hence certainly L = infgq, <a. O
n

Corollary 2.

() If imz, > a, then x, > a for infinitely many n.

(ii) If limz, <b, then x, < b for all but finitely many n.
Similarly for lower limits (with all inequalities reversed).

Proof. Assume the opposite and find a contradiction to Theorem 1. [

To unify our definitions, we now introduce some useful notions.
By a neighborhood of p, briefly G,,5 we mean, for p € E', any interval of
the form

(p—e,p+te), e>0.
If p = +oo (respectively, p = —00), G, is an infinite interval of the form
(a, +o0] (respectively, [—oo, b)), with a, b € E*.

We can now combine formulas (1)—(3) into one equivalent definition.
Definition 2.

An element p € E* (finite or not) is called the limit of a sequence {z,} in
E* iff each Gp, (no matter how small it is) contains all but finitely many
Ty, i.e. all x,, from some x; onward. In symbols,

VGp) B k) (Yn>k) z,€G). (5)
‘We shall use the notation

p=Ilimz, or lim z,.
n—oo

Indeed, if p € E', then z,, € G, means
p—e<xp,<p-+eg,
as in (1). If, however, p = oo, it means
Zn > a (respectively, ,, < b),

as in (2) and (3).

5 This terminology and notation anticipates some more general ideas in Chapter 3, §11.
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Theorem 2. We have ¢ = limx,, in E* iff

(i") each neighborhood G4 contains xy, for infinitely many n, and

(ii") if ¢ < b, then x, > b for at most finitely many n.

Proof. If ¢ = limx,,, Corollary 2 yields (ii’).

It also shows that any interval (a, b), with a < ¢ < b, contains infinitely
many x, (for there are infinitely many z,, > a, and only finitely many x,, > b,
by (il')).

Now if ¢ € E!,

Gy=(g—¢,q+¢)
is such an interval, so we obtain (i’). The cases ¢ = too are analogous; we
leave them to the reader.

Conversely, assume (') and (ii’).

Seeking a contradiction, let ¢ < L; say,

g <b<limz,.
Then Corollary 2(i) yields z,, > b for infinitely many n, contrary to our as-
sumption (ii).
Similarly, ¢ > lim 2,, would contradict (i’).
Thus necessarily ¢ = imz,. O

Theorem 3. We have q = limx,, in E* iff

limz, =limz, =q.

Proof. Suppose
limz, = limz, = ¢.
If ¢ € E', then every G, is an interval (a, b), a < g < b; therefore, Corol-
lary 2(ii) and its analogue for lim z,, imply (with ¢ treated as both lim z, and
lim x,,) that
a <z, <b for all but finitely many n.

Thus by Definition 2, ¢ = lim z,,, as claimed.

Conversely, if so, then any G, (no matter how small) contains all but finitely
many z,. Hence so does any interval (a, b) with a < g < b, for it contains some
small G.

Now, exactly as in the proof of Theorem 2, one excludes

q # limz, and ¢ # lim z,,.

This settles the case ¢ € E'. The cases ¢ = +00 are quite analogous. [0

6 A similar theorem (with all inequalities reversed) holds for lim .
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Problems on Upper and Lower Limits of Sequences in E* and if {z,}], then
1. Complete the missing details in the proofs of Theorems 2 and 3, Corol- lim 2y, = H}zf T
lary 1, and Examples (a) and (b). —10. Prove that
2. State and prove the analogues of Theorems 1 and 2 and Corollary 2 for (i) if lima, = +o0o and (Vn) @, < yn, then also limy, = +oo, and

limz,,. o~ .
N gld T (ii) if imz, = —oco and (Vn) y, < x,, then also limy,, = —oco.
(a) z, = ¢ (constant); 11. Prove that if x,, <y, for all n, then
(b) zp = —n; limz, <limy, and limz, <limy,.
(¢) p, =n; and
(d) z, =(-1)"n —n.
Does lim z,, exist in each case?

=4. A sequence {z,} is said to cluster at ¢ € E*, and q is called its cluster
point, iff each G, contains x,, for infinitely many values of n.

Show that both L and L are cluster points (L the least and L the
largest).
[Hint: Use Theorem 2 and its analogue for L.

To show that no p < L (or ¢ > Z) is a cluster point, assume the opposite and
find a contradiction to Corollary 2.]

=-5. Prove that
(i) lim(—z,) = —limz,, and
(ii) lim(az,) = a-limz, if 0 < a < +oo0.
6. Prove that .
limz,, < 4oo (limz, > —oc0)
iff {x,,} is bounded above (below) in E*.
7. Prove that if {z,,} and {y,} are bounded in E*, then
lima,, + limy, > lim(z, + y,) > lima, +limy,
> lim(zp, +yn) 2 limz, + lim yy,.
[Hint: Prove the first inequality and then use that and Problem 5(i) for the others.]

=-8. Prove that if p = limz,, in E', then
lim(zy, + yn) = p + lim yy,;
similarly for L.

=9. Prove that if {z,} is monotone, then limz,, exists in E*. Specifically,
if {, }1, then

lim x,, = sup x,,
n



Chapter 3
Vector Spaces. Metric Spaces

§81-3. The Euclidean n-Space, E™

By definition, the Fuclidean n-space E™ is the set of all possible ordered n-
tuples of real numbers, i.e., the Cartesian product

FE'x E' x--- x E' (n times).
In particular, E2 = E' x E' = {(z, y) | =, y € E'},
FBP=F'xE'xE'={(2,y,2) | x,y, 2 € B},

and so on. E! itself is a special case of E" (n = 1).

In a familiar way, pairs (z, y) can be plotted as points of the xy-plane, or
as “vectors” (directed line segments) joining (0, 0) to such points. Therefore,
the pairs (z, y) themselves are called points or vectors in E2; similarly for E3.

In E™ (n > 3), there is no actual geometric representation, but it is con-
venient to use geometric language in this case, too. Thus any ordered n-tuple
(1, z2, ..., T,) of real numbers will also be called a point or vector in E™, and
the single numbers z1, xs, ..., x, are called its coordinates or components. A
point in E™ is often denoted by a single letter (preferably with a bar or an
arrow above it), and then its n components are denoted by the same letter,
with subscripts (but without the bar or arrow). For example,

T = (-Tlv LR} $n)7 U= (uh KRR un)v etc.;

Z = (0, —1, 2, 4) is a point (vector) in E* with coordinates 0, —1, 2, and 4
(in this order). The formula Z € E™ means that T = (21, ..., z,) is a point
(vector) in E™. Since such “points” are ordered n-tuples, T and g are equal
(z = g) iff the corresponding coordinates are the same, i.e., £1 = y1, 2 = Y2,
..., Ty, = Yn (see Problem 1 below).

The point whose coordinates are all 0 is called the zero-vector or the origin,
denoted 0 or 0. The vector whose kth component is 1, and the other components
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are 0, is called the kth basic unit vector, denoted é€j. There are exactly n such
vectors,

e1=(1,0,0,...,0), &=(0,1,0,...,0), ..., & =(0,...,0,1).

In E3, we often write 7, j, and k for &, &, &, and (z, y, 2) for (x1, 2, x3).
Similarly in E2. Single real numbers are called scalars (as opposed to vectors).

Definitions.

Given T = (21, ..., xy) and § = (y1, ..., yn) in E™, we define the fol-
lowing.

1. The sum of Z and g,
T+y=(x14y1, T2+Y2, -, Tn +yn) (hence 240 =z)."
2. The dot product, or inner product, of T and g,
T Y =x1Y1 T X2Y2 + -+ TpYn-
3. The distance between  and y,
P, 5) = V(21

4. The absolute value, or length, of T,

—y1)? + (w2 —y2)? + - (T —yn)?-

i

|z = \/w§+x§+~~+xi =p(z,0) =
(three formulas that are all equal by Definitions 2 and 3).

5. The inverse of Z,

—T = (—x1, —Ta2, ..., —Tp)-
6. The product of Z by a scalar ¢ € E*,
¢ = Tc = (cxy, CTa, ...y CTp);
in particular, (—=1)% = (—z1, -T2, ..., —T») = =%, 17 = Z, and 0z = 0.

7. The difference of T and g,

— —
x*y:?ﬂf:(xl*yla?@*y%~--7$n*yn)~
z and 0 — z = —z. (Verify!)

In particular, z — 0 =

Note 1. Definitions 2—4 yield scalars, while the rest are vectors.

Note 2. We shall not define inequalities (<) in E™ (n > 2), nor shall
we define vector products other than the dot product (2), which is a scalar.
(However, cf. §8.)

1 Sums of three or more vectors are defined by induction, as in Chapter 2, §§5-6.
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Note 3. From Definitions 3, 4, and 7, we obtain p(Z,y) = |z — y|. (Verify!)
Note 4. We often write Z/c for (1/c¢)z, where ¢ € E', ¢ # 0.
Note 5. In E', Z = (21) = z;. Thus, by Definition 4,

|z = /2t = |2l

where |z1] is defined as in Chapter 2, §§1-4, Definition 4. Thus the two defini-
tions agree.

We call & a unit vector iff its length is 1, i.e., |z| = 1. Note that if  # 0,
then Z/|Z| is a unit vector, since

The vectors Z and § are said to be orthogonal or perpendicular (z L g) iff
Z -9 =0 and parallel (Z || §) iff T = ty or § = tZ for some t € E'. Note that
T

ZzL0and z| 0.

Examples

Theorem 1. For any vectors Z, i, and Z € E™ and any a, b € E', we have
(a) T4y and aT are vectors in E™ (closure laws);

(b

= §+ & (commutativity of vector addition);

T+
c) (T4+y) +z=2+ (§+2) (associativity of vector addition);

0+2z =2, i.c., 0 is the neutral element of addition;
T) =

0, i.e., —Z is the additive inverse of T;

)

) = aZ + ay and (a + b)T = aT + bT (distributive laws);

)

)

) Z+0=
(€) 2+ (-
(f) a(z+

)

)

Proof. Assertion (a) is immediate from Definitions 1 and 6. The rest follows
from corresponding properties of real numbers.
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For example, to prove (b), let T = (x1, ..., ), ¥ = (Y1, - -, Yn). Then by
definition, we have

T4+y=(x1+y1, - s Tn+yn) and g+ Z=(y1 + 1, .., Yn + Tp).

The right sides in both expressions, however, coincide since addition is com-
mutative sn E'. Thus Z + § = 9 + 7, as claimed; similarly for the rest, which
we leave to the reader. [

Theorem 2. IfZ = (z1, ..., T,) is a vector in E™, then, with & as above,
n
T =181 + Doy + o+ Tnln = Y Tkl
k=1
Moreover, if & = ZZ:1 ar€y for some ar, € E', then necessarily ap = xy,
k=1,...,n.
Proof. By definition,
e1=(1,0,...,0),e&=(0,1,...,0), ..., &, =(0,0, ..., 1).
Thus
r1€1 = (Ih 01 ceey 0)7 To€y = (07 L2y «ney 0)7 e Tn€n = (07 07 BN xn)~

Adding up componentwise, we obtain
n
E xper = (T1, T2, ..., Tpn) = T,
k=1

as asserted.
Moreover, if the z;, are replaced by any other ap € E!, the same process
yields
(a1, ..., an) =2 = (1, ..., Tp),

i.e., the two n-tuples coincide, whence ax =z, k=1,...,n. O

Note 6. Any sum of the form
m
Zakfk (ar € El, Tr € E™)
k=1

is called a linear combination of the vectors T (whose number m is arbitrary).
Thus Theorem 2 shows that any T € E™ can be expressed, in a unique way, as
a linear combination of the n basic unit vectors. In E3, we write

T = l‘lg + .sz =+ 1‘3];'.
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Note 7. If, as above, some vectors are numbered (e.g., T1, Tz, ..., Tm),
we denote their components by attaching a second subscript; for example, the
components of Zy are x11, T12, ..., T1n-

Theorem 3. For any vectors T, §, and Z € E™ and any a, b € E', we have
() 2-2>0, and T -7 >0 iff T #0;
(aZ) - (by) = (ab)(Z - );
J =17 - T (commutativity of inner products);
(Z4+79)-z=-z+ -z (distributive law).
Proof. To prove these properties, express all in terms of the components of Z,
y, and z, and proceed as in Theorem 1. [J
Note that (b) implies -0 =0 (put a =1, b = 0).

Theorem 4. For any vectors T and § € E™ and any a € E', we have the
following properties:

(@) |Z| >0, and |Z| > 0 iff T #0.
() laz| = |al|z].

() |z -y <|z||y|, or, in components,

n 2 n n
(Z xk?lk) < (Z :L’i) (Z y,%) (Cauchy—Schwarz inequality).
k=1 k=1

k=1
Equality, |z - y| = ||y, holds iff = | y.
(d) |2+ g| < |2 + |y and ||2| — |g]| < |z — | (triangle inequalities).

Proof. Property (a') follows from Theorem 3(a) since

=12

|Z|* = Z - Z (see Definition 4).

For (b’), use Theorem 3(b), to obtain

2

*lz)*.

(az) - (a%) = a*(T-Z) = a
By Definition 4, however,
(aZ) - (aZ) = |aZ|?.
Thus

|az[* = a?|z[?

so that |aZ| = |a||Z|, as claimed.
Now we prove (¢'). If Z || g then Z = tj or § = tZ; so |T - g| = |Z||y| follows
by (b'). (Verify!)
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Otherwise, Z # tfj and § # tZ for all t € E'. Then we obtain, for all t € E*,

n

n n n
04|tz —g* = Z(tmk — )’ = tQZzi - QtZazkyk + Zyi
k=1 k=1 k=1

k=1

Thus, setting

n n n
A= in, B = 2Zxkyk, and C = Zyi,
k=1 k=1 k=1

we see that the quadratic equation
0=At* —Bt+C
has no real solutions in ¢, so its discriminant, B? —4AC, must be negative; i.e.,
n 2 n n
1(Som) —a(Xat) (L) <o
k=1 k=1 k=1

proving (c’).
To prove (d’), use Definition 2 and Theorem 3(d), to obtain

T4yl =@+9) @+y=2-2+7 §+22-§=|7" +|g° +27 7.
But 7 - g < |Z||g| by (¢’). Thus we have
|z +g1* < |21 + |g1* + 212( [g] = (171 + |3])*,

whence |Z + 7| < |Z| + ||, as required.

Finally, replacing here by  — ¢, we have

[z =yl + 1yl = |2 -y +yl = |z], or [z -y = |z] - |y].
Similarly, replacing § by § — T, we get |Z — §| > |g| — |Z|. Hence
|z =gl > =(Iz] - [71),

ie., |z —y|>|lz| - |g|], proving the second formula in (d'). O
Theorem 5. For any points T, y, and z € E™, we have

(i) p(,9) 20, and p(z, ) = 0 iff = = 3;

(i) p(z, y) = p(y, T);

(iii) p(z, 2) < p(z, §) + p(7, Z) (triangle inequality).

8l

8l

Proof.
(i) By Definition 3 and Note 3, p(Z, §) = |Z—g|; therefore, by Theorem 4(a’),
p(z, y) = [ —g| = 0.

Also, |z —g| > 0if Z — g # 0, ie., iff Z # §. Hence p(z, §) # 0 iff

Z # g, and assertion (i) follows.
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(ii) By Theorem 4(b'), |z —y| = |(=1)(§ — z)| = |y — Z|, so (ii) follows.
(iii) By Theorem 4(d’),

p(Z, 9) +p@ 2) =29l +7-2 >z -g+7§— 2 =p(z, 2). O

Note 8. We also have |p(Z, §) — p(z, §)| < p(Z, z). (Prove it!) The two
triangle inequalities have a simple geometric interpretation (which explains
their name). If Z, g, and Z are treated as the vertices of a triangle, we obtain
that the length of a side, p(Z, Z) never exceeds the sum of the two other sides
and is never less than their difference.

As E' is a special case of E™ (in which “vectors” are single numbers), all
our theory applies to E! as well. In particular, distances in E' are defined by
p(z, y) = |z — y| and obey the three laws of Theorem 5. Dot products in E*
become ordinary products zy. (Why?) From Theorems 4(b’)(d’), we have

lal |2 = lazl; o +y| < Ja+ |yl o=yl > [lzl = [yl| (a, 2,y € B).

Problems on Vectors in E™

o

. Prove by induction on n that

(331, T2, -y ZL’n) = (y17 Y2, -, yn) lffzk? = Yk, k= 17 23 sy M
[Hint: Use Problem 6(ii) of Chapter 1, §§1-3, and Example (i) in Chapter 2, §§5-6.]
2. Complete the proofs of Theorems 1 and 3 and Notes 3 and 8.

3. Given z = (-1, 2,0, —=7), g = (0,0, =1, —=2), and z = (2, 4, =3, —3)
in E*, express Z, 9, and Z as linear combinations of the basic unit
vectors. Also, compute their absolute values, their inverses, as well as
their mutual sums, differences, dot products, and distances. Are any of
them orthogonal? Parallel?

4. With 7z, g, and Z as in Problem 3, find scalars a, b, and ¢ such that

af +bj + ¢z = @,

when
(1) ’l_l:él; (11) ﬂ:éd7
(i) w = (-2, 4, 0, 1); (iv) u = 0.
5. A finite set of vectors &, Zo, ..., T, is said to be dependent iff there are
scalars ay, ..., am, not all zero, such that
m
Z apTp = 0,
k=1
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and independent otherwise. Prove the independence of the following
sets of vectors:

(a) & , €, In B™;

(b) ( -3, 4) and (2, 3, 0, 0) in E*;

(¢) (2,0, 0) —1, 3), and (0, 4, 1) in E3;
)

(d) the vectors Z, g, and z of Problem 3.

. Prove (for E2 and E?) that

%5 = |2l [l cosa,

— —

where « is the angle between the vectors 0z and Oy; we denote a by
(@, ).

[Hint: Consider the triangle 0y, with sides 7 =
Definition 7). By the law of cosines,

— —
0z, 7= Oy, and 7y = — @ (see

|21 + 1g1% — 21 |7] cos o = |5 — @

Now substitute |Z|? = Z- @, |§]?> = 7 - ¥, and

72 = G j+TF— 287 (Why?)

|7 — (§-2) (§-2)=

Then simplify.]

. Motivated by Problem 6, define in E™

z-y
|

(Why does an angle with such a cosine exist?) Prove that

(i) & L g iff cos(z,g) =0, i.e., (T, §) = T

2§
n
(i) > cos®(z, &) = 1.
k=1

(z, g) = arccos if z and ¢ are nonzero.

Bl
=

. Continuing Problems 3 and 7, find the cosines of the angles between

the sides, :@, ﬁ7 and 2z of the triangle zyZz, with Z, ¥, and Z as in
Problem 3.

. Find a unit vector in E*, with positive components, that forms equal

angles with the axes, i.e., with the basic unit vectors (see Problem 7).

Prove for E™ that if @ is orthogonal to each of the basic unit vectors €y,
€2, ..., €n, then 4 = 0. Deduce that

u=0if VZe E") 7 -u=0.
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11. Prove that Z and y are parallel iff
r_ T2 _Tn_ (ce BY,
Y1 Y2 Yn
where “xy/yi = ¢” is to be replaced by “xp =07 if y, = 0.

12. Use induction on n to prove the Lagrange identity (valid in any field),

(kz:l ) (Z yk) - (; xk'yk)2 = 1S§Sn(miyk — 2y)2.

Hence find a new proof of Theorem 4(c’).

13. Use Problem 7 and Theorem 4(c’) (“equality”) to show that two nonzero
vectors T and g in E™ are parallel iff cos(Z, ) = £1.
14. (i) Prove that |z + g| = |Z| + |g| iff & = t§ or § = tT for some ¢t > 0;
equivalently, iff cos(Z, §) =1 (see Problem 7).
(ii) Find similar conditions for |Z — g| = |Z| + |7]|.
[Hint: Look at the proof of Theorem 4(d’).]

§84—6. Lines and Planes in E™

I. To obtain a line in E? or E? passing through two points @ and b, we take
the vector

i=ab=b—a
and, so to say, “stretch” it indefinitely in both directions, i.e., multiply @ by
all possible scalars ¢t € E'. Then the set of all points Z of the form
T=a+td
is the required line. It is natural to adopt this as a definition in E™ as well.
Below, a # b.
Definition 1.
The line ab through the points Zz,j; € E™ (also called the line through a,
in the direction of the vector @ = b — a) is the set of all points T € E™ of
the form
T=a+ti=a+t(-a),
where ¢ varies over El. We call t a variable real parameter and @ a
direction vector for ab. Thus

Lineab={z € E" |z =a+ti forsomet € '}, @=b—a#0. (1)
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The formula
T=a+td,orz=a+tb—a),
is called the parametric equation of the line. (We briefly say “the line z =

@+ tu.”) It is equivalent to n simultaneous equations in terms of coordinates,
namely,

xk:ak+tuk=ak+t(bkfak), k=1,2,...,n. (2)

Note 1. As the vector @ is anyway being multiplied by all real numbers t,
the line (as a set of points) will not change if @ is replaced by some cii (c € E*,
¢ # 0). In particular, taking ¢ = 1/|d|, we may replace @ by @/|d|, a unit
vector. We may as well assume that @ is a unit vector itself.

If we let ¢ vary not over all of E' but only over some interval in E*, we obtain
what is called a line segment.' In particular, we define the open line segment
L(a, b), the closed line segment L[a, b], the half-open line segment L(a,b], and
the half-closed line segment L[a,b), as we did for E'.

Definition 2.

(i) L@@, b) ={a+ti|0<t<1}? (i) Lfa, b ={a+tid|0<t <1}

(iii) L(a, b ={a+t@|0<t<1}; (iv) Ljg, b)={a+td|0<t<1};
In all cases, @ and b are called the endpoints of the segment; p(a, b) =
|b— al is its length; and (@ + b) is its midpoint.

Note that in E!, line segments simply become intervals, (a, b), [a, b], etc.

II. To describe a plane in E3, we fix one of its points, @, and a vector
—
% = ab perpendicular to the plane (imagine a vertical pencil standing at @ on
the horizontal plane of the table). Then a point Z lies on the plane iff @ L ar.
It is natural to accept this as a definition in E™ as well.
Definition 3.
Given a point a € E™ and a vector 4 # 0, we define the plane (also called
hyperplane if n > 3) through @, orthogonal to i, to be the set of all z € E™
such that 4 1 a_f, ie, @- (T —a) =0, or, in terms of components,

n
Z ug(zy, — ag) = 0, where @ # 0 (i.e., not all values uy are 0). (3)
k=1

1 We reserve the name “interval” for other kinds of sets (cf. §7).
2 This is an abbreviation for “{Z € E™ | Z = a + ti for some t € B!, 0 < t < 1}.”
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We briefly say

n
“the plane @ - (T —a) = 0" or “the plane Zuk(xk —ap)=0"
k=1

(this being the equation of the plane). Removing brackets in (3), we have

n
U2 + UsXg + -+ + UpTy = ¢, OF U - T = ¢, where ¢ = E ugag, 4 # 0. (4)

k—1
An equation of this form is said to be linear in z1, x3, ..., .
Theorem 1. A set A C E™ is a plane (hyperplane) iff A is exactly the set of
all T € E™ satisfying (4) for some fived ¢ € E' and @ = (uy, ..., un) # 0.

Proof. Indeed, as we saw above, each plane has an equation of the form (4).
Conversely, any equation of that form (with, say, u; # 0) can be written as

c
Ul <$1 — ;) + usxo + uzxs + - - + upx, = 0.
1

Then, setting a1 = ¢/uq and a, = 0 for k > 2, we transform it into (3), which is,
by definition, the equation of a plane through @ = (¢/uy, 0, ..., 0), orthogonal
to €= (uy, ..., uy). O

Thus, briefly, planes are exactly all sets with linear equations (4). In this
connection, equation (4) is called the general equation of a plane. The vector 4
is said to be normal to the plane. Clearly, if both sides of (4) are multiplied by
a nonzero scalar ¢, one obtains an equivalent equation (representing the same
set). Thus we may replace uy, by quy, i.e., @ by ¢, without affecting the plane.
In particular, we may replace @ by the unit vector i/|u|, as in lines (this is
called the normalization of the equation). Thus

u
ERCEY )
and -
U
T=a+t— (6)
|4

are the normalized (or normal) equations of the plane (3) and line (1), respec-
tively.

Note 2. The equation z3 = ¢ (for a fixed k) represents a plane orthogonal
to the basic unit vector €y or, as we shall say, to the kth azis. The equation
results from (4) if we take @ = € so that up = 1, while u; = 0 (i # k). For
example, 1 = ¢ is the equation of a plane orthogonal to €; it consists of all
7 € E™, with x1 = ¢ (while the other coordinates of Z are arbitrary). In E?, it
is a line. In E', it consists of ¢ alone.
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Two planes (respectively, two lines) are said to be perpendicular to each
other iff their normal vectors (respectively, direction vectors) are orthogonal;
similarly for parallelism. A plane 4 -Z = c is said to be perpendicular to a line
Z =a+ tv iff @ | U; the line and the plane are parallel iff & L .

Note 3. When normalizing, as in (5) or (6), we actually have two choices
of a unit vector, namely, +a/|ud|. If one of them is prescribed, we speak of a
directed plane (respectively, line).

Examples.

(a)

Let a= (0, =1,2), b= (1, 1, 1), and ¢ = (3, 1, —1) in E*. Then the line

ab has the parametric equation & = a+t(b—a) or, in coordinates, writing
z, Y,z for X1, T2, T3,

r=04+t(1-0)=t, y=—-1+2t, z=2—1¢.
This may be rewritten

t_y;_y+1_zf2
12 -1

where @ = (1, 2, —1) is the direction vector (composed of the denomina-
tors). Normalizing and dropping ¢, we have

x y+l z2-2
1/V6  2/v6  —1/v6

(the so-called symmetric form of the normal equations).

Similarly, for the line be, we obtain

tim—liy—liz—l
2 0 =27

where “t = (y — 1)/0” stands for “y—1=0.” (It is customary to use this
notation.)

Let a = (1, —2,0,3) and @ = (1, 1, 1, 1) in E%. Then the plane normal
to « through @ has the equation (Z —a) - @ = 0, or

(331—1)~1+($2+2)~1+($3—0)~1+(l‘4—3)~1:0,

or x1 + x2 + x3 + ¥4 = 2. Observe that, by formula (4), the coeffi-
cients of xy1, x9, T3, T4 are the components of the normal vector @ (here
(1,1, 1, 1)).

Now define a map f: E4 — E! setting f(Z) = &1 + x2 4+ x3 + x4 (the
left-hand side of the equation). This map is called the linear functional
corresponding to the given plane. (For another approach, see Problems 4—
6 below.)
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(c) The equation x+3y—2z = 1 represents a plane in E3, with @ = (1, 3, —2).

The point @ = (1, 0, 0) lies on the plane (why?), so the plane equation
may be written (Z —a) -4 =0or Z-@ = 1, where T = (z, y, z) and @ and
i are as above.

Problems on Lines and Planes in E™

.Leta = (-1,2,0,-7), b= (0,0,—1,2), and ¢ = (2, 4, -3, —3) be

points in E4. Find the symmetric normal equations (see Example (a)) of
the lines ab, be, and é@. Are any two of the lines perpendicular? Parallel?
On the line ab, find some points inside L (@, b) and some outside L[a, b].
Also, find the symmetric equations of the line through ¢ that is

(i) parallel to ab; (i) perpendicular to ab.

. With @ and b as in Problem 1, find the equations of the two planes that

trisect, and are perpendicular to, the line segment L[a, b].

. Given alinez =a+ti (i =b—a#0) in E", define f: E* — E" by

f(t) =a+tii for t € EL.

Show that L[a, b] is exactly the f-image of the interval [0, 1] in E', with
f(0) = a and f(1) = b, while f[E] is the entire line. Also show that f
is one to one.

[Hint: t # ¢/ implies |f(¢) — f(¢')| # 0. Why?]

. Amap f: E™ = E! is called a linear functional iff

(VZ, g€ E") (Va,be EY) f(aZ + bg) = af(Z) + bf(H).

Show by induction that f preserves linear combinations; that is,
m m
f(z ) =S (@)
k=1 k=1

for any a,, € E' and 7, € E™.

. From Problem 4 prove that a map f: E® — E! is a linear functional iff

there is @ € E™ such that
(VzeE™) f(z)=u-T (“representation theorem”).

[Hint: If f is a linear functional, write each Z € E™ as T = > ;_; xxér (§§1-3,

Theorem 2). Then
(@) = f(z xk5k> =" anf(en)-
k=1 k=1

Setting uj, = f(€x) € E* and & = (u1, ..., upn), obtain f(Z) = @ - Z, as required. For
the converse, use Theorem 3 in §§1-3.]
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6. Prove that a set A C E™ is a plane iff there is a linear functional f
(Problem 4), not identically zero, and some ¢ € E' such that

A={z € E"| f(z) =c}.

(This could serve as a definition of planes in E™.)
[Hint: A is a plane iff A= {Z | ©-Z = ¢}. Put f(Z) = @-Z and use Problem 5. Show
that f # 0 iff @ # 0 by Problem 10 of §§1-3.]

7. Prove that the perpendicular distance of a point p to a plane @ - % = ¢
in B is
ji-p - dl
p(p, To) = —=—
|l
(Zo is the orthogonal projection of P, i.e., the point on the plane such
that pxg || @.)
[Hint: Put v = @/|d@|. Consider the line & = p + tv. Find ¢ for which p + t7 lies on
both the line and plane. Find [¢].]

8. A globe (solid sphere) in E™, with center p and radius £ > 0, is the set
{Z | p(Z, Pp) < €}, denoted Gy(g). Prove that if @, b € Gj(€), then also
Lla, b] € G(e). Disprove it for the sphere Sz(c) = {Z | p(%, p) = €}.
[Hint: Take a line through p.]

87. Intervals in E™

. . Y
Consider the rectangle in E? shown | _
in Figure 2. Its interior (without by | 1 / b
the perimeter) consists of all points \
(x, y) € E? such that P } Q
a1 <z <by and az <y < by; as | 1
. a| P \
1.e., | | |
0 ai c by
x € (ay, by) and y € (ag, ba). X
FIGURE 2

Thus it is the Cartesian product of

two line intervals, (a1, b1) and (a2, b2). To include also all or some sides,
we would have to replace open intervals by closed, half-closed, or half-open
ones. Similarly, Cartesian products of three line intervals yield rectangular
parallelepipeds in £3. We call such sets in E™ intervals.

Definitions.

1. By an interval in E™ we mean the Cartesian product of any n intervals
in B! (some may be open, some closed or half-open, etc.).

§7. Intervals in E™ 77

2. In particular, given
a=(ay,...,a,) and b= (by, ..., by)
with
Qg Sbk:, k=1, 2, ey Ny

we define the open interval (a, b), the closed interval [a, b], the half-open
interval (a, b], and the half-closed interval [a, b) as follows:

(@ b)={z|axr <zp <bg, k=1,2,...,n}
= (a1, b1) x (ag, ba) X -+ X (an, by);
[@, b ={Z|ax <ap <by, k=1,2,...,n}
= [a1, b1] X [ag, ba] X -+ X [an, by];
(@bl =1{%|ar <o <bg, k=1,2,...,n}
= (a1, b1] % (ag, ba] X +++ X (an, by);
[a,b) ={Z |ap <z <bg, k=1,2,...,n}

= [al, bl) X [a2, bg) X oo X [an, bn)

In all cases, @ and b are called the endpoints of the interval. Their distance

is called its diagonal. The n differences
bkfakzék (k:L.,.,n)

are called its n edge-lengths. Their product

H ék = H(bk — ak)
k=1 k=1

is called the volume of the interval (in E? it is its area, in E! its length). The
point

e=5(@+h)

c=3(
is called its center or midpoint. The set difference

[a‘a E} - (a‘7 B)
is called the boundary of any interval with endpoints @ and b; it consists of 2n
“faces” defined in a natural manner. (How?)

We often denote intervals by single letters, e.g., A = (@, b), and write dA for

“diagonal of A” and vA or vol A for “volume of A.” If all edge-lengths by — ay,



78 Chapter 3. Vector Spaces. Metric Spaces

are equal, A is called a cube (in E?, a square). The interval A is said to be
degenerate iff by, = ay, for some k, in which case, clearly,

vol A = H(bk, 70,]@) =0.
k=1

Note 1. We have z € (a, b) iff the inequalities ar < z < by hold simul-
taneously for all k. This is impossible if a;, = by for some k; similarly for the
inequalities ay < xp < by or ap < xk < by. Thus a degenerate interval is
empty, unless it is closed (in which case it contains @ and b at least).

Note 2. In any interval A,

dA = p&z) Z k.fak = ZZQ

In E2, we can split an interval A into two subintervals P and Q by drawing
a line (see Figure 2). In E3, this is done by a plane orthogonal to one of the
axes of the form zy = ¢ (see §§4-6, Note 2), with a < ¢ < bg. In particular, if
c= %(ak +by), the plane bisects the kth edge of A; and so the kth edge-length
of P (and Q) equals %fk = %(bk —ay). If A is closed, so is P or Q, depending
on our choice. (We may include the “partition” z; = ¢ in P or Q.)*

Now, successively draw n planes
T = Ck, Cp = %(ak +bk), k = |
1,2, ..., n. The first plane bisects ‘
¢; leaving the other edges of A un- i
changed. The resulting two subinter- I I |l
vals P and @) then are cut by the }
plane x5 = c¢o, bisecting the sec- _ i

\
|

Y

(=l

ond edge in each of them. Thus we
get four subintervals (see Figure 3 for
E?). Each successive plane doubles
the number of subintervals. After n
steps, we thus obtain 2" disjoint intervals, with all edges ¢}, bisected. Thus by
Note 2, the diagonal of each of them is

LR TR 1
) == 2 = ZdA.
\/1;1(2 ’“) 2\/1;1 D)

Note 3. If A is closed then, as noted above, we can make any one (but only
one) of the 2™ subintervals closed by properly manipulating each step.

(]
)

FIGURE 3

The proof of the following simple corollaries is left to the reader.

L We have either P={z € A |2 < clandQ={z € A |z} >c},or P={Z € A |z} <c}
and Q ={T € A |z > c}.
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Corollary 1. No distance between two points of an interval A exceeds dA, its
diagonal. That is, (VZ, § € A) p(Z, §) < dA.

Corollary 2. If an interval A contains p and g, then also L[p, q] C A.

Corollary 3. FEvery nondegenerate interval in E™ contains rational points,
i.e., points whose coordinates are all rational.

(Hint: Use the density of rationals in E! for each coordinate separately.)

Problems on Intervals in E™
(Here A and B denote intervals.)
1. Prove Corollaries 1-3.
2. Prove that if A C B, then dA < dB and vA < vB.
3. Give an appropriate definition of a “face” and a “vertex” of A.
4. Find the edge-lengths of A = (@, b) in E* if
a=(1,-2,4,0)and b= (2, 0, 5, 3).
Is A a cube? Find some rational points in it. Find dA and vA.

5. Show that the sets P and @ as defined in footnote 1 are intervals, indeed.
In particular, they can be made half-open (half-closed) if A is half-open
(half-closed).

[Hint: Let A = (a, b],

P={zcA|lzr<c},and Q={T € A |z} > c}.
To fix ideas, let k = 1, i.e., cut the first edge. Then let
p=1(c,az,...,an) and g = (¢, ba, ..., bn) (see Figure 2),
and verify that P = (@, q] and Q = (B, b]. Give a proof.]
6. In Problem 5, assume that A is closed, and make @ closed. (Prove it!)

7. In Problem 5 show that (with & fixed) the kth edge-lengths of P and Q
equal ¢ — ai and by — ¢, respectively, while for ¢ # k the edge-length ¢;
is the same in A, P, and Q, namely, ¢; = b; — a;.
[Hint: If k = 1, define p and ¢ as in Problem 5.]

8. Prove that if an interval A is split into subintervals P and Q (PNQ = 0),
then vA = vP + vQ.
[Hint: Use Problem 7 to compute vA, vP, and vQ. Add up.]
Give an example. (Take A as in Problem 4 and split it by the plane
Ty = 1)

*9. Prove the additivity of the volume of intervals, namely, if A is subdivided,

in any manner, into m mutually disjoint subintervals Ay, Ao, ..., Ap
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in E", then
m
vA = Z VA;.
i=1

(This is true also if some A; contain common faces).

[Proof outline: For m = 2, use Problem 8.
Then by induction, suppose ad-

ditivity holds for any number of in- Y

tervals smaller than a certain m

(m > 1). Now let

SH
o

m
A=|J A (A disjoint).
i=1

STl

One of the A; (say, A1 = [a, p])
must have some edge-length smaller
than the corresponding edge-length
of A (say, £1). Now cut all of A into
P = [a, d] and Q = A—P (Figure 4) FI1GURE 4

by the plane 1 = ¢ (¢ = p1) so that

A1 C P while As C Q. For simplicity, assume that the plane cuts each A; into two
subintervals A’ and A?. (One of them may be empty.)

Then

[e]]
o
b

m m
P=JAjand Q=[] A}
i=1 i=1
Actually, however, P and @ are split into fewer than m (nonempty) intervals since
A =0 = Al by construction. Thus, by our inductive assumption,

m m
vP = ZvAg and v@Q = ZUA;/,
=1 i=1

where vAY = 0 = vA), and vA; = vA] +vA! by Problem 8. Complete the inductive
proof by showing that

m
vA =vP +vQ = ZUAi»]

1=1

§8. Complex Numbers

With all the operations defined in §§1-3, E™ (n > 1) is not yet a field because
of the lack of a vector multiplication satisfying the field axioms. We shall now
define such a multiplication, but only for E?. Thus E? will become a field,
which we shall call the complez field, C.
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We make some changes in nota-
tion and terminology here. Points of Y
E?, when regarded as elements of C,
will be called complez numbers (each
being an ordered pair of real num- 0
bers). We denote them by single let-
ters (preferably z) without a bar or
an arrow. For example, z = (z, y). FIGURE 5
We preferably write (z, y) for (z1, z2). If z = (z, y), then = and y are called
the real and imaginary parts of z, respectively,! and Z denotes the complex
number (z, —y), called the conjugate of z (see Figure 5).

?
|
!
\
!
\
s

z

Complex numbers with vanishing imaginary part, (x, 0), are called real
points of C. For brevity, we simply write x for (x, 0); for example, 2 = (2, 0).
In particular, 1 = (1, 0) = ; is called the real unit in C. Points with van-
ishing real part, (0, y), are called (purely) imaginary numbers. In particular,
05 = (0, 1) is such a number; we shall now denote it by 7 and call it the imag-
inary unit in C. Apart from these peculiarities, all our former definitions of
§§1-3 remain valid in E? = C. In particular, if z = (2, y) and 2’ = (2/, ¢'), we
have

22 = (z,y) £ (2, ) = (z 2, y£y),

p(z7 Z/) = \/(T - :LJ)Z + (y - y,)2 ) and
|2z| = V22 + 2.
All theorems of §§1-3 are valid.
We now define the new multiplication in C, which will make it a field.

Definition 1.
If 2= (2, y) and 2’ = (2/, ¢/), then 22’ = (x2’ — yy', zy’ + ya').

Theorem 1. E? = C is a field, with zero element 0 = (0, 0) and unity 1 =
(1, 0), under addition and multiplication as defined above.

Proof. We only must show that multiplication obeys Axioms I-VI of the field
axioms. Note that for addition, all is proved in Theorem 1 of §§1-3.

Axiom I (closure) is obvious from our definition, for if z and 2" are in C, so
is zz'.

To prove commutativity, take any complex numbers

z=(z,y) and 2’ = (2, ¢/)

1 This terminology is solely traditional. Actually, there is nothing “imaginary” about
(0, y), no more than about (z, 0), or (z, y).
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and verify that 2z’ = 2’2. Indeed, by definition,
22 = (v’ —yy', wy’ +ya') and 2"z = (2'z — y'y, 'y + y'x);

but the two expressions coincide by the commutative laws for real numbers.
Associativity and distributivity are proved in a similar manner.

Next, we show that 1 = (1, 0) satisfies Axiom IV(b), i.e., that 1z = z for
any complex number z = (, y). In fact, by definition, and by axioms for E!,

12=(1,0)(z,y) = (lz — 0y, ly + 0x) = (x — 0, y + 0) = (=, y) = =.

It remains to verify Axiom V(b), i.e., to show that each complex number
z = (z, y) # (0, 0) has an inverse 27! such that zz=! = 1. It turns out that
the inverse is obtained by setting

o ()
|22 |22/
2 2

2 2
(Y Ty ﬂ):(—x+y 0)210:1
= = (Fip TP e 0 0) =0

In fact, we then get

since 2 + y% = |2|?, by definition. This completes the proof. [
Corollary 1. i2 = —1; i.e., (0, 1)(0, 1) = (=1, 0).
Proof. By definition, (0, 1)(0, 1) =(0-0—-1-1,0-14+1-0)=(-1,0). O

Thus C has an element i whose square is —1, while E' has no such element,
by Corollary 2 in Chapter 2, §§1-4. This is no contradiction since that corollary
holds in ordered fields only. It only shows that C' cannot be made an ordered
field.

However, the “real points” in C form a subfield that can be ordered by
setting

(x,0) < (2, 0) iff z < 2’ in B2

Then this subfield behaves exactly like E'.3 Therefore, it is customary not to
distinguish between “real points in C” and “real numbers,” identifying (z, 0)
with 2. With this convention, E! simply is a subset (and a subfield) of C.
Henceforth, we shall simply say that “z is real” or “z € E'” instead of “z =
(z, 0) is a real point.” We then obtain the following result.

Theorem 2. FEvery z € C has a unique representation as

z =+ i,

2 The proof is left as an exercise (Problem 1’ below).

3 This can be made precise by using the notion of isomorphism (see Basic Concepts of Mathematics,

Chapter 2, §14). We shall not go deeper into this topic here.
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where x and y are real and i = (0, 1). Specifically,
z=z+yi iff z = (z, y).

Proof. By our conventions, z = (z, 0) and y = (y, 0), so
z+yi = (z, 0)+ (y, 0)(0, 1).

Computing the right-hand expression from definitions, we have for any x, y €
E* that

z4+yi=(z,0)+(y-0-0-1,y-140-1) = (z,0)+ (0, y) = (z, y).

Thus (z, y) = x +yi for any z, y € E*. In particular, if (z, y) is the given
number z € C of the theorem, we obtain z = (z, y) = x + yi, as required.
To prove uniqueness, suppose that we also have

z=2a' +y'i with 2’ = (2/, 0) and ' = (¢/, 0).

Then, as shown above, z = (2, y'). Since also z = (z, y), we have (z, y) =
(', y'), i.e., the two ordered pairs coincide, and so x = 2’ and y = y’ after
all. O

Geometrically, instead of Carte- v
sian coordinates (z, y), we may also
use polar coordinates r, 0, where

r= V2T =] ,

and 6 is the (counterclockwise) rota-
tion angle from the z-axis to the di- 0

rected line @; see Figure 6. Clearly,
z is uniquely determined by r and 6,
but 6 is not uniquely determined by
2; indeed, the same point of E? results if § is replaced by 0+2n7 (n =1, 2, ...).
(If z =0, then 0 is not defined at all.) The values r and 6 are called, respec-
tively, the modulus and argument of z = (z, y). By elementary trigonometry,
x =rcosf and y = rsinf. Substituting in z = x + yi, we obtain the following
corollary.

FIGURE 6

Corollary 2. z =r(cos +isin6) (trigonometric or polar form of z).

Problems on Complex Numbers

1. Complete the proof of Theorem 1 (associativity, distributivity, etc.).
1’. Verify that the “real points” in C form an ordered field.
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2. Prove that 2z = |z|2. Deduce that z~! = z/|z|? if z # 0.4

3. Prove that - L _
z+ 2z =Z+ 2 and zz2' =Z- 2.

Hence show by induction that

n n
Z"=(z)", n=1,2,..., and E apzk = E apz".
k=1 k=1

4. Define _
% = cosf + isiné.
Describe e geometrically. Is |e?’] = 17
5. Compute
1+2i
() 5o
(b) (1+2¢)(3—1); and
T+1+1
— EL.
©) 3= "€

Do it in two ways: (i) using definitions only and the notation (z, y) for
2 + yi; and (ii) using all laws valid in a field.
6. Solve the equation (2, —1)(x, y) = (3, 2) for z and y in EL.

7. Let
z =r(cosf +isinf),

2 =71'(cosf' +isind’), and
2" =1r"(cos§” +isinf")
as in Corollary 2. Prove that z = 2’2" if
r=|z| =rr" ie., |2'2"]| = || |2"], and 6 = 0" + 0"

N
Discuss the following statement: To multiply z’ by 2’/ means to rotate 0z’

counterclockwise by the angle #” and to multiply it by the scalar r” =
|2"|. Consider the cases z”/ =4 and 2" = —1.
[Hint: Remove brackets in

r(cosf +isin@) = r'(cos @’ +isin@’) -’ (cos 8" + isin ")
and apply the laws of trigonometry.]

8. By induction, extend Problem 7 to products of n complex numbers, and
derive de Moivre’s formula, namely, if z = r(cos € + isin @), then

2" = r"(cos(nf) + isin(nd)).

4 Recall that Z means “conjugate of z.”
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Use it to find, forn =1, 2, ...,
1

(©) 7/

(a) " (b) (1+1)"; e

9. From Problem 8, prove that for every complex number z # 0, there are
exactly n complex numbers w such that

w" = z;

they are called the nth roots of z.
[Hint: If
2z =r(cos B +isin@) and w = r'(cos 0’ + isin@’),

the equation w™ = z yields, by Problem 8,
(r)" =r and nd’ =0,

and conversely.

While this determines r’ uniquely, § may be replaced by 6+ 2km without affecting

z. Thus
0 + 2k
o= LT e,
n
Distinct points w result only from k =0, 1, ...,n — 1 (then they repeat cyclically).

Thus n values of w are obtained.]

10. Use Problem 9 to find in C'

(a) all cube roots of 1; (b) all fourth roots of 1.

Describe all nth roots of 1 geometrically.

*89. Vector Spaces. The Space C™. Euclidean Spaces

I. We shall now follow the pattern of E™ to obtain the general notion of a
vector space (just as we generalized E' to define fields).

Let V be a set of arbitrary elements (not necessarily n-tuples), called “vec-
tors” or “points,” with a certain operation (call it “addition,” +) somehow
defined in V. Let F be any field (e.g., E! or C); its elements will be called
scalars; its zero and unity will be denoted by 0 and 1, respectively. Suppose
that yet another operation (“multiplication of scalars by vectors”) has been
defined that assigns to every scalar ¢ € F' and every vector x € V a certain
vector, denoted cx or xzc and called the c-multiple of x. Furthermore, sup-
pose that this multiplication and addition in V satisfy the nine laws specified
in Theorem 1 of §§1-3. That is, we have closure:

Vz,yeV) (VeceF) z+yeVandcxeV.
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Vector addition is commutative and associative. There is a unique zero-vector,
0, such that
VzeV) z4+0=u,

and each x € V has a unique inverse, —z, such that
x4 (—z)=0.
We have distributivity:
a(x +y) = ax + ay and (a + b)x = az + bz.

Finally, we have
lx =2

and
(ab)x = a(bx)

(a,be F;x,yeV).

In this case, V together with these two operations is called a wvector space
(or a linear space) over the field F'; F is called its scalar field, and elements of
F are called the scalars of V.

Examples.
(a) E™ is a vector space over E' (its scalar field).

(a’) R™, the set of all rational points of E™ (i.e., points with rational coordi-
nates) is a vector space over R, the rationals in E'. (Note that we could
take R as a scalar field for all of E™; this would yield another vector
space, E™ over R, not to be confused with E” over E!, i.e., the ordinary

(b) Let F be any field, and let F™ be the set of all ordered n-tuples of elements
of F, with sums and scalar multiples defined as in E™ (with F playing
the role of E'). Then F™ is a vector space over F' (proof as in Theorem 1
of §81-3).

(¢) Each field F is a vector space (over itself) under the addition and multi-
plication defined in F'. Verify!

(d) Let V be a vector space over a field F', and let W be the set of all possible
mappings
fiA=V

from some arbitrary set A # ) into V. Define the sum f + g of two such
maps by setting

(f+9) (@) = f(z) +g(z) for all z € A

L Here “f+g” must be treated as one letter (function symbol); “(f+g)(z)” means “h(z),”
where h = f + g; similarly for such symbols as af, etc.
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Similarly, given a € F' and f € W, define the map af by
(af)(z) = af(z).

Under these operations, W is a vector space over the same field F', with
each map f: A — V treated as a single “vector” in W. (Verifyl!)

Vector spaces over E! (respectively, C) are called real (respectively, compler)
linear spaces. Complex spaces can always be transformed into real ones by
restricting their scalar field C to E! (treated as a subfield of C).

II. An important example of a complex linear space is C™, the set of all
ordered n-tuples

T = (fl?l, R 'T”l)
of complex numbers zj, (now treated as scalars), with sums and scalar multiples
defined as in E™. In order to avoid confusion with conjugates of complex

numbers, we shall not use the bar notation Z for a vector in this section,
writing simply z for it. Dot products in C™ are defined by

n
z-y= Zﬂﬁkﬂm
k=1

where g, is the conjugate of the complex number gy, (see §8), and hence a scalar
in C. Note that g = y, if y, € E'. Thus, for vectors with real components,

n
Toy= Tkk,
k=1

as in E". The reader will easily verify (exactly as for E™) that, for z, y € C™
and a, b € C, we have the following properties:

(i) x -y € C; thus x - y is a scalar, not a vector.
(i) -z € E*, and -« > 0; moreover, z -z = 0 iff & = 0. (Thus the dot
product of a vector by itself is a real number > 0.)
(iil) = -y =7y~ (= conjugate of y - ). Commutativity fails in general.
(iv) (ax)- (by) = (ab)(x - y). Hence (iv') (azx) -y = a(z-y) = = - (ay).
V) (z4+y)-z=z-z4+y-zand (V) z- (z4+y)=z-x+2-y.
Observe that (v') follows from (v) by (iii). (Verify!)
II1. Sometimes (but not always) dot products can also be defined in real or
complex linear spaces other than E™ or C", in such a manner as to satisfy the
laws (i)—(v), hence also (v'), listed above, with C replaced by E' if the space

is real. If these laws hold, the space is called Euclidean. For example, E™ is a
real Euclidean space and C"™ is a complex one.
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In every such space, we define absolute values of vectors by
2] = V& - .

(This root exists in E' by formula (ii).) In particular, this applies to E™
and C™. Then given any vectors z, y and a scalar a, we obtain as before the
following properties:

(a/) |z| > 0; and |z| = 0 iff 2 = 0.

(b) laz| = |af |z].
(¢) Triangle inequality: |z + y| < |z| + |y|.
(d") Cauchy-Schwarz inequality: |z -y| < |z|ly|, and |z -y| = |z||y| if = || y

(i.e., z = ay or y = ax for some scalar a).

We prove only (d’); the rest is proved as in Theorem 4 of §§1-3.

If -y =0, all is trivial, so let z = 2 -y = r¢ # 0, where r = |z - y| and ¢ has
modulus 1, and let ¢’ = cy. For any (variable) t € E*, consider |tz +%'|. By
definition and (v), (iii), and (iv),

lte +y'|> = (tv +y) - (tx +y)
=tr-tr+y tor+te-y +y -y
=tz 2) +t(y - 2) + - y) + (- y)
since t = t. Now, since cé = 1,
vy =x-(cy)=(cx) - y=crc=r=|z-y|

Similarly,

/

Pmr=r=leylzoz=|af andy -y =yy = |y
Thus we obtain
(Vte EY) |tz +eyl® = x> + 2t|z - y| + [y|*. (1)

Here |z|?, 2|z - y|, and |y|? are fixed real numbers. We treat them as coeffi-
cients in ¢ of the quadratic trinomial

F(t) = 2z + 2t - y| + [y[*.
Now if z and y are not parallel, then cy # —tx, and so
[tx +cy| =tz + 3| #0

for any t € E1. Thus by (1), the quadratic trinomial has no real roots; hence
its discriminant,
Alz - y* = 4(l2] ly])?,

is negative, so that |z - y| < |z| |y|.
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If, however, z || y, one easily obtains |z - y| = |z]| |y|, by (b’). (Verify.)

Thus |z - y| = |z||y| or |z -y| < |z||y| according to whether z || y or not. O

In any Euclidean space, we define distances by p(z, y) = |z — y|. Planes,
lines, and line segments are defined exactly as in E™. Thus

line pg = {p+t(¢—p) | t € E'} (in real and complex spaces alike).

Problems on Linear Spaces

1. Prove that F™ in Example (b) is a vector space, i.e., that it satisfies all
laws stated in Theorem 1 in §§1-3; similarly for W in Example (d).

2. Verify that dot products in C™ obey the laws (i)—(v’). Which of these
laws would fail if these products were defined by

n n
Ty = Z:ck.yk instead of z -y = Zikﬂk{?
k=1 k=1

How would this affect the properties of absolute values given in (a’)—(d")?

3. Complete the proof of formulas (a’)—(d") for Euclidean spaces. What
change would result if property (ii) of dot products were restated as

“p.x>0and 0-0 =077

4. Define orthogonality, parallelism and angles in a general Euclidean space
following the pattern of §§1-3 (text and Problem 7 there). Show that
w =0 iff u is orthogonal to all vectors of the space.

5. Define the basic unit vectors e, in C™ exactly as in E™, and prove
Theorem 2 in §§1-3 for C™ (replacing E* by C). Also, do Problem 5(a)
of §§1-3 for C".

6. Define hyperplanes in C™ as in Definition 3 of §§4-6, and prove
Theorem 1 stated there, for C™. Do also Problems 4-6 there for C™

(replacing E' by C') and Problem 4 there for vector spaces in general
(replacing E' by the scalar field F).

7. Do Problem 3 of §54—6 for general Euclidean spaces (real or complex).
Note: Do not replace E' by C in the definition of a line and a line

segment.
8. A finite set of vectors B = {1, ..., Ty, } In a linear space V over F' is
said to be independent iff
m
(Val,ag,...,ameF) (Zaixi:():al:a2:...:am:0),
i=1

Prove that if B is independent, then
(i) 0¢ B;
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(ii) each subset of B is independent () counts as independent); and

(iii) if for some scalars a;, b; € F,

m m

E a;T; = E bix;,

i=1 i=1
then a; =b;,i=1,2, ..., m.

9. Let V be a vector space over F and let A C V. By the span of Ain V,
denoted span(A), is meant the set of all “linear combinations” of vectors
from A, i.e., all vectors of the form

m

Zaiazi, a; €F, z; € A,meN.?

i=1
Show that span(A) is itself a vector space V! C V (a subspace of V')
over the same field F, with the operations defined in V. (We say that
A spans V'.) Show that in E™ and C™, the basic unit vectors span the
entire space.

*§10. Normed Linear Spaces

By a normed linear space (briefly normed space) is meant a real or complex
vector space E in which every vector z is associated with a real number |z|,
called its absolute value or norm, in such a manner that the properties (a’)—(c’)
of §9 hold.! That is, for any vectors z, y € E and scalar a, we have

(i) || = 0;
(i') |z| = 0 iff z = 0;
(i) |az| = la||z|; and
(iii) |z 4+ y| < |z| + |y| (triangle inequality).

Mathematically, the existence of absolute values in E amounts to that of a
map (called a norm map) * — || on E, i.e., amap ¢: E — E', with function
values ¢(x) written as |z, satisfying the laws (i)—(iii) above. Often such a map
can be chosen in many ways (not necessarily via dot products, which may not

exist in F), thus giving rise to different norms on E. Sometimes we write ||z||
for |z| or use other similar symbols.

Note 1. From (iii), we also obtain |z —y| > ||z| — |y|| exactly as in E™.
21f A = (), then span(A) = {0} by definition.

I Roughly, it is a vector space (over E' or C) in which “well-behaved” absolute values are
defined, resembling those in E™.
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Examples.

(A) Each Euclidean space (§9), such as E™ or C™, is a normed space, with

norm defined by
|z = V- x,

as follows from formulas (a’)—(c’) in §9. In E™ and C”, one can also

equivalently define
n
2l = [ > |l
k=1

where © = (z1, ..., z,). This is the so-called standard norm, usually
presupposed in E™ (C™).

(B) One can also define other, “nonstandard,” norms on E™ and C™. For
example, fix some real p > 1 and put

uw(imﬂ?

k=1

One can show that |z|, so defined satisfies (i)—(iii) and thus is a norm
(see Problems 5-7 below).

(C) Let W be the set of all bounded maps
ftA—=FE
from a set A # () into a normed space F, i.e., such that
(vite A) [f(t)<c

for some real constant ¢ > 0 (dependent on f but not on t). Define f+g¢
and af as in Example (d) of §9 so that W becomes a vector space. Also,
put

[fII = sup [ £ ()],
teA

i.e., the supremum of all |f(¢)|, with ¢t € A. Due to boundedness, this
supremum exists in E', so || f|| € E*.
It is easy to show that ||f| is a norm on W. For example, we verify
(iii) as follows.
By definition, we have for f, g € W and z € A,
I(f +9)(@)] = [f(x) + g(x)]
< [f(@) +1g(2)]
< sup | (1) + sup lg(1) W
teA teA

=171+ llgll-
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(The first inequality is true because (iii) holds in the normed space E to
which f(z) and g(z) belong.) By (1), || f|| + |l¢]| is an upper bound of all
expressions |(f + g)(z)|, z € A. Thus

IfII+ llgll = sup [(f + g)(@)| = || f + gl|.
z€A

Note 2. Formula (1) also shows that the map f + g is bounded and hence
is a member of W. Quite similarly we see that af € W for any scalar a and
f € W. Thus we have the closure laws for W. The rest is easy.

In every normed (in particular, in each Euclidean) space E, we define dis-
tances by

plz,y) =z —y| forallx, yeckFE.

Such distances depend, of course, on the norm chosen for E; thus we call them
norm-induced distances. In particular, using the standard norm in E™ and C"

(Example (A)), we have
pla, y) = [ D low — el
k=1

Using the norm of Example (B), we get

1
P
ol ) = (X o=l
k=1
instead. In the space W of Example (C), we have

p(f, 9) = Ilf = gll = sup [f(x) — g(x)].
z€A

Proceeding exactly as in the proof of Theorem 5 in §§1-3, we see that norm-
induced distances obey the three laws stated there. (Verify!l) Moreover, by
definition,

plr+u, y+u) =@ +u) - (y+u)l =z -yl =p,y)
Thus we have
p(x, y) = p(z + u, y + u) for norm-induced distances; (2)

i.e., the distance p(x, y) does not change if both x and y are “translated” by
one and the same vector u. We call such distances translation-invariant.
A more general theory of distances will be given in §511ff.
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Problems on Normed Linear Spaces

1. Show that distances in normed spaces obey the laws stated in Theorem 5

of §§1-3.
2. Complete the proof of assertions made in Example (C) and Note 2.
3. Define |z| = zy for z = (z1, ..., x,) in C™ or E™. Is this a norm? Which

(if any) of the laws (i)—(iii) does it obey? How about formula (2)?

4. Do Problem 3 in §§4-6 for a general normed space E, with lines defined
as in E™ (see also Problem 7 in §9). Also, show that contracting se-
quences of line segments in F are f-images of contracting sequences of
intervals in E'. Using this fact, deduce from Problem 11 in Chapter 2,
868-9, an analogue for line segments in F, namely, if

L[awu bn] 2 L[an+17 bn+1]7 n = 17 27 ey
then

ﬁ L[any bn] 7é 0.
n=1

5. Take for granted the lemma that

a'/Ppt/a < @ _|_9
p
ifa, b, p, ¢ € E' with a, b > 0 and p, ¢ > 0, and
1 1
-+ -=1.
p q

(A proof will be suggested in Chapter 5, §6, Problem 11.) Use it to
prove Hélder’s inequality, namely, if p > 1 and % + % =1, then

B

Z |zryr] < (Z \:L'k|p> (Z \yk\q) for any xy, yi € C.
k=1 k=1 k=1
[Hint: Let
n % n %
A= <Z \zk\p> and B = (z |yk|q) .
k=1 k=1
If A=0or B =0, then all z; or all y; vanish, and the required inequality is trivial.

Thus assume A # 0 and B # 0. Then, setting

p q
el el
P Ba

in the lemma, obtain
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Now add up these n inequalities, substitute the values of A and B, and simplify.]

. Prove the Minkowski inequality,

1 1 1
- P - P - P
(Z |$k+yk\p) < (Z |93k|p> + (Z |yk|p)
k=1 k=1 k=1

for any real p > 1 and xy, yx € C.
[Hint: If p = 1, this follows by the triangle inequality in C. If p > 1, let

n
A= |zk +ypl? #0.
o=t

(If A=0, all is trivial.) Then verify (writing “}>” for “377_,” for simplicity)

A= "aon +yllee +yeP7 <D lwrlloe +ulPT D lykller + velP

Now apply Hoélder’s inequality (Problem 5) to each of the last two sums, with ¢ =
p/(p— 1), so that (p — 1)g = p and 1/p = 1 — 1/q. Thus obtain

A< (leﬂp)%(ZIﬂEk-i—yk\p)% +(Z|yk|p>%<z‘ﬂ%+yk|p)%<

1 1
Then divide by A7 = (3 |zx + yx|P) ¢ and simplify.]

. Show that Example (B) indeed yields a norm for C™ and E™.

[Hint: For the triangle inequality, use Problem 6. The rest is easy.]

. A sequence {z,,} of vectors in a normed space E (e.g., in E" or C™) is

said to be bounded iff
(Bce EY (Vm) |om| <e,

ie., iff sup,, |zm| is finite.
Denote such sequences by single letters, x = {z,}, v = {ym}, etc.,
and define

z+y={zm+ym}, and ax = {ax,,} for any scalar a.

Also let

|| = sup 2.
m

Show that, with these definitions, the set M of all bounded infinite
sequences in E becomes a normed space (in which every such sequence
is to be treated as a single vector, and the scalar field is the same as
that of E).
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§11. Metric Spaces

I. In §81-3, we defined distances p(Z, §) for points Z, § in E™ using the

formula
n

p(z, 9) = /> (zr—y)® =7 — 7.

k=1

This actually amounts to defining a certain function p of two variables , y €
E™. We also showed that p obeys the three laws of Theorem 5 there. (We call
them metric laws.)

Now, as will be seen, such functions p can also be defined in other sets,
using quite different defining formulas. In other words, given any set S # ()
of arbitrary elements, one can define in it, so to say, “fancy distances” p(z, y)
satisfying the same three laws. It turns out that it is not the particular formula
used to define p but rather the preservation of the three laws that is most
important for general theoretical purposes.

Thus we shall assume that a function p with the same three properties has
been defined, in some way or other, for a set S # ), and propose to study the
consequences of the three metric laws alone, without assuming anything else.
(In particular, no operations other than p, or absolute values, or inequalities <,
need be defined in S.) All results so obtained will, of course, apply to distances
in E™ (since they obey the metric laws), but they will also apply to other cases
where the metric laws hold.

The elements of S (though arbitrary) will be called “points,” usually denoted
by p, ¢, z, y, z (sometimes with bars, etc.); p is called a metric for S. We
symbolize it by

p:SxS— E
since it is function defined on S x S (pairs of elements of S) into E*. Thus we
are led to the following definition.
Definition 1.

A metric space is a set S # ) together with a function
p:Sx8S— E!

(called a metric for S) satisfying the metric laws (azxioms):
For any z, y, and z in S, we have

(i) p(z,y) >0, and (') p(z, y) =0 iff z = y;
(ii) p(z, y) = p(y, z) (symmetry law); and
(iii) p(z, 2) < p(z, y) + p(y, 2) (triangle law).
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Thus a metric space is a pair (S, p), namely, a set S and a metric p for it.
In general, one can define many different metrics

py PPy

for the same S. The resulting spaces

(Sv p)v (57 ,0/), (S, p"), ..

then are regarded as different. However, if confusion is unlikely, we simply
write S for (S, p). We write “p € (S, p)” for “p € S with metric p,” and
“AC (S, p)” for “AC Sin (S, p).”

Examples.

1) In E™, we always assume
( ; y
p(Z,y) =1 —7y| (the “standard metric”)
unless stated otherwise.! By Theorem 5 in §§1-3, (E™, p) is a metric
space.

(2) However, one can define for E™ many other “nonstandard” metrics. For
example,

n 1/p
oz, §) = (Z |xg — yk|p> for any real p > 1
k=1

likewise satisfies the metric laws (a proof is suggested in §10, Problems 5-
7); similarly for C".

(3) Any set S # () can be “metrized” (i.e., endowed with a metric) by setting
p(z, y) =1if x #y, and p(z, z) = 0.

(Verify the metric laws!) This is the so-called discrete metric. The space
(S, p) so defined is called a discrete space.

(4) Distances (“mileages”) on the surface of our planet are actually measured
along circles fitting in the curvature of the globe (not straight lines). One
can show that they obey the metric laws and thus define a (nonstandard)
metric for S = (surface of the globe).

(5) A mapping f: A — E* is said to be bounded iff

AKcEY (YecA) |f(x) <K.

L Similarly in other normed spaces (§10), such as C™. (A reader who has omitted the
“starred” §10 will consider E™ only.)
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For a fixed A # (), let W be the set of all such maps (each being treated
as a single “point” of W). Metrize W by setting, for f, g € W,
p(f; ) = sup |f(z) — g(z)|.
z€A

(Verify the metric laws; see a similar proof in §10.)

II. We now define “balls” in any metric space (S, p).
Definition 2.

Given p € (S, p) and a real € > 0, we define the open ball or globe with
center p and radius ¢ (briefly “e-globe about p”), denoted

G or Gp(e) or G(p;e),
to be the set of all x € S such that
plz, p) <e.
Similarly, the closed e-globe about p is
Gy =Gyle) ={z € S|p(x,p) <e}.
The e-sphere about p is defined by
Sp(e) ={z € 5 p(x, p) =€}

Note. An open globe in E? is an ordinary solid sphere (without its surface
Sp(€)), as known from geometry. In E2, an open globe is a disc (the interior
of a circle). In E', the globe G, (e) is simply the open interval

(p—e,pt+e),

while G, () is the closed interval
[p—e ptel

The shape of the globes and spheres depends on the metric p. It may become
rather strange for various unusual metrics. For example, in the discrete space
(Example (3)), any globe of radius < 1 consists of its center alone, while G, (2)
contains the entire space. (Why?) See also Problems 1, 2, and 4.

ITI. Now take any nonempty set
AC (S, p).

The distances p(x, y) in S are, of course, also defined for points of A (since
A C S), and the metric laws remain valid in A. Thus A is likewise a (smaller)
metric space under the metric p “inherited” from S; we only have to restrict
the domain of p to A x A (pairs of points from A). The set A with this metric
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is called a subspace of S. We shall denote it by (A, p), using the same letter p,
or simply by A. Note that A with some other metric p’ is not called a subspace
of (S, p).

By definition, points in (A, p) have the same distances as in (S, p). However,
globes and spheres in (A4, p) must consist of points from A only, with centers
in A. Denoting such a globe by

Gy(e) = {r € A| pla, p) <),

we see that it is obtained by restricting G,(¢) (the corresponding globe in S)
to points of A, i.e., removing all points not in A. Thus

Gyle) = AN Gyle);

similarly for closed globes and spheres. ANG,(¢) is often called the relativized
(to A) globe Gp(e). Note that p € G (e) since p(p, p) =0 < ¢, and p € A.

For example, let R be the subspace of E' consisting of rationals only. Then
the relativized globe G (¢) consists of all rationals in the interval

Gple)=(p—c,p+e),
and it is assumed here that p is rational itself.

IV. A few remarks are due on the extended real number system E* (see
Chapter 2, §13). As we know, E* consists of all reals and two additional
elements, +o00, with the convention that —oo < x < 400 for all z € E.
The standard metric p does not apply to E*. However, one can metrize E* in
various other ways. The most common metric p’ is suggested in Problems 5 and
6 below. Under that metric, globes turn out to be finite and infinite intervals
in E*.

Instead of metrizing E*, we may simply adopt the convention that intervals
of the form

(a, +o0] and [—oc0, a), a € B,

will be called “globes” about +o0o0 and —oo, respectively (without specifying
any “radii”). Globes about finite points may remain as they are in E'. This
convention suffices for most purposes of limit theory. We shall use it often (as
we did in Chapter 2, §13).

Problems on Metric Spaces
The “arrowed” problems should be noted for later work.

1. Show that E? becomes a metric space if distances p(Z, 3) are defined
by

(a) p(z, §) = |z1 — 11| + |22 — y2| or
(b) p(Z, §) = max{|z1 — y1, [v2 — 32},
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=5.

=6.

where Z = (z1, z2) and § = (y1, y2). In each case, describe Gj(1)
and S5(1). Do the same for the subspace of points with nonnegative
coordinates.

. Prove the assertions made in the text about globes in a discrete space.

Find an empty sphere in such a space. Can a sphere contain the entire
space?

. Show that p in Examples (3) and (5) obeys the metric axioms.
. Let M be the set of all positive integers together with the “point” oco.

Metrize M by setting
1 1 . . 1
p(m, n) = ‘— - f‘, with the convention that — = 0.
m n 00

Verify the metric axioms. Describe Goo(3), Soc(2), and Gy (1).

Metrize the extended real number system E* by

o'z, y) = [f(x) = fw)l,

where the function
f+E*—[-1,1]

onto

is defined by
f(z)
Compute p'(0, +00), p'(0, —00), p'(—0c0, +0), p'(0, 1), p/(1, 2), and

p'(n, +00). Describe Go(1), G4oo(1), and G_oo(3). Verify the metric
axioms (also when infinities are involved).

= %‘m' if x is finite, f(—o0) = —1, and f(4o00) = 1.

In Problem 5, show that the function f is one to one, onto [—1, 1], and
increasing; i.e.,

x < ' implies f(z) < f(2') for z, 2’ € E*.

Also show that the f-image of an interval (a, b)) C E* is the interval
(f(a), f(b)). Hence deduce that globes in E* (with p’ as in Problem 5)
are intervals in E* (possibly infinite).

[Hint: For a finite x, put
xT

y=f(w)=1+‘zl~

Solving for z (separately in the cases x > 0 and = < 0), show that
_Yy
1—1yl

thus z is uniquely determined by v, i.e., f is one to one and onto—each y € (—1, 1)
corresponds to some z € E'. (How about £17)

(Vye(-1,1) z=f"(y =

)
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To show that f is increasing, consider separately the three cases z < 0 < z/,
z <z’ <0and 0 <z <z’ (also for infinite  and z’).]

. Continuing Problems 5 and 6, consider (E*, p') as a subspace of (E*, p’)

with p’ as in Problem 5. Show that globes in (El, p’) are exactly all
open intervals in E*. For example, (0, 1) is a globe. What are its center
and radius under p’ and under the standard metric p?

. Metrize the closed interval [0, +00] in E* by setting

1 1
1+ 14y’

with the conventions 1 + (+00) = 400 and 1/(400) = 0. Verify the
metric axioms. Describe G,(1) for arbitrary p > 0.

pz, y) = ‘

. Prove that if p is a metric for S, then another metric p’ for S is given

by
(i) p'(z, y) = min{l, p(z, y)};
(i) /(o) = T2

In case (i), show that globes G, (¢) of radius € < 1 are the same under p
and p’. In case (ii), prove that any G,(¢) in (S, p) is also a globe G, (g’)
in (S, p') of radius
€
/
g =—
1+4¢’
and any globe of radius ¢’ < 1 in (S, p’) is also a globe in (5, p). (Find
the converse formula for € as well!)
[Hint for the triangle inequality in (ii): Let a = p(z, 2), b = p(z, y), and ¢ = p(y, 2),
so that a < b+ c¢. The required inequality is
a b c
— < — .
l+a = 1+b 1+c
Simplify it and show that it follows from a < b+ ¢.]

Prove that if (X, p') and (Y, p”) are metric spaces, then a metric p for
the set X x Y is obtained by setting, for x1, zo € X and y1, y2 € Y,

(i) p((z1, Y1), (w2, y2)) = max{p’(z1, ¥2), p"(y1, y2)}; or

(i) p((z1, 11), (22, 92)) = Vo' (21, 22)% + 0" (41, 12)*

[Hint: For brevity, put pj, = p'(x1, z2), pY5 = p” (y1, y2), etc. The triangle inequal-
ity in (ii),

V0h9)? + (013)2 < /(0122 + (02) + 1/ (0he)? + (083)?
is verified by squaring both sides, isolating the remaining square root on the right
side, simplifying, and squaring again. Simplify by using the triangle inequalities valid
in X and Y, i.e.,
Pis < pla + phg and pis < pifay + pls.
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Reverse all steps, so that the required inequality becomes the last step.]
11. Prove that
lp(y, 2) = plz, 2)| < p(=, y)

in any metric space (S, p).
[Caution: The formula p(z, y) = |x—y], valid in E™, cannot be used in (S, p). Why?]

12. Prove that

p(p1, p2) + p(p2; p3) + -+ + p(Pn—1, Pn) > p(P1, Pn)-

[Hint: Use induction.]

§12. Open and Closed Sets. Neighborhoods

I. Let A be an open globe in (S, p) or an open interval (@, b) in E™. Then
every p € A can be enclosed in a small globe G,(§) € A (Figures 7 and 8).
(This would fail for “boundary” points; but there are none inside an open G,
or (a, b).)

S
~—

FIGURE 8

FIGURE 7

This suggests the following ideas, for any (S, p).
Definition 1.

A point p is said to be interior to a set A C (S, p) iff A contains some
Gp; i.e., p, together with some globe G, belongs to A. We then also say
that A is a neighborhood of p. The set of all interior points of A (“the
interior of A”) is denoted A°. Note: ()° = () and S° = S.1

Definition 2.

A set A C (S, p) is said to be open iff A coincides with its interior
(A% = A). Such are () and S.

! Indeed, ( has no points at all, and hence no interior points; i.e., )° is void. On the other
hand, S contains any Gp. Thus any p is interior to S; i.e., S0 =5.
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Examples.
(1) As noted above, an open globe G4(r) has interior points only, and thus
is an open set in the sense of Definition 2. (See Problem 1 for a proof.)
(2) The same applies to an open interval (@, b) in E™. (See Problem 2.)

(3) The interior of any interval in E™ never includes its endpoints @ and b.
In fact, it coincides with the open interval (@, b). (See Problem 4.)

(4) The set R of all rationals in E' has no interior points at all (R = 0)
because it cannot contain any G, = (p — €, p + €). Indeed, any such
G\, contains irrationals (see Chapter 2, §§11-12, Problem 5), so it is not
entirely contained in R.

Theorem 1 (Hausdorff property?). Any two points p and q (p # q) in (S, p)
are centers of two disjoint globes.
More precisely,

(Fe>0) Gule)NGyle) =0.
Proof. As p # g, we have p(p, ¢) > 0 by metric axiom (i’). Thus we may put

1
e=5pp, @) > 0.

It remains to show that with this e, G,(e) N G4(e) = 0.
Seeking a contradiction, suppose this fails. Then there is z € Gp(g) N Gy(e)
so that p(p, x) < € and p(z, ¢q) < €. By the triangle law,

p(p; @) < p(p; x) + p(z, ¢) < e+e=2¢; ie, p(p, ) < 2,
which is impossible since p(p, q) = 2e. O

e AN —— b
( \5 ) //7 AN
N \PT
—_ \\‘// a
\
[ \
| | |
p1 a1 b1
FIGURE 9 FIiGure 10

Note. A look at Figure 9 explains the idea of this proof, namely, to obtain
two disjoint globes of equal radius, it suffices to choose ¢ < %p(p, q). The
reader is advised to use such diagrams in E? as a guide.

II. We can now define closed sets in terms of open sets.

2 Named after Felix HausdorfF.
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Definition 3.

A set A C (S, p) is said to be closed iff its complement —A = S — A is
open, i.e., has interior points only.
That is, each p € —A (outside A) is in some globe G, € —A so that

ANG, =0.

Examples (continued).

(5) The sets 0 and S are closed, for their complements, S and (), are open, as
noted above. Thus a set may be both closed and open (“clopen”).

(6) All closed globes in (S, p) and all closed intervals in E™ are closed sets by
Definition 3. Indeed (see Figures 9 and 10), if A = G,(r) or A = [a, b],
then any point p outside A can be enclosed in a globe Gy, (9) disjoint from
A; so, by Definition 3, A is closed (see Problem 12).

(7) A one-point set {q} (also called “singleton”) in (S, p) is always closed, for
any p outside {q} (p # q) is in a globe disjoint from {¢} by Theorem 1.
In a discrete space (§11, Example (3)), {¢} is also open since it is an
open globe, {q} = Gq(%) (why?); so it is “clopen.” Hence, in such a space,
all sets are “clopen”. For p € A implies {p} = Gp(%) C A; similarly for
—A. Thus A and — A have interior points only, so both are open.

(8) The interval (a, b] in B is neither open nor closed. (Why?)

*IIL. (The rest of this section may be deferred until Chapter 4, §10.)
Theorem 2. The union of any finite or infinite family of open sets A; (i € I),

denoted
U Ai7
iel

is open itself. So also is

for finitely many open sets. (This fails for infinitely many sets A;; see Prob-
lem 11 below.)

Proof. We must show that any point p of A =J; 4; is interior to A.
Now if p € |J; A;, p is in some A;, and it is an nterior point of A; (for A;
is open, by assumption). Thus there is a globe

GpgA7gA7

as required.
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For finite intersections, it suffices to consider two open sets A and B (for
n sets, all then follows by induction). We must show that each p € AN B is
interior to AN B.

Now as p € A and A is open, we have some G,(d’') C A. Similarly, there is
Gp(8") C B. Then the smaller of the two globes, call it Gy, is in both A and
B, so

G, CANB

and p is interior to AN B, indeed. [J
Theorem 3. If the sets A; (i € I) are closed, so is

N
el

(even for infinitely many sets). So also is

for finitely many closed sets A;. (Again, this fails for infinitely many sets A;.)
Proof. Let A =(),c; A;i. To prove that A is closed, we show that —A is open.
Now by set theory (see Chapter 1, §§1-3, Theorem 2),

—A=-4 = J-4),
where the (—A;) are open (for the A; are closed). Thus by Theorem 2, —A is
open, as required.
The second assertion (as to |J]_, 4;) follows quite similarly. O
Corollary 1. A nonempty set A C (S, p) is open iff A is a union of open
globes.

For if A is such a union, it is open by Theorem 2. Conversely, if A is open,
then each p € A is in some G, C A. All such G, (p € A) cover all of A, so
A C Upea Gyp- Also, Upe s Gp € A since all G, are in A. Thus

A=J G,
pEA

Corollary 2. FEvery finite set F' in a metric space (S, p) is closed.
Proof. If F =0, F is closed by Example (5). If F' # 0, let

F={py,...,pn} = | J{me}-

k=1

Now by Example (7), each {py} is closed; hence so is F' by Theorem 3. O
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Note. The family of all open sets in a given space (S, p) is denoted by G;
that of all closed sets, by F. Thus “A € G” means that A is open; “A € F”
means that A is closed. By Theorems 2 and 3, we have

(VA,BeG) AUBeGand ANBe€G;

similarly for F. This is a kind of “closure law.” We say that F and G are
“closed under finite unions and intersections.”

In conclusion, consider any subspace (A, p) of (S, p). As we know from §11,
it is a metric space itself, so it has its own open and closed sets (which must
consist of points of A only). We shall now show that they are obtained from
those of (S, p) by intersecting the latter sets with A.

Theorem 4. Let (A, p) be a subspace of (S, p). Then the open (closed) sets
in (A, p) are exactly all sets of the form ANU, with U open (closed) in S.

Proof. Let G be open in (A, p). By Corollary 1, G is the union of some open
globes G¥ (i € I) in (A, p). (For brevity, we omit the centers and radii; we
also omit the trivial case G = 0.)
As was shown in §11, however, G} = AN G;, where G; is an open globe in
(S, p). Thus
¢=JG =Jana)=4anlJa;,

K3

by set theory (see Chapter 1, §§1-3, Problem 9).

Again by Corollary 1, U = |J; G; is an open set in (S, p). Thus G has the
form
AnlJGi=AnT,
with U open in S, as asserted.
Conversely, assume the latter, and let p € G. Then p € A and p € U. As
U is open in (S, p), there is a globe G, in (S, p) such that p € G, C U. As
p € A, we have
peANG, CANU.

However, ANG), is a globe in (A, p), call it G. Thus
peG, CANU =G;

i.e., p is an interior point of G in (A, p). We see that each p € G is interior to
G, as a set in (4, p), so G is open in (A, p).

This proves the theorem for open sets. Now let F' be closed in (A, p). Then
by Definition 3, A — F' is open in (A, p). (Of course, when working in (A, p),
we replace S by A in taking complements.) Let G = A—F,so F' = A— G, and
G is open in (A4, p). By what was shown above, G = ANU with U open in S.
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Thus
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F=A-G=A—(ANU)=A—-U=An(-U)

by set theory. Here —U = S —U is closed in (S, p) since U is open there. Thus
F = AnN(-U), as required.
The proof of the converse (for closed sets) is left as an exercise. 0O

Problems on Neighborhoods, Open and Closed Sets

. Verify Example (1).

[Hint: Given p € G4(r), let
od=r—p(p, q) >0 (Why >07)
Use the triangle law to show that

z € Gp(0) = p(z, q) <1 =a € Gqy(r).]

. Check Example (2); see Figure 8.

[Hint: If p € (a, b), choose § less than the 2n numbers
pr —ar and by —pg, k=1,...,n;

then show that G5(0) C (a, b).]

. Prove that if p € G4(r) in E™, then Gg(r) contains a cube [¢, d] with

¢ # d and with center p.

[Hint: By Example (1), there is G5(8) € Gg(r). Inscribe in Gp(%&) a cube of diagonal
8. Find its edge-length (§/+/n). Then use it to find the coordinates of the endpoints,
¢ and d (given p, the center). Prove that [¢, d] C G(9).]

. Verify Example (3).

[Hint: To show that no interior points of [a, b] are outside (@, b), let p ¢ (a, b). Then
at least one of the inequalities ap, < py or py < by fails. (Why?) Let it be a1 < p1,
say, so p1 < aq.

Now take any globe G5(8) about p and prove that it is not contained in [a, b]
(so p cannot be an interior point). For this purpose, as in Problem 3, show that
G5(0) 2 [ d] with c1 < p1 < a1. Deduce that ¢ € G5(5), but ¢ ¢ [a, b]; so
Gp(0) Z [a, b]]

. Prove that each open globe Gg(r) in E™ is a union of cubes (which can

be made open, closed, half-open, etc., as desired). Also, show that each
open interval (@, b) # () in E™ is a union of open (or closed) globes.
[Hint for the first part: By Problem 3, each p € G3(r) is in a cube C}, C Gg(r). Show
that Gg(r) = JCp.]

. Show that every globe in E™ contains rational points, i.e., those with

rational coordinates only (we express it by saying that the set R™ of
such points is dense in E™); similarly for the set I" of irrational points
(those with irrational coordinates).

[Hint: First check it with globes replaced by cubes (¢, d); see §7, Corollary 3. Then
use Problem 3 above.]

7.

10.

11.

12.

*13.
*14.

*15.

. Prove that if the points pq, ...
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Prove that if Z € Gg(r) in E", there is a rational point p (Problem 6)
and a rational number § > 0 such that € G5(d) C Gg(r). Deduce that
each globe G(r) in E™ is a union of rational globes (those with rational
centers and radii). Similarly, show that Gg(r) is a union of intervals
with rational endpoints.

[Hint for the first part: Use Problem 6 and Example (1).]

, Pn in (S, p) are distinct, there is an
€ > 0 such that the globes G(pg;¢) are disjoint from each other, for
k=1,2,...,n.

. Do Problem 7, with Gg(r) replaced by an arbitrary open set G # 0 in

E™.
Show that every open set G # @) in E™ is infinite (*even uncountable;

see Chapter 1, §9).
[Hint: Choose Gz(r) C G. By Problem 3, G(r) D L[¢, d], a line segment.]

Give examples to show that an infinite intersection of open sets may not
be open, and an infinite union of closed sets may not be closed.
[Hint: Show that

and

Verify Example (6) as suggested in Figures 9 and 10.
[Hints: (i) For Gg(r), take

6 =p(p, q) —r>0. (Why >07)

(ii) If § ¢ [a, b], at least one of the 2n inequalities aj < pi or pp < by fails (why?),
say, p1 < ai. Take 6 = a1 — p1.
In both (i) and (ii) prove that AN Gp(8) = 0 (proceed as in Theorem 1).]

Prove the last parts of Theorems 3 and 4.

Prove that A, the interior of A, is the union of all open globes contained
in A (assume A # (). Deduce that AY is an open set, the largest
contained in A.3

For sets A, B C (S, p), prove that
(i) (AnB)"=A°nBY;
(i) (A%)Y = A% and

(iii) if A C B then A° C BO.

3 That is, the one that contains all other open subsets of A.
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[Hint for (ii): A° is open by Problem 14.]

16. Is AU B% = (AU B)?
[Hint: See Example (4). Take A= R, B = E' — R/]

17. Prove that if M and N are neighborhoods of p in (S, p), then
(a) pe MNN;
(b) M N N is a neighborhood of p;
*(c) sois M; and
(d) so also is each set P C S such that P 2 M or P O N.
[Hint for (c): See Problem 14.]
18. The boundary of a set A C (S, p) is defined by
bdA = —-[A%U (-A)7];
thus it consists of points that fail to be interior in A or in —A.
Prove that the following statements are true:
(i) S=A%Ubd AU (—A)° all disjoint.
(i) bd S =0, bd0 = 0.
*(iii) A is open iff ANbd A =0; A is closed iff A D bd A.
(iv) In E™, -
bd G5(r) = bd Gp(r) = Sp(r)
(the sphere with center p and radius r). Is this true in all metric
spaces?

[Hint: Consider Gp(1) in a discrete space (S, p) with more than one point in
S; see §11, Example (3).]

(v) In E™, if (a, b) # 0, then
bd(a, b] = bd[a, b) = bd(a, b) = bd[a, b] = [a, b] — (a, b).
(vi) In E*, (R™)° = (J; hence bd R" = E™ (R" as in Problem 6).

19. Verify Example (8) for intervals in E™.

§13. Bounded Sets. Diameters

I. Geometrically, the diameter of a closed globe in E™ could be defined as
the maximum distance between two of its points. In an open globe in E™, there
is no “maximum” distance (why?), but we still may consider the supremum of
all distances inside the globe. Moreover, this makes sense in any set A C (S, p).
Thus we accept it as a general definition, for any such set.
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Definition 1.
The diameter of a set A # () in a metric space (S, p), denoted dA, is the
supremum (in E*) of all distances p(z, y), with 2, y € A4;! in symbols,
dA = sup p(,y).
z,yeA
If A =0, we put d4 = 0. If dA < 400, A is said to be bounded (in
(S, p))-

Equivalently, we could define a bounded set as in the statement of the fol-
lowing theorem.

Theorem 1. A set A C (S, p) is bounded iff A is contained in some globe. If
so, the center p of this globe can be chosen at will.

Proof. If A=), all is trivial.

Thus let A # 0; let ¢ € A, and choose
any p € S. Now if A is bounded, then
dA < 400, so we can choose a real ¢ >
p(p, q)+dA as a suitable radius for a globe
Gp(e) D A (see Figure 11 for motivation).
Now if z € A, then by the definition of dA,
p(q, x) < dA; so by the triangle law,

o, ) < p(p, q) + p(q, x)
< p(p, q) +dA <¢;

ie,z € Gyle). Thus (Vo € A) x € Gp(e),
as required.

Conversely, if A C G,(e), then any z, y € A are also in Gy,(¢); so p(z, p) < e
and p(p, y) < &, whence

FI1GUure 11

p(z, y) < p(z, p) +p(p, y) <e+e=2e.
Thus 2¢ is an upper bound of all p(z, y) with =, y € A. Therefore,

dA = sup p(z, y) < 2e < +00;
i.e., A is bounded, and all is proved. [

As a special case we obtain the following.

Theorem 2. A set A C E™ is bounded iff there is a real K > 0 such that
Vzed) |z|<K
(*similarly in C™ and other normed spaces).

I Recall that the supremum always exists in E* (finite or not); see Chapter 2, §13.
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Proof. By Theorem 1 (choosing 0 for p), A is bounded iff A is contained in
some globe Gg(g) about 0. That is,

(VzeA) zeGge) orp(,0)=|z <e.
Thus ¢ is the required K. (*The proof for normed spaces is the same.) O
Note 1. In E', this means that
Vexed) —-K<z<K,

i.e., A is bounded by —K and K. This agrees with our former definition, given
in Chapter 2, §§8-9.
Caution: Upper and lower bounds are not defined in (.5, p), in general.

Examples.
(1) © is bounded, with d) = 0, by definition.

(2) Let A= [a, b] in E™, with d = p(@, b) its diagonal. By Corollary 1 in §7,
d is the largest distance in A. In nonclosed intervals, we still have

d= sup p(z, y) = dA < 40 (see Problem 10(ii)).
z,ycA

Thus all intervals in E™ are bounded.

(3) Each globe G,(¢) in (S, p) is bounded, with dG,(¢) < 2¢ < +o0, as was
shown in the proof of Theorem 1. See, however, Problems 5 and 6 below.

(4) All of E™ is not bounded, under the standard metric, for if E” had a finite
diameter d, no distance in E™ would exceed d; but p(—déy, dé;) = 2d, a
contradiction!

(5) On the other hand, under the discrete metric (§11, Example (3)), any set
(even the entire space) is contained in G,(3) and hence bounded. The
same applies to the metric p’ defined for E* in Problem 5 of §11, since
distances under that metric never exceed 2, and so E* C Gp(3) for any
choice of p.

Note 2. This shows that boundedness depends on the metric p. A set may
be bounded under one metric and not bounded under another. A metric p is
said to be bounded iff all sets are bounded under p (as in Example (5)).

Problem 9 of §11 shows that any metric p can be transformed into a bounded
one, even preserving all sufficiently small globes; in part (i) of the problem, even
the radii remain the same if they are < 1.

Note 3. An idea similar to that of diameter is often used to define distances
between sets. If A # and B # 0 in (S, p), we define p(A4, B) to be the infimum
of all distances p(z, y), with z € A and y € B. In particular, if B = {p} (a
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singleton), we write p(A, p) for p(A, B). Thus

p(A, p) = inf p(z, p).

II. The definition of boundedness extends, in a natural manner, to sequences
and functions. We briefly write {z,,} C (S, p) for a sequence of points in (5, p),
and f: A — (S, p) for amapping of an arbitrary set A into the space S. Instead
of “infinite sequence with general term x,,,” we say “the sequence x,,.”

Definition 2.

A sequence {z,,} C (5, p) is said to be bounded iff its range is bounded
in (S, p), i.e., iff all its terms x,, are contained in some globe in (5, p).
In E™, this means (by Theorem 2) that

(Vm) |zm] < K

for some fixed K € E1.2

Definition 3.

A function f: A — (S, p) is said to be bounded on a set B C A iff the
image set f[B] is bounded in (S, p); i.e. iff all function values f(z), with
x € B, are in some globe in (S, p).

In E™, this means that

VzeB) |f(x)] <K
for some fixed K € E'.2
If B = A, we simply say that f is bounded.

Note 4. If S = E' or S = E*, we may also speak of upper and lower
bounds. It is customary to call sup f[B] also the supremum of f on B and
denote it by symbols like

sup f(z) or sup{f(x) |z € B}.
z€EB

In the case of sequences, we often write sup,, @, or sup x,, instead; similarly
for infima, maxima, and minima.

Examples.

(a) The sequence

Ty = — in E'
m

is bounded since all terms x,, are in the interval (0, 2) = G1(1). We have
inf x,, = 0 and sup x,, = maxx,, = 1.

2 *Similarly in C™ and other normed spaces.
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(b)
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The sequence
T =m in E!
is bounded below (by 1) but not above. We have inf z,,, = minz,, =1
and sup x,,, = +oo (in E*).
Define f: E' — E! by
f(z) =2z.

This map is bounded on each finite interval B = (a, b) since f[B] =
(2a, 2b) is itself an interval and hence bounded. However, f is not
bounded on all of E! since f[E'] = E' is not a bounded set.

Under a bounded metric p, all functions f: A — (S, p) are bounded.
The so-called identity map on S, f: S — (S, p), is defined by

f(@) = a.

Clearly, f carries each set B C S onto itself; i.e., f[B] = B. Thus f is
bounded on B iff B is itself a bounded set in (S, p).

Define f: E' — E' by

f(z) =sinz.

Then f[E'] = [~1, 1] is a bounded set in the range space E'. Thus f is
bounded on E! (briefly, bounded).

Problems on Boundedness and Diameters

1. Show that if a set A in a metric space is bounded, so is each subset

=3.

. Prove that if the sets A, Ao, ...

B C A.
, Ay, in (S, p) are bounded, so is

U Ap.
k=1

Disprove this for infinite unions by a counterexample.

[Hint: By Theorem 1, each Ay is in some Gp(ey), with one and the same center
p. If the number of the globes is finite, we can put max(ei, ..., en) = €, so Gp(e)
contains all Ay. Verify this in detail.]

From Problems 1 and 2 show that a set A in (S, p) is bounded iff it is
contained in a finite union of globes,

n

U Goxien).

k=1
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4.

10.

A set A in (S, p) is said to be totally bounded iff for every € > 0 (no
matter how small), A is contained in a finite union of globes of radius
€. By Problem 3, any such set is bounded. Disprove the converse by a
counterexample.

[Hint: Take an infinite set in a discrete space.]

. Show that distances between points of a globe G, (g) never exceed 2¢.

(Use the triangle inequality!) Hence infer that dG,(¢) < 2¢. Give an
example where dGp(¢) < 2¢. Thus the diameter of a globe may be less
than twice its radius.

[Hint: Take a globe GP(%) in a discrete space.]

. Show that in E™ (*as well as in C™ and any other normed linear space

# {0}), the diameter of a globe G, (¢) always equals 2¢ (twice its radius).
[Hint: By Problem 5, 2¢ is an upper bound of all p(Z, §) with Z, § € Gp(e).
To show that there is no smaller upper bound, prove that any number
2e —2r (r>0)
is exceeded by some p(Z, §); e.g., take T and § on some line through p,
T =p+tu,

choosing suitable values for t to get p(Z, 7) = |Z — §| > 2e — 2r.]

. Prove that in E", a set A is bounded iff it is contained in an interval.

. Prove that for all sets A and B in (S, p) and each p € S

p(A, B) < p(A, p) + p(p, B).
Disprove

p(A, B) < p(A, p) + p(p, B)

by an example.

. Find supz,, infz,, maxz,, and minz, (if any) for sequences with

general term
(a) n;
(b) (=1)™(2—2%7");

(12

n(n —1)
d) ——5y2-
(n+2)
Which are bounded in E*?
Prove the following about lines and line segments.

(i) Show that any line segment in E™ is a bounded set, but the entire
line is not.
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(ii) Prove that the diameter of L(a, b) and of (@, b) equals p(a, b).
11. Let f: E' — E' be given by
f(z) = % if x # 0, and f(0) =0.

Show that f is bounded on an interval [a, b] iff 0 ¢ [a, b]. Is f bounded
on (0, 1)?
12. Prove the following:
(a) If AC B C (S, p), then dA < dB.
(b) dA =0 iff A contains at most one point.
(¢) If AN B # 0, then
d(AUB) < dA +dB.

Show by an example that this may fail if AN B = (.

814. Cluster Points. Convergent Sequences

1 1
A:{l7 —,...,—,...};
2 m

we may as well let A denote the sequence x,, = 1/m in E'.! Plotting it on
the axis, we observe a remarkable fact: The points z,, “cluster” close to 0,
approaching 0 as m increases—see Figure 12.

Consider the set

—e c
‘ ""MHHHH | \ \
0 111 1 1 1 1
765 4 3 2
FIGURE 12

To make this more precise, take any globe about 0 in El, Go(s) = (—¢, ).
No matter how small, it contains infinitely many (even all but finitely many)
points x,,, namely, all from some z; onward, so that

(Vm >k) x, € Gyle).
Indeed, take k > 1/e, so 1/k < e. Then

1 1
Vm>k) —<—-<eg;
(Vm>k) — < <s

1 “Sequence” means “infinite sequence”; m, n, k denote integers > 0.
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ie., m € (—¢, €) = Go(e).
This suggests the following generalizations.

Definition 1.
A set, or sequence, A C (S, p) is said to cluster at a point p € S (not
necessarily p € A), and p is called its cluster point or accumulation point,
iff every globe G, about p contains infinitely many points (respectively,
terms) of A. (Thus only infinite sets can cluster.)

Note 1. In sequences (unlike sets) an infinitely repeating term counts as
infinitely many terms. For example, the sequence 0, 1, 0, 1, ... clusters at 0
and 1 (why?); but its range, {0, 1}, has no cluster points (being finite). This
distinction is, however, irrelevant if all terms x,,, are distinct, i.e., different from
each other. Then we may treat sequences and sets alike.

Definition 2.
A sequence {z,,} C (5, p) is said to converge or tend to a point p in S,
and p is called its limit, iff every globe G,(¢) about p (no matter how
small) contains all but finitely many terms x,,.2 In symbols,

(Ve>0) (3k) Vm>k) zp € Gple), ie., plam, p) <e. (1)

If such a p exists, we call {z,,} a convergent sequence (in (S, p));
otherwise, a divergent one. The notation is

Ty — p, or limz,, =p, or lim z,, = p.
m—00

In E*2 p(Zm, p) = |Zm — P|; thus formula (1) turns into
Tm — pin E"iff (Ve >0) (3k) (Vm >k) |2, —p|<e. (2)

Since “all but finitely many” (as in Definition 2) implies “infinitely many” (as
in Definition 1), any limit is also a cluster point. Moreover, we obtain the
following result.

Corollary 1. If x,, — p, then p is the unique cluster point of {xm}. (Thus a
sequence with two or more cluster points, or none at all, diverges.)

For if p # ¢, the Hausdorff property (Theorem 1 of §12) yields an ¢ such
that
Gp(e) NGy(e) = 0.

As z,,, = p, Gp(e) leaves out at most finitely many x,,, and only these can
possibly be in G4(¢). (Why?) Thus g fails to satisfy Definition 1 and hence is

no cluster point. Hence lim z,,, (if it exists) is unique.

2 That is, Gp(€) leaves out at most finitely many terms zm, say, ¥1, T2, ..., T, whereas
in Definition 1, Gp(g) may leave out even infinitely many points of A.

3 *Similarly for sequences in C™ and in other normed spaces (§10).
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Corollary 2.
(i) We have z,,, — p in (S, p) iff p(xm, p) — 0 in EL.
Hence
(ii) Zp — P in E" iff |Zp —p| — 0 and
(iii) Zpn — 0 in E™ iff |Zm| — 0.
Proof. By (2), we have p(z,, p) — 0 in E? if
(Ve >0) (3k) (Vm>k) |p(xm, p) =0 = p(xm, p) <e.

By (1), however, this means that z,, — p, proving our first assertion. The rest
easily follows from it, since p(Zy,, p) = |Tm — P in E™. O

Corollary 3. If x,, tends to p, then so does each subsequence T, .

For x,, — p means that each G, leaves out at most finitely many x,,. This
certainly still holds if we drop some terms, passing to {@,, }.

Note 2. A similar argument shows that the convergence or divergence of
{zm}, and its limit or cluster points, are not affected by dropping or adding
a finite number of terms; similarly for cluster points of sets. For example, if
{zm} tends to p, so does {z,+1} (the same sequence without z1).

We leave the following two corollaries as exercises.

Corollary 4. If {z,,} splits into two subsequences, each tending to the same
limit p, then also x,, — p.

Corollary 5. If{x,,} converges in (S, p), it is bounded there. (See Problem 4.)

Of course, the convergence or divergence of {z,,} and its clustering depend
on the metric p and the space S. Our theory applies to any (S, p). In particu-
lar, it applies to E*, with the metric p’ of Problem 5 in §11. Recall that under
that metric, globes about +o0c0 have the form (a, +oo] and [—oo, a), respec-
tively. Thus limits and cluster points in (E*, p’) coincide with those defined
in Chapter 2, §13, (formulas (1)—(3) and Definition 2 there).* Our theory then
applies to infinite limits as well, and generalizes Chapter 2, §13.

Examples.
(a) Let
Ty =p for all m
(such sequences are called constant). As p € G, any G, contains all

ZTm. Thus z,, — p, by Definition 2. We see that each constant sequence
converges to the common value of its terms.

4 The second part of Chapter 2, §13, should be reviewed at this stage.
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(b) In our introductory example, we showed that

1
lim — =0 inE'
m—o0 1M
and that 0 is the (unique) cluster point of the set A = {1, , ...}. Here
0¢ A

(c) The sequence
0,1,0,1, ...

has two cluster points, 0 and 1, so it diverges by Corollary 1. (It “os-
cillates” from 0 to 1.) This shows that a bounded sequence may diverge.
The converse to Corollary 5 fails.

(d) The sequence
T =M

(or the set N of all naturals) has no cluster points in E*, for a globe of
radius < % (with any center p € E') contains at most one x,,, and hence
no p satisfies Definition 1 or 2.

*

However, {x,,} does cluster in (E*, p’), and even has a limit there,

namely +oo. (Prove it!)
(e) The set R of all rationals in E' clusters at each p € E'. Indeed, any
globe
Gole) = (p—=, p+e)
contains infinitely many rationals (see Chapter 2, §10, Theorem 3), and
this means that each p € E'! is a cluster point of R.
(f) The sequence
1 1
1,1,2, 2,3, =, ...
27773
has only one cluster point, 0, in E*; yet it diverges, being unbounded (see
Corollary 5). In (E*, p'), it has two cluster points, 0 and +oo. (Verify!)

1
(with xop = % and zop—1 = k)

(g) The lim and lim of any sequence in E* are cluster points (cf. Chapter 2,
§13, Theorem 2 and Problem 4). Thus in E*, all sequences cluster.

(h) Let
A=la,b], a<b.

Then A clusters exactly at all its points, for if p € A, then any globe
Gple)=(p—c,pte)

overlaps with A (even with (a, b)) and so contains infinitely many points
of A, as required. Even the endpoints a and b are cluster points of A (and
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of (a, b), (a, b], and [a, b)). On the other hand, no point outside A is a
cluster point. (Why?)

(i) In a discrete space (§11, Example (3)), no set can cluster, since small
globes, such as G, (3), are singletons. (Explain!)
Example (h) shows that a set A may equal the set of its cluster points (call
it A"); ie.,
A=A
Such sets are said to be perfect. Sometimes we have A C A’, A’ C A, A’ =S

(as in Example (e)), or A’ = (). We conclude with the following result.

Corollary 6. A set A C (S, p) clusters at p iff each globe G,, (about p) contains
at least one point of A other than p.°

Indeed, assume the latter. Then, in particular, each globe

contains some point of A other than p; call it z,,. We can make the x,, distinct
by choosing each time x,,41 closer to p than x, is. It easily follows that each
G)p(e) contains infinitely many points of A (the details are left to the reader),
as required. The converse is obvious.

Problems on Cluster Points and Convergence

1. Is the Archimedean property (see Chapter 2, §10) involved in the proof
that

2. Prove Note 2 and Corollaries 4 and 6.
3. Verify Example (c) in detail.®

4. Prove Corollary 5.
[Hint: Fix some Gp(e). Use Definition 2. If Gy () leaves out z1, x2, ...
larger radius r greater than

, Tp, take a

p(xm, p), m=1,2 ..., k
Then the enlarged globe Gy (r) contains all z,. Use Theorem 1 in §13.]
5. Show that x,, = m tends to 400 in E*. Does it contradict Corollary 57
6. Show that E' is a perfect set in E': E* = (E1). Is E' a perfect set in
E*? Why?

5 This corollary does not apply to cluster points of sequences.
6 In particular, show that there are no other cluster points.
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=T.

11.

12.

13.

14.
15.

16.

Review Problems 2 and 4 of Chapter 2, §13. (Do them if not done
before.)

. Verify Examples (f) and (h).
. Explain Example (i) in detail.
10.

In the following cases find the set A’ of all cluster points of A in E'. Is
A" C A7 Is A C A’? Ts A perfect? Give a precise proof.

(a) A consists of all points of the form
1 1
—and 1+ —, n=1,2,...;
n n

i.e., A is the sequence
{17 2, % 1%7
Does it converge?
(b) A is the set of all rationals in (0, 1). Answer: A’ = [0, 1]. Why?
(c) A is the union of the intervals

2n 2n+1

— —— |, n=0,1,2,....
2n+1" 2n+2

(d) A consists of all points of the form
27" and 27" +27"F ke N.

Can a sequence {x,,} C E* cluster at each p € E'?
[Hint: See Example (e).]
Prove that if
p=supAorp=infAin E
(0 # AC EY), and if p ¢ A, then p is a cluster point of A.
[Hint: Take Gp(e) = (p — €, p+¢€). Use Theorem 2 of Chapter 2, §§8-9.]
Prove that a set A C (S, p) clusters at p iff every neighborhood of p
(see §12, Definition 1) contains infinitely many points of A; similarly for

sequences. How about convergence? State it in terms of cubic neigh-
borhoods in E"™.

Discuss Example (h) for nondegenerate intervals in E™. Give a proof.

Prove that a set A # () clusters at p (p ¢ A) iff p(p, A) = 0. (See §13,
Note 3.)

Show that in E™ (*and in any other normed space # {0}), the cluster
points of any globe G(¢) form exactly the closed globe G(¢), and that
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Gp(e) is perfect. Is this true in other spaces? (Consider a discrete
space!)

[Hint: Given § € Gp(€) in E™, show that any Gg(d) overlaps with the line pg. Show
also that no point outside Gg(e) is a cluster point of Gp(e).]

17. (Cantor’s set.) Remove from [0, 1] the open middle third

53)

From the remaining closed intervals

o 5] auc [5.1]

remove their open middles,

(5 5) = (5 5)

Do the same with the remaining four closed intervals, and so on, ad
infinitum. The set P which remains after all these (infinitely many)
removals is called Cantor’s set.

Show that P is perfect.
[Hint: If p ¢ P, then either p is in one of the removed open intervals, or p ¢ [0, 1].
In both cases, p is no cluster point of P. (Why?) Thus no p outside P is a cluster
point.

On the other hand, if p € P, show that any Gp(e) contains infinitely many
endpoints of removed open intervals, all in P; thus p € P’. Deduce that P = P’\]

§15. Operations on Convergent Sequences’

Sequences in E' and C can be added and multiplied termwise; for example,
adding {z,,} and {y.,}, one obtains the sequence with general term ., + Y.
This leads to important theorems, valid also for E™ (*and other normed spaces).
Theorem 1 below states, roughly, that the limit of the sum {xm + ym} equals
the sum of limxy,, and limy,, (if these exist), and similarly for products and
quotients (when they are defined).?

Theorem 1. Let x,, — ¢, Ym — 7, and a,, — a in B or C (the complex
field). Then

(1) T £ Ym — qx 713

L This section (and the rest of this chapter) may be deferred until Chapter 4, §2. Then
Theorems 1 and 2 may be combined with the more general theorems of Chapter 4, §3. (It is
rather a matter of taste which to do first.)

2 Theorem 1 is known as “continuity of addition, multiplication, and division” (for reasons
to be clarified later). Note the restriction a # 0 in (iii).
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(ii) amzm — ag;
ey Tmy q .
(iil) — — = ifa#0 and for allm > 1, a,, # 0.
Um a
This also holds if the Ty, Ym, q, and r are vectors in E™ (*or in another normed
space), while the a,, and a are scalars for that space.

Proof. (i) By formula (2) of §14, we must show that
Ve>0) 3k) (Vm>k) |zmEzym —(¢gEr)<e.

Thus we fix an arbitrary € > 0 and look for a suitable k. Since z,, — ¢ and
Ym — 7, there are k' and k" such that

Vm>k) |zm—q|l<

N ™

and .
Vm > k") |ym —r| < 3

(as ¢ is arbitrary, we may as well replace it by %5) Then both inequalities hold
for m > k, k = max(k’, k”). Adding them, we obtain

Vm>k) |zm—q|l+|ym —7| <e.
Hence by the triangle law,
[T — q £ (ym — )| <&, Le, |Tm £ ym — (gE£7)| < e form >k,
as required. [

This proof of (i) applies to sequences of vectors as well, without any change.
The proof of (ii) and (iii) is sketched in Problems 1-4 below.

Note 1. By induction, parts (i) and (ii) hold for sums and products of any
finite (but fixed) number of suitable convergent sequences.

Note 2. The theorem does not apply to infinite limits ¢, r, a.

Note 3. The assumption a # 0 in Theorem 1(iii) is important. It ensures
not only that ¢/a is defined but also that at most finitely many a,, can vanish
(see Problem 3). Since we may safely drop a finite number of terms (see Note 2
in §14), we can achieve that no a, is 0, so that x,,/a,, is defined. It is with
this understanding that part (iii) of the theorem has been formulated. The
next two theorems are actually special cases of more general propositions to be
proved in Chapter 4, §83 and 5. Therefore, we only state them here, leaving
the proofs as exercises, with some hints provided.

Theorem 2 (componentwise convergence). We have T,,, — p in E™ (*C™) iff
each of the n components of T, tends to the corresponding component of p,
i, iff Tk — Prs k=1, 2, ..., n, in EY(C). (See Problem 8 for hints.)
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Theorem 3. Every monotone sequence {x,} C E* has a finite or infinite
limit, which equals sup,, T, if {x}1 and inf, x, if {x,}. If {z,} is monotone
and bounded in E', its limit is finite (by Corollary 1 of Chapter 2, §13).

The proof was requested in Problem 9 of Chapter 2, §13. See also Chapter 4,
85, Theorem 1. An important application is the following.

Example (the number e).

1\
Let x,, = (1 + 7> in E'. By the binomial theorem,
n

n(n—1 nn—1)(n—2
R
IR

e (- D0

=00 0500

If n is replaced by n + 1, all terms in this expansion increase, as does
their number. Thus z,, < Z41, i.e., {z,}T. Moreover, for n > 1,

2 2 ! 1<2 L !
<xy < +5+"'+m_ +§+"'+F
1\n—1
=2 11 =2 11_(§> 24+1=3
= +§< +"‘+2n_2>— +§f< +1=23.
2

Thus 2 < z, < 3 for n > 1. Hence 2 < sup,, x,, < 3; and by Theorem 3,
sup,, Tp, = limz,. This limit, denoted by e, plays an important role in
analysis. It can be shown that it is irrational, and (to within 10720)
e = 2.71828182845904523536 . ... In any case,

2<e= lim <1+%)"§3. (1)

n— 00

The following corollaries are left as exercises for the reader.
Corollary 1. Suppose limz,, = p and limy,, = q exist in E*.
(a) If p > q, then xp, > ym for all but finitely many m.
(b) If zp, < ym for infinitely many m, then p < gq; i.e., limz,, <limy,,.

This is known as passage to the limit in inequalities. Caution: The strict
inequalities x,, < y,, do not imply p < ¢ but only p < q. For example, let

1
Ty = — and y,,, = 0.
m
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Then
(Vm)  Zm > Ym;
yet lim x,,, = limy,, = 0.

Corollary 2. Let x,,, — p in E*, and let ¢ € E* (finite or not). Then the
following are true:

(a) Ifp > ¢ (respectively, p < ¢), we have T, > ¢ (xy, < ¢) for all but finitely
many m.

(b) If xy, < c (respectively, x,, > c) for infinitely many m, thenp < ¢ (p > c).

One can prove this from Corollary 1, with y,, = ¢ (or z,, = ¢) for all m.

Corollary 3 (rule of intermediate sequence). If z,, — p and y,, — p in E*
and if Ty < zm < Ym for all but finitely many m, then also z, — p.

Theorem 4 (continuity of the distance function). If
T — D and Ym — q 0 a metric space (S, p),
then
(T Yym) = plp, q) in E*.
Hint: Show that

lp(@m, Ym) — p(p, O] < p(@m, P) + p(q, Ym) — 0
by Theorem 1.

Problems on Limits of Sequences
See also Chapter 2, §13.
1. Prove that if ,, — 0 and if {a,,} is bounded in E' or C, then
ATy, — 0.

This is true also if the x,, are vectors and the a,, are scalars (or vice
versa).
[Hint: If {am} is bounded, there is a K € E' such that

Ym) |am| < K.
As xzpy — 0,
(Ve >0) (3k) Ym >k) |om| < % (why?),
SO |amxm| < €.]

2. Prove Theorem 1(ii).
[Hint: By Corollary 2(ii)(iii) in §14, we must show that amxm — aw — 0. Now

AmTm — aq = a7n(w7n - q) + (a’"L - a)q7
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where x, — g — 0 and ay, —a — 0 by Corollary 2 of §14. Hence by Problem 1,
am (Tm —q) — 0 and (am —a)g — 0

(treat g as a constant sequence and use Corollary 5 in §14). Now apply Theorem 1(i).]

. Prove that if a,, — a and @ # 0 in E! or C, then

(3e>0) (3k) (Ym > k) |am| > <.

(We briefly say that the a,, are bounded away from 0, for m > k.) Hence
prove the boundedness of {ﬁ} for m > k.

[Hint: For the first part, proceed as in the proof of Corollary 1 in §14, with ., = am,
p=a,and g =0.

For the second part, the inequalities

Vm > k) |i <!
am €

lead to the desired result.]

. Prove that if a,, — a # 0 in E! or C, then

1 1
U Q
Use this and Theorem 1(ii) to prove Theorem 1(iii), noting that

‘T'"L 1
T
a’h’L am

[Hint: Use Note 3 and Problem 3 to find that

1 1 1
(Vm > k) ‘777| = — |am —a] —,
am al  |al lam|
1 1
where { is bounded and — |ay —al — 0. (Why?)
am ‘al

1
Hence, by Problem 1, ‘

am

1
- —| — 0. Proceed.]
a

. Prove Corollaries 1 and 2 in two ways:

(i) Use Definition 2 of Chapter 2, §13 for Corollary 1(a), treating in-
finite limits separately; then prove (b) by assuming the opposite
and exhibiting a contradiction to (a).

(ii) Prove (b) first by using Corollary 2 and Theorem 3 of Chapter 2,
§13; then deduce (a) by contradiction.

6. Prove Corollary 3 in two ways (cf. Problem 5).
7. Prove Theorem 4 as suggested, and also without using Theorem 1(i).

8. Prove Theorem 2.

[Hint: If Z,,, — p, then

(Ve>0) (Fq) (Ym>q) &> [Tm —pl 2> |zmk —pr|- (Why?)
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8’.

Thus by definition k. — pg, k=1,2, ..., n.
Conversely, if so, use Theorem 1(i)(ii) to obtain

n n
> ke = > Prék,
k=1 k=1

with €}, as in Theorem 2 of §§1-3].

In Problem 8, prove the converse part from definitions. (Fix e > 0, etc.)

. Find the following limits in E', in two ways: (i) using Theorem 1,

justifying each step; (ii) using definitions only.

m+1 3m+2
(a) mgnoo m ( ) mgnoo om—1"
n(n —1)

(d) lim

(¢) lim Jm

n—oo 1 + n2’
[Solution of (a) by the first method: Treat

1 1
m+l_ ;.1
m m

as the sum of x,, = 1 (constant) and
1 .
Ym = — — 0 (proved in §14).
m

Thus by Theorem 1(i),

m+1
—— =Zm +Ym - 1+0=1.
m

Second method: Fix € > 0 and find k such that

1
(Ym > k) ’&
m

- 1’ < e.
. . . 1 . 1
Solving for m, show that this holds if m > —. Thus take an integer k > —, so
€ €
1
(Ym > k) |&—1|<5.
m
Caution: One cannot apply Theorem 1(iii) directly, treating (m + 1)/m as the
quotient of z,,, = m+1 and a,, = m, because z, and a,, diverge in EL. (Theorem 1

does not apply to infinite limits.) As a remedy, we first divide the numerator and
denominator by a suitable power of m (or n).]

10. Prove that

1
|@m| = +oo in E* iff — — 0

Tm

(zm #0).

11. Prove that if

Tm — +00 and Yy, — ¢ # —oo in B,
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then 15. For each integer m > 0, let
T + — +00.
m o m Spn = 17 4+ 2™ 4o g™,
This is written symbolically as
Prove by induction on m that

Do al lim o L
O also 1 = .
“—00 + ¢ = —00 if ¢ # 400.” n—oo (n + 1) m+1

“+o00+ ¢ = +o0 if g # —00.”

Prove similarly that [Hint: First prove that

m—1
_ m4l m 4+ 1 )
“(+00) - g=+ocif g > 07 (m +1)Smn = (n+1) ! ; ( i )S””
and by adding up the binomial expansions of (k+ 1)+, k=1, ..., n.]

“(400) - g=—-o0ifg<0.”
16. Prove that
[Hint: Treat the cases ¢ € E', g = 400, and ¢ = —oo separately. Use definitions.]

- N . o e am
12. Find the limit (or lim and lim) of the following sequences in E*: nlggo ¢" =+ocifg>1; nlglgo ¢" =0iflgl <1; nlggol =L
(a) T, =24 2n=2"nl [Hint: If ¢ > 1, put ¢ =1+ d, d > 0. By the binomial expansion,
(b) z,, = 5n — n?;

" =0+d)"=1+nd+---+d" >nd— +oo. (Why?)
If |¢| < 1, then |%| > 1; so lim‘ﬂn = +o00; use Problem 10.]

)
c) x, =2n* —n®-3n% - 1;
)
17. Prove that

Tp = (71)nn|7

(=n"

(
It

e) Ty = . . n . . n .
(e) on n! lim — =0if[g| > 1, and lim — = +o0if 0 <g<1.
n—oo n—oo
[Hint for (b): 2, = n(5 — n?); use Problem 11.] q q
13. Use Corollary 4 in §14, to find the following: [Hint: If |¢| > 1, use the binomial as in Problem 16 to obtain
. , :
(7]‘)17 n 1 2 n 2
. ) Snn—1)d% n>2 s0 — <« —2 __ .
(®) m > el = DA = 2% G < G
(b) 1 1—n+(=1)" Use Corollary 3 with
n—o0 2n+1 n 2
. . Tn =0, |zn|=+—, and yp = ————
14. Find the following. " e lq|™ "7 (n—1)d?
(a) lim 1+2+---+ n. to get |zn| — 0; hence also z, — 0 by Corollary 2(iii) of §14. In case 0 < g < 1, use
n— o0 n2 ’ 10']
n k2 1
(b) lim . 18. Let r, a € E*. Prove that
n—o0 n34+1’
k=1 lim n"a™™ =0if |a| > 1.
n 3 n—o00
(C) nh—g)lo Z nt -1 [Hint: If » > 1 and a > 1, use Problem 17 with ¢ = a'/" to get na~"/T — 0. As
[Hint: Compute S_, k™ using Problem 10 of Chapter 2, §§5-6.] 0<n"a™™ = (na™"")" < na"" 0,
. . . N . 2 . _
What is wrong with the following “solution” of (a): — — 0, — — 0, obtain n"a~" — 0.
n

etc.; hence the limit is 07 If r <1, then n"a™™ < na~™ — 0. What if a < —17]
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19. (Geometric series.) Prove that if |g| < 1, then

lim (¢ +aq+---+aqg" ') =

n—00 1— q :
[Hint:
al+q+ - +q" ) =a——,
where ¢" — 0, by Problem 16.]
20. Let 0 < ¢ < +o00. Prove that

lim ¢/c=1.
n—oo
[Hint: If ¢ > 1, put ¥c=1+dy, dn > 0. Expand ¢ = (1 4+ dn)™ to show that
0<dn <=0,
n

so dn — 0 by Corollary 3.]
21. Investigate the following sequences for monotonicity, lim, lim, and lim.
(In each case, find suitable formula, or formulas, for the general term.)
(a) 2,5, 10,17, 26, ...;
) 2, —2,2, -2, ...;
(c) 2, -2, —67 -10, —14, ...;
)y 1,1, -1, -1,1,1, =1, =1, ...;
)

1
3-2 5-10 6-14

6
T’ 9 716 T
22. Do Problem 21 for the following sequences.
1 -8 27 —64 125
AN WA

2- 556 6-7

2 58 13
p) 2. -2 2 _2°
()97 9’ 97 97 b
@2 24 46 6

37577 97117 137777
(d) 1,3,51,1,3,5 2 1,3,5 3, ...,1,3,5 n,...;
(¢) 0.9, 0.99, 0.999,
(f)+ool+oo?+oo3

1 1

—00, 1, — — e, — —,

(g) m7 3 (X>7 27 ) m7 n7

23. Do Problem 20 as follows: If ¢ > 1, {{/c}{. (Why?) By Theorem 3,

p= lim {/c exists and
n— oo
Vn) 1<p< e, ie.,1<p" <ec.
( P ,le, 1<p
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By Problem 16, p cannot be > 1, so p = 1.
In case 0 < ¢ < 1, consider {/1/c and use Theorem 1(iii).

24. Prove the existence of lim z,, and find it when z,, is defined inductively
by

(1) 21 =V2, 2pt1 = V220 ;
(i) 21 =¢> 0, Tpy1 = VA + 1y ;
T

T c
7"1; hence deduce that lim -~ = 0.
n

(111) r1=c>0, Tpt1 = m

[Hint: Show that the sequences are monotone and bounded in E' (Theorem 3).
For example, in (ii) induction yields
Tp < Tpg1 < c+ 1. (Verify!)

Thus limz, = limz,41 = p exists. To find p, square the equation

Tn+1 = V2 +xn  (given)

and use Theorem 1 to get
p?=c2+p. (Why?)

Solving for p (noting that p > 0), obtain
p=limz, = %(1 + V42 +1);
similarly in cases (i) and (iii).]
25. Find limx,, in B or E* (if any), given that
(a) z,=(n+1)7—-n?, 0<g<1;
(b) zn = Vi (Vn+1—+/n);
1 .
n2+k’
(d) z, =n(n+1)c", with |¢| < 1;

nl m
(e) zp = 1/2(127 with ap > 0;
k=1

_3:5-7---(2n+1)
= s G

(c) xp =

5-
5.
[Hints:

(a) 0<xn=nq[(l+%)q—1] <nQ(1+%—1) =n9~1 5 0. (Why?)

1 1 1
b) on=———— where 1 <4{/14+— <1+ = —1,s0zn, — 1. (Why?
(b) @n 1+I+1/n Vi'n n n =g (Why?)

(c¢) Verify that
n n

<zn < s
vVn24+n nf\/n2+1
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so £n — 1 by Corollary 3. (Give a proof.)
(d) See Problems 17 and 18.
(e) Let a = max(ai, ..., am). Prove that a < z,, < a /m. Use Problem 20.]
The following are some harder but useful problems of theoretical importance.
The explicit hints should make them not too hard.
26. Let {x,} € E'. Prove that if z,, — p in E!, then also

n

.1
Jn o D mi=

=1

(i.e., p is also the limit of the sequence of the arithmetic means of the

[Solution: Fix € > 0. Then

(3k) (Yn>k) p—z<xn <p+2

Adding n — k inequalities, get
€ - €
(n—k)(p— Z) < i:zk;lxi < (n—k)(p+ Z)

With k so fixed, we thus have

n—k € 1 n—k € .
(Vn>k) T(p71><ﬁ(Ik+1+'“+zn)<T<p+Z). @)
Here, with k and ¢ fixed,
n—k € €
dm (o= ) =p -5
Hence, asp—%5<p—ie, there is k’ such that
Vn>K) ff<"_k( -9
Pro s Py
Similarly,
—k € €
Iy (> k) T (p+Z) <p+Z
@R (n>K) = (p+2) <pt g
Combining this with (i), we have, for K/ = max(k, k', k"),
, 15 1 € ..
(Vn > K') P*§<;(l’k+1+'“+1n)<P+§- (i)

Now with k fixed,

1
lim —(z1+x2 4 +x1) =0.

n—o0 n

Hence

—_

($1+---+.7)k)< .

@K (Yn>K") - % <

D | ™

n
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Let K = max(K’, K"). Then combining with (ii), we have
1
Vn>K) p—e<—(z1+--+an) <p+e,
n

and the result follows.]

26’ Show that the result of Problem 26 holds also for infinite limits p =
+oo € E*.

27. Prove that if z,, — p in E* (z, > 0), then
lim ¢Yxi29-- -z, =p.
n—o0

[Hint: Let first 0 < p < 4o00. Given ¢ > 0, use density to fix > 1 so close to 1 that

p75<§<p<p6<p+s.
As zp, — p,
P 4
(3k) (Yn>k) 7 <o <pVe.
Continue as in Problem 26, replacing ¢ by §, and multiplication by addition (also
subtraction by division, etc., as shown above).? Find a similar solution for the case
p = +o00. Note the result of Problem 20.]

28. Disprove by counterexamples the converse implications in Problems 26
and 27. For example, consider the sequences

1, -1,1,-1,...
and

! 2 ! 2 ! 2

27 727 727 b

29. Prove the following.
(i) If {z,} C E! and nli_)rgo(:rn_‘_l — 2,) =p in E*, then $n_n S

(i) If {x,,} C B! (z,, > 0) and if % — p € E*, then /z,, — p.

n
Disprove the converse statements by counterexamples.
[Hint: For (i), let y1 = 21 and yn = &n — Tn—1,n =2, 3, .... Then y, — p and

1 — Tn
=3 =,
n n
so Problems 26 and 26’ apply.
For (ii), use Problem 27. See Problem 28 for examples.]

30. From Problem 29 deduce that
(a) lim ¥n! = +oo;
n— 00

3 Another solution (reducing all to Problem 26) will be obtained by applying logarithms.
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=32.
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. n—+1
(b) lim =0;
n—oo nl
(¢) lim {/— =¢;
n—o0 n!
R 1
(d) lim —+Vn!=-;
n—oo N €
(e) lim /n=1.
n—oo
Prove that
. a-+2b
lim z, = ,
n—00 3
given
1
To=a, v1 =0, and T40 = i(xn + Zpy1).
[Hint: Show that the differences dp, = xn, — 1 form a geometric sequence, with
ratio ¢ = —%, and zn = a+ > p_; di. Then use the result of Problem 19.]

For any sequence {x,} C E!, prove that

. 1 — 1 —
limz,, < hﬁﬁ Zm, < hmﬁ le < limx,.
i=1 =1
Hence find a new solution of Problems 26 and 26'.
[Proof for lim: Fix any k € N. Put

k

c= z; and b = sup x;.
i=1 izk

Verify that
(Vn>k) zp41+Tppo+ -+ < (n— k)b

Add ¢ on both sides and divide by n to get

n—=k

1 n
Wn>k) —3a <S4 b. (i*)
n n
—k
Now fix any ¢ > 0, and first let [b] < +o0. As S 5 0and 2="p b, there is
ng > k such that n n
<

(Vn > nyg) andL_kb<b+f.
n 2

c.f
n 2
Thus by (i*),

1 n
Vn > - i < b.
(Vn > ng) n;zz*€+

This clearly holds also if b = supz; = +o00. Hence also
i>k

1 n
sup — E x; < €+ supzx;.
n>ng ™7 i>k
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=33.

34.

35.

36.

As k and e were arbitrary, we may let first k — 400, then € — 0, to obtain

n
lim — E z; < lim supz; = limz,.
ni= k—o0 i>k

(Explain!)]

Given {z,,} € E*, z,, > 0, prove that

limz, <lim {/z129- -z, and lim /x129 -z, <limz,.

Hence obtain a new solution for Problem 27.
[Hint: Proceed as suggested in Problem 32, replacing addition by multiplication.]

Given x,, ¥y, € E* (y, > 0), with
n
T, - p€EFE” andbn=2yi%+oo,
i=1

prove that

n .
n—00 i—1Yi

Note that Problem 26 is a special case of Problem 34 (take all y,, = 1).

[Hint for a finite p: Proceed as in Problem 26. However, before adding the n — k
inequalities, multiply by y; and obtain

n n n
€ €
(pfi) S ui< > mawi< (p+ Z> 3w
i=k+1 i=k+1 i=k+1
n
Put b, = Z y; and show that
i=1
1 & 1<
- Z Ty =1— ™ Zziyiv
N j=k+1 noi=1
where b, — 400 (by assumption), so
1k

— z;y; — 0 (for a fixed k).
b"l

i=1
Proceed. Find a proof for p = +00.]

Do Problem 34 by considering lim and lim as in Problem 32.
. c c n
[Hint: Replace o by b where b, = Z:lyl — +00.]
Prove that if u,, v, € E*, with {v,}1 (strictly) and v,, — 400, and if
Upn — Un—1

lim Yn " Un1
n—=00 Up — Un—1

(p € E"),

then also
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37.

38.

39.

40.
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[Hint: The result of Problem 34, with
Un — Un—1
Ty = — and Yp = Un — Up—1-
Un — Un—1
leads to the final result.]
From Problem 36 obtain a new solution for Problem 15. Also prove that

Smn 1 1

nlgl;o(nm*l B m + 1) )

[Hint: For the first part, put
Un = Smn and v, = n™H1

For the second, put

Uup = (M4 1)Smn —n™ ! and v, = n™(m + 1).]
Let 0 < a < b < 400. Define inductively: a; = vab and by = %(a +b);

1
anby and b1 = =(an +b,), n=1,2,....

an+1 = 9

Then ap4+1 < bp4q for

1 1
b1 — a1 = 5(% +bn) = Vanb, = 5(\/ by — Vag)? > 0.

Deduce that
a<ap <apt1 <bpt1 <bp < b,

so {a,}T and {b,}|. By Theorem 3, a, — p and b, — ¢ for some
p, ¢ € E'. Prove that p = ¢, i.e.,

lim a,, = limb,,.

(This is Gauss’s arithmetic-geometric mean of a and b.)
[Hint: Take limits of both sides in bp+1 = 3(an + bn) to get ¢ = 2(p +q).]

Let 0 < a < bin E'. Define inductively a; = a, b; = b,
2a,b 1
py1 = anign7 and b1 = i(an—i—bn), n=1,2....
Prove that

Vab= lim an, = lim b,.
n—o0

n—o0
[Hint: Proceed as in Problem 38.]

Prove the continuity of dot multiplication, namely, if

Zp — qand g, — 7 in E"

§15. Operations on Convergent Sequences 135

(*or in another Euclidean space; see §9), then

o Gn =T

§16. More on Cluster Points and Closed Sets. Density

I. The notions of cluster point and closed set (§§12, 14) can be characterized
in terms of convergent sequences. We start with cluster points.

Theorem 1.

(i) A sequence {x,,} C (S, p) clusters at a point p € S iff it has a subsequence
{Zm, } converging to p.*

(i1) A set A C (S, p) clusters at p € S iff p is the limit of some sequence {x,}
of points of A other than p; if so, the terms x, can be made distinct.

Proof. (i) If p = lim,—00 Zm,,, then by definition each globe about p contains
all but finitely many z,,,, hence infinitely many x,,. Thus p is a cluster point.
Conversely, if so, consider in particular the globes

Gp(f), n=1,2,....

By assumption, Gp(1) contains some 2,,. Thus fix

T, € Gp(1).
Next, choose a term

1 .
Ty € Gp<5> with ms > my.

(Such terms eist since Gy (%) contains infinitely many x,,.) Next, fix

1

Ty € Gp<§>, with mg > ma > my,

and so on.
Thus, step by step (inductively), select a sequence of subscripts

mp <mg < - <My < ---

that determines a subsequence (see Chapter 1, §8) such that
Iy . 1
(Vn) xm, € Gp(5>, ie, p(Tm,, p) < - -0,

I Therefore, cluster points of {z,,} are also called subsequential limits.
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whence p(zp,,, p) — 0, or z,,, — p. (Why?) Thus we have found a subse-
quence Z,,, — p, and assertion (i) is proved.

Assertion (ii) is proved quite similarly—proceed as in the proof of Corollary 6
in §14; the inequalities m; < mg < --- are not needed here. [

Examples.

(a) Recall that the set R of all rationals clusters at each p € E' (§14,
Example (e)). Thus by Theorem 1(ii), each real p is the limit of a se-
quence of rationals. See also Problem 6 of §12 for p in E™.

(b) The sequence
0,1,0,1, ...

has two convergent subsequences,
To, =1 — 1 and x9,—1 =0 — 0.

Thus by Theorem 1(i), it clusters at 0 and 1.
Interpret Example (f) and Problem 10(a) in §14 similarly.

As we know, even infinite sets may have no cluster points (take N in E!).
However, a bounded infinite set or sequence in E™ (*or C™) must cluster. This
important theorem (due to Bolzano and Weierstrass) is proved next.

Theorem 2 (Bolzano—Weierstrass).

(i) Fach bounded infinite set or sequence A in E™ (*or C™) has at least one
cluster point p there (possibly outside A).

(ii) Thus each bounded sequence in E™ (*C™) has a convergent subsequence.
Proof. Take first a bounded sequence {z,,} C [a, b] in E*. Let
p = lim z,,.
By Theorem 2(i) of Chapter 2, §13, {z,,} clusters at p. Moreover, as
a<zn,<b,

we have
a<infz, <p<supz, <b

by Corollary 1 of Chapter 2, §13. Thus
pe€la, b CE,

and so {z;, } clusters in EL.
Assertion (ii) now follows—for E'—by Theorem 1(i) above.
Next, take

{Zm} g E27 2171 = ('Z'm7 ym)v l’m,, ym 6 El'
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If {Z,,} is bounded, all z,, are in some square [a, b]. (Why?) Let
a = (al, ag) and B = (bl, b2)

Then
a1 < Ty < b1 and as < Yy, < bo in EL.

Thus by the first part of the proof, {z,,} has a convergent subsequence
Tym, — p1 for some py € [aq, by].

For simplicity, we henceforth write z,, for @, , Ym for ym,, and z,, for z,, .
Thus Z,, = (T, Ym) is now a subsequence, with x,, — p1, and az < Y, < bo,
as before.

We now reapply this process to {ym} and obtain a subsubsequence

Ym; — Do for some ps € [ag, ba].

The corresponding terms x,,, still tend to p; by Corollary 3 of §14. Thus we
have a subsequence

gmi = (xmm ym,i) — (p17 p2) in E2

by Theorem 2 in §15. Hence p = (p1, p2) is a cluster point of {Z,,}. Note that
P € [a, b] (see above). This proves the theorem for sequences in E? (hence in
).

The proof for E™ is similar; one only has to take subsequences n times.
(*The same applies to C™ with real components replaced by complex ones.)

Now take a bounded infinite set A C E™ (*C™). Select from it an infinite
sequence {z,,} of distinct points (see Chapter 1, §9, Problem 5). By what was
shown above, {Z,} clusters at some point p, so each Gp contains infinitely
many distinct points z,, € A. Thus by definition, A clusters at p. O

Note 1. We have also proved that if {Z,} C [a, ] C E", then {Z,} has a
cluster point in [a, b]. (This applies to closed intervals only.)

Note 2. The theorem may fail in spaces other than E™ (*C™). For example,
in a discrete space, all sets are bounded, but no set can cluster.

II. Cluster points are closely related to the following notion.
Definition 1.

The closure of a set A C (S, p), denoted A, is the union of A and the set
of all cluster points of A (call it A’). Thus A= AU A’.

Theorem 3. We have p € A in (S, p) iff each globe G, (8) about p meets A,
i.e.,

(V6>0) ANG,(0) #0.
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Equivalently, p € A iff

p= lim z, for some {z,} C A.
n—o0

The proof is as in Corollary 6 of §14 and Theorem 1. (Here, however, the
Zn, need not be distinct or different from p.) The details are left to the reader.
This also yields the following new characterization of closed sets (cf. §12).

Theorem 4. A set A C (S, p) is closed iff one of the following conditions
holds.

(i) A contains all its cluster points (or has none); i.e., A D A’
(i) A=A
(ili) A contains the limit of each convergent sequence {x,} C A (if any).?
Proof. Parts (i) and (ii) are equivalent since
ADA = A=AUA =A (Explain!)

Now let A be closed. If p ¢ A, then p € —A; therefore, by Definition 3 in
§12, some G), fails to meet A (G,NA = 0). Hence no p € —A is a cluster point,
or the limit of a sequence {x,} C A. (This would contradict Definitions 1 and
2 of §14.) Consequently, all such cluster points and limits must be in A, as
claimed.

Conversely, suppose A is not closed, so —A is not open. Then —A has a

noninterior point p; i.e., p € —A but no G, is entirely in —A. This means that
each G, meets A. Thus

p € A (by Theorem 3),
and

p= lim z, for some {z,} C A (by the same theorem),
n—o0

even though p ¢ A (for p € —A).
We see that (iii) and (ii), hence also (i), fail if A is not closed and hold if A
is closed. (See the first part of the proof.) Thus the theorem is proved. O

The following corollaries are left as exercises (see Problems 6-9).
Corollary 1. 0 = 0.
Corollary 2. ACB = ACB.
Corollary 3. A is always a closed set D A.

2 Property (iii) is often called the sequential closedness of A.
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Corollary 4. AU B = AU B (the closure of AU B equals the union of A and
B).

III. As we know, the rationals are dense in E' (Theorem 3 of Chapter 2,
§10). This means that every globe G,(6) = (p — 6, p + J) in E' contains
rationals. Similarly (see Problem 6 in §12), the set R™ of all rational points is
dense in E™. We now generalize this idea for arbitrary sets in a metric space

(S, p)-
Definition 2.

Given A C B C (S, p), we say that A is dense in B iff each globe G,
p € B, meets A. By Theorem 3, this means that each p € B is in A; i.e.,

p= lim z, for some {x,} C A.
n— 00
Equivalently, A C B C A3
Summing up, we have the following:

A is open iff A = A°.
A is closed iff A= A; equivalently, iff AD A'.
A is dense in B iff AC B C A.
A is perfect iff A= A4

Problems on Cluster Points, Closed Sets, and Density

. Complete the proof of Theorem 1(ii).

. Prove that R = E' and R" = E™ (Example (a)).

. Prove Theorem 2 for E3. Prove it for E" (*and C™) by induction on n.
. Verify Note 2.

. Prove Theorem 3.

. Prove Corollaries 1 and 2.

. Prove that (AU B) = A’U B'.
[Hint: Show by contradiction that p ¢ (A’ U B’) excludes p € (AU B)’. Hence
(AU B)' C A’U B’. Then show that A’ C (AU B)’, etc.]
8. From Problem 7, deduce that A U B is closed if A and B are. Then
prove Corollary 4. By induction, extend both assertions to any finite
number of sets.

N S Ot s W N =

31f B is closed (e.g., if B = S) this means that A = B. Why?
4 See §14, the remarks following Example (i).
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10.

11.

12.

13.
14.

15.

16.

17.
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. From Theorem 4, prove that if the sets A; (¢ € I) are closed, so is

ﬂiel Aj.
Prove Corollary 3 from Theorem 3. Deduce that A = A and prove
footnote 3.
[Hint: Consider Figure 7 and Example (1) in §12 when using Theorem 3 (twice).]
Prove that A is contained in any closed superset of A and is the inter-
section of all such supersets.
[Hint: Use Corollaries 2 and 3.]
(i) Prove that a bounded sequence {Z,,} C E™ (*C™) converges to p
iff p is its only cluster point.
(ii) Disprove it for
(a) unbounded {Z,,} and
(b) other spaces.

[Hint: For (i), if &, — P fails, some Gp leaves out infinitely many Z,,. These Zm,
form a bounded subsequence that, by Theorem 2, clusters at some § # p. (Why?)
Thus g is another cluster point (contradiction!).

For (ii), consider (a) Example (f) in §14 and (b) Problem 10 in §14, with (0, 2]
as a subspace of E'.]

In each case of Problem 10 in §14, find A. Is A closed? (Use Theorem 4.)

Prove that if {b,} € B C Ain (S, p), there is a sequence {a,} C A such
that p(an, by) — 0. Hence a,, — p iff b, — p.
[Hint: Choose an € Gy, (1/n).]

We have, by definition,
pe AYiff (30 >0) G,(5) C A;
hence
p ¢ AViff (V6 > 0) G,(8) € A, ie., G,(0) — A#0.

(See Chapter 1, §§1-3.) Find such quantifier formulas for p € A, p ¢ A,
peA andp ¢ A
[Hint: Use Corollary 6 in §14, and Theorem 3 in §16.]
Use Problem 15 to prove that

(i) —(4) = (-4)" and

(i) —(A%) = —A.
Show that o

AN (—A) =bd A (boundary of A);

cf. §12, Problem 18. Hence prove again that A is closed iff A O bd A.
[Hint: Use Theorem 4 and Problem 16 above.]
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*18. A set A is said to be nowhere dense in (S, p) iff (A)° = 0. Show that
Cantor’s set P (§14, Problem 17) is nowhere dense.
[Hint: P is closed, so P = P.]

*19. Give another proof of Theorem 2 for E*.
[Hint: Let A C [a, b]. Put

Q =A{z € [a, b] | x exceeds infinitely many points (or terms) of A}.

Show that @ is bounded and nonempty, so it has a glb, say, p = inf A. Show that A
clusters at p.]

*20. For any set A C (S, p) define
Gale) = | Ga(o).
z€A

Prove that
-~ 1
A= Ql Ga(=)-
*21. Prove that
A={zeS|p(x, A) =0}; see §13, Note 3.
Hence deduce that a set A in (S, p) is closed iff
VxesS) plz, A)=0= 2z € A

§17. Cauchy Sequences. Completeness

A convergent sequence is characterized by the fact that its terms x,, become
(and stay) arbitrarily close to its limit, as m — 4o00. Due to this, however, they
also get close to each other; in fact, p(xy,, ©,) can be made arbitrarily small
for sufficiently large m and n. It is natural to ask whether the latter property,
in turn, implies the existence of a limit. This problem was first studied by
Augustin-Louis Cauchy (1789-1857). Thus we shall call such sequences Cauchy
sequences. More precisely, we formulate the following.

Definition 1.

A sequence {x,,} C (S, p) is called a Cauchy sequence (we briefly say
that “{z,,} is Cauchy”) iff, given any € > 0 (no matter how small), we
have p(@y,, ©,) < € for all but finitely many m and n. In symbols,

Ve>0) (3k) Vm,n>k) p(xm, v,) <e. (1)
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Observe that here we only deal with terms x,,, ©,, not with any other point.
The limit (if any) is not involved, and we do not have to know it in advance.
We shall now study the relationship between property (1) and convergence.

Theorem 1. Every convergent sequence {x,,} C (S, p) is Cauchy.

Proof. Let z,, — p. Then given € > 0, there is a k such that
Vm>k) plxm, p) < g

As this holds for any m > k, it also holds for any other term x,, with n > k.
Thus R
(Fm, > ) plom, p) < 5 and plp, 2,) <

N M

Adding and using the triangle inequality, we get

p(xma xn) S p(x'nu p) + p(pa ZL'n) < 67
and (1) is proved. O

Theorem 2. Every Cauchy sequence {x,,} C (S, p) is bounded.

Proof. We must show that all z,, are in some globe. First we try an arbitrary
radius e. Then by (1), there is k such that p(z,, ©,) < € for m, n > k. Fix
some n > k. Then

(Vm > k) p(@m, z,) <e, Le., Ty € Gy, (€).

Thus the globe G, (¢) contains all z,, except possibly the k terms 1, ..., zj.
To include them as well, we only have to take a larger radius r, greater than
(T, Ty), m =1, ..., k. Then all z,, are in the enlarged globe G, (r). O

Note 1. In E', under the standard metric, only sequences with finite limits
are regarded as convergent. If z, — +oo, then {z,} is not even a Cauchy
sequence in E' (in view of Theorem 2); but in E*, under a suitable metric
(cf. Problem 5 in §11), it is convergent (hence also Cauchy and bounded).

Theorem 3. If a Cauchy sequence {x,,} clusters at a point p, then x,, — p.
Proof. We want to show that x,, — p, i.e., that

(Ve>0) (3k) (Vm>k) p(xm,, p) <e.

Thus we fix € > 0 and look for a suitable k. Now as {z,,} is Cauchy, there is
a k such that R
Vm,n>k) p(@m, xn) < 7

Also, as p is a cluster point, the globe Gy,(§) contains infinitely many x,, so we
can fix one with n > k (k as above). Then p(z,, p) < 5 and, as noted above,

2
also p(xm, x,) < 5 for m > k. Hence

Vm>k) p(@p, x,)+ ple,, p) <e,
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implying p(zm, p) < p(Tm, Tn) + p(zn, p) < €, as required. O

Note 2. It follows that a Cauchy sequence can have at most one cluster
point p, for p is also its limit and hence unique; see §14, Corollary 1.

These theorems show that Cauchy sequences behave very much like conver-
gent ones. Indeed, our next theorem (a famous result by Cauchy) shows that,
in E™ (*and C™) the two kinds of sequences coincide.

Theorem 4 (Cauchy’s convergence criterion). A sequence {Z,} in E™ (*or
C™) converges if and only if it is a Cauchy sequence.

Proof. If {z,,} converges, it is Cauchy by Theorem 1.

Conversely, let {z,,} be a Cauchy sequence. Then by Theorem 2, it is
bounded. Hence by the Bolzano—Weierstrass theorem (Theorem 2 of §16), it
has a cluster point p. Thus by Theorem 3 above, it converges to p, and all is
proved. [

Unfortunately, this theorem (along with the Bolzano—Weierstrass theorem
used in its proof) does not hold in all metric spaces. It even fails in some
subspaces of E'. For example, we have

1
Tm = — — 0in EL.
m

By Theorem 1, this sequence, being convergent, is also a Cauchy sequence.
Moreover, it still preserves (1) even if we remove the point 0 from E! since
the distances p(z,, ©,) remain the same. However, in the resulting subspace
S = E' — {0}, the sequence no longer converges because its limit (and unique
cluster point) 0 has disappeared, leaving a “gap” in its place. Thus we have a
Cauchy sequence in S, without a limit or cluster points, so Theorem 4 fails in
S (along with the Bolzano-Weierstrass theorem).

Quite similarly, both theorems fail in (0, 1) (but not in [0, 1]) as a subspace
of E'. By analogy to incomplete ordered fields, it is natural to say that S
is “incomplete” because of the missing cluster point 0, and call a space (or
subspace) “complete” if it has no such “gaps,” i.e., if Theorem 4 holds in it.
Thus we define as follows.

Definition 2.
A metric space (or subspace) (S, p) is said to be complete iff every Cauchy
sequence in S converges to some point p in S.
Similarly, a set A C (S, p) is called complete iff each Cauchy sequence
{zm} C A converges to some point p in A, i.e., iff (4, p) is complete as a
metric subspace of (S, p).

In particular, E™ (*and C™) are complete by Theorem 4. The sets (0, 1)
and E! — {0} are incomplete in £, but [0, 1] is complete. Indeed, we have the
following theorem.
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*Theorem 5.
(i) Every closed set in a complete space is complete itself.

(ii) Ewvery complete set A C (S, p) is necessarily closed.*

Proof. (i) Let A be a closed set in a complete space (S, p). We have to show
that Theorem 4 holds in A (as it does in S). Thus we fix any Cauchy sequence
{zm} C A and prove that it converges to some p in A.

Now, since S is complete, the Cauchy sequence {z,,} has a limit p in S. As
A is closed, however, that limit must be in A by Theorem 4 in §16. Thus (i)
is proved.

(ii) Now let A be complete in a metric space (S, p). To prove that A is
closed, we again use Theorem 4 of §16. Thus we fix any convergent sequence
{zm} C A, x,, — p € S, and show that p must be in A.

Now, since {z,,} converges in S, it is a Cauchy sequence, in S as well as
in A. Thus by the assumed completeness of A, it has a limit ¢ in A. Then,
however, the uniqueness of lim z,, (in S) implies that p = g € A, so that p is
in A, indeed. [ e

Problems on Cauchy Sequences

1. Without using Theorem 4, prove that if {z,} and {y,} are Cauchy
sequences in E! (or C), so also are

(ii) {xnyn}

2. Prove that if {z,,,} and {y,,} are Cauchy sequences in (S, p), then the
sequence of distances

(i) {xn + yn} and

(@, Ym), m=1,2,...,

converges in E*.
[Hint: Show that this sequence is Cauchy in E'; then use Theorem 4.]

3. Prove that a sequence {z,,} is Cauchy in (S, p) iff
(Ve>0) (3k) (Vm>k) plam, x,) <e.
4. Two sequences {z,,} and {y,,} are called concurrent iff

Notation: {z,,} = {ym}. Prove the following.

(i) If one of them is Cauchy or convergent, so is the other, and
lim z,,, = limy,, (if it exists).

L Here (S, p) itself need not be complete.
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5.

*5//

(ii) If any two sequences converge to the same limit, they are concur-
rent.

. Show that if {x,,} and {y,,} are Cauchy sequences in (5, p), then

lm p(Tum, Ym)
m— 00

does not change if {z,,} or {yn} is replaced by a concurrent sequence
(see Problems 4 and 2).
Call

Lm p(zm, Ym)

m—o0
the “distance”

p{zm}, {ym})

between {x,,} and {y,}. Prove that such “distances” satisfy all met-
ric axioms, except that p({z..}, {ym}) may be 0 even for different se-
quences. (When?)

Also, show that if

(Vm) xp, =a and y,, = b (constant),

then p({l‘m}7 {ym}) = p(a’7 b)

Continuing Problems 4 and 5, show that the concurrence relation (=)
is reflexive, symmetric, and transitive (Chapter 1, §§4-7), i.e., an equiv-
alence relation. That is, given {x,,}, {ym} in S, prove that

(a) {xm} = {zm} (reflexivity);
(b) if {xm} ~ {ym} then {ym} ~ {2} (symmetry);

(¢) if {zm} =~ {ym} and {ym} =~ {zm}, then {z,,} = {z,,} (transitiv-
ity).

. From Problem 4 deduce that the set of all sequences in (S, p) splits into

disjoint equivalence classes (as defined in Chapter 1, §§4-7) under the
relation of concurrence (/). Show that all sequences of one and the
same class either converge to the same limit or have no limit at all, and
either none of them is Cauchy or all are Cauchy.

. Give examples of incomplete metric spaces possessing complete sub-

spaces.

. Prove that if a sequence {z,,} C (S, p) is Cauchy then it has a subse-

quence {Z,, } such that

(VE)  p(Tmy, Tmyy) <275

. Show that every discrete space (S, p) is complete.
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*9.

*10.

*11.

*12.
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Let C be the set of all Cauchy sequences in (S, p); we denote them by
capitals, e.g., X = {x,,}. Let

X*={yeC|Y~X}

denote the equivalence class of X under concurrence, ~ (see Problems 2,
5, and 5”). We define

a(X*,Y") = P({Im}a {ym}) = n}ijnoop(mmu Ym)-

By Problem 5, this is wnambiguous, for p({zm}, {ym}) does not de-
pend on the particular choice of {z,,} € X* and {y,,} € Y*; and
lim p(Zy,, ym) exists by Problem 2.

Show that o is a metric for the set of all equivalence classes X*
(X € C); call this set C*.

Continuing Problem 9, let z* denote the equivalence class of the se-
quence with all terms equal to x; let C’ be the set of all such “constant”
equivalence classes (it is a subset of C*).

Show that C’ is dense in (C*, o), i.e., C" = C* under the metric o.
(See §16, Definition 2.)
[Hint: Fix any “point” X* € C* and any globe G(X*;¢) about X* in (C*, o). We
must show that it contains some z* € C".
By definition, X* is the equivalence class of some Cauchy sequence X = {xm, } in
(S, p), so
(Fk) (Ym, n>k) p(em, zn) < %

Fix some © = xp, (n > k) and consider the equivalence class z* of the sequence
{z,z, ..., z, ... }; thus, z* € C’, and

o(X*, z") = lim p(zm, z) < (Why?)
m—0o0

€
5
Thus z* € G(X*, €), as required.]

Two metric spaces (S, p) and (7', o) are said to be isometric iff there is
amap f: S e T such that
onto

(Va,yeS) plx,y) =a(f(z), fy))

Show that the spaces (S, p) and (C’, o) of Problem 10 are isometric.
Note that it is customary not to distinguish between two isometric
spaces, treating each of them as just an “isometric copy” of the other.
Indeed, distances in each of them are alike.

[Hint: Define f(z) = z*.]

Continuing Problems 9 to 11, show that the space (C*, o) is complete.
Thus prove that for every metric space (S, p), there is a complete metric
space (C*, o) containing an isometric copy C' of S, with C' dense in
C*. C* is called a completion of (S, p).
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[Hint: Take a Cauchy sequence {X}} in (C*, o). By Problem 10, each globe
G(X; %) contains some z}, € C’, where z%, is the equivalence class of

{Im’ Tmy -y Tm, }1
and o(X},, ) < % — 0. Thus by Problem 4, {z},} is Cauchy in (C*, o), as is

{X?* }. Deduce that X = {z;} € C, and X* = mli_r}noo X}, in (C*, 0).]



Chapter 4
Function Limits and Continuity

§1. Basic Definitions

We shall now consider functions whose domains and ranges are sets in some
fixed (but otherwise arbitrary) metric spaces (S, p) and (T, p’), respectively.
We write

fr A= (T, p)

for a function f with Dy = A C (S, p) and D} C (T, p’). S is called the
domain space, and T the range space, of f.

I. Given such a function, we often have to investigate its “local behavior”
near some point p € S. In particular, if p € A = Dy (so that f(p) is defined) we
may ask: Is it possible to make the function values f(z) as near as we like (“c-
near”) to f(p) by keeping x sufficiently close (“d-close”) to p, i.e., inside some
sufficiently small globe G,,(6)?1 If this is the case, we say that f is continuous
at p. More precisely, we formulate the following definition.

Definition 1.

A function f: A — (T, p'), with A C (S, p), is said to be continuous at
p iff p € A and, moreover, for each € > 0 (no matter how small) there is
0 > 0 such that p'(f(z), f(p)) < e for allz € AN Gp,(d). In symbols,

P (f(x), f(p)) <e, or

we>0 @35>0 (redngyy {500 T

If (1) fails, we say that f is discontinuous at p and call p a discontinuity
point of f. This is also the case if p ¢ A (since f(p) is not defined).

If (1) holds for each p in a set B C A, we say that f is continuous on B. If
this is the case for B = A, we simply say that f is continuous.

L Of course, for f(z) to exist, z must also be in A = Dy; thus 2 € ANGp(5). We say that
z is &-close to p iff p(z, p) < 4.
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Sometimes we prefer to keep = near p but different from p. We then replace
Gp(9) in (1) by the set Gp(d) — {p}, i.e., the globe without its center, denoted
G-p(6) and called the deleted §-globe about p. This is even necessaryif p ¢ Dy.
Replacing f(p) in (1) by some ¢ € T, we then are led to the following definition.
Definition 2.

Given f: A — (T, p'), AC (S, p),p € S, and ¢ € T, we say that f(z)
tends to q as x tends to p (f(x) = q as © — p) iff for each e > 0 there is
0 > 0 such that p'(f(x), q) < e for all z € AN G-p(d). In symbols,

P(f(x), q) <e, ie.,

F(2) € Gyle). @

(Ve>0) (36> 0) (Vo e ANG_,(5)) {

This means that f(z) is e-close to ¢ when z is d-close to p and x # p.2

If (2) holds for some g, we call ¢ a limit of f at p. There may be no such q.
We then say that f has no limit at p, or that this limit does not exist. If there
is only one such q (for a given p), we write ¢ = ill)l’;) f(z).

Note 1. Formula (2) holds “vacuously” (see Chapter 1, §§1-3, end remark)
it ANG-,(0) = 0 for some § > 0. Then any ¢ € T is a limit at p, so a limit
exists but is not unique. (We discard the case where 7' is a singleton.)

Note 2. However, uniqueness is ensured if ANG-,(8) # 0 for all 6 > 0, as
we prove below.

Observe that by Corollary 6 of Chapter 3, §14, the set A clusters at p iff
(Vo>0) ANG-,(8) #0. (Explain!)
Thus we have the following corollary.

Corollary 1. If A clusters at p in (S, p), then a function f: A — (T, p') can
have at most one limit at p; i.e.,

lim f(x) is unique (if it ewists).

In particular, this holds if A D (a, b) C E' (a < b) and p € [a, b].
Proof. Suppose f has two limits, ¢ and r, at p. By the Hausdorff property,
Gqu(e)NGr(e) =0 for some e > 0.
Also, by (2), there are §’, 6" > 0 such that
Ve e ANG_,(8") f(z) € Gy(e) and
(Vo e ANG-,(8") f(z) € Gy(e).
2 Observe that the choice of & depends on & in both (1) and (2).

3 Because of this, some authors restrict Definition 2 to the case where A clusters at p.
However, this has its disadvantages (e.g., Corollary 2 fails).
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Let § = min(¢’, §”’). Then for € ANG-,(9), f(z) is in both G4(e) and G, (¢),
and such an z exists since AN G_p,(8) # 0 by assumption.
But this is impossible since G,(e) N G,.(¢) = 0 (a contradiction!). O

For intervals, see Chapter 3, §14, Example (h).
Corollary 2. f is continuous at p (p € Dy) iff f(x) — f(p) as x — p.
The straightforward proof from definitions is left to the reader.

Note 3. In formula (2), we excluded the case * = p by assuming that
x € ANG-p(6). This makes the behavior of f at p itself irrelevant. Thus for
the existence of a limit q at p, it does not matter whether p € Dy or whether
f(p) = q. But both conditions are required for continuity at p (see Corollary 2
and Definition 1).

Note 4. Observe that if (1) or (2) holds for some ¢, it certainly holds for
any &' < 8. Thus we may always choose § as small as we like. Moreover, as
x is limited to G,(d), we may disregard, or change at will, the function values
f(x) for x ¢ G,(9) (“local character of the limit notion”).

II. Limits in E*. If S or T is E* (or E'), we may let # — oo or
f(x) — £oo. For a precise definition, we rewrite (2) in terms of globes G, and
Gy

(VGq) 3Gp) Yz e ANG-,) flx) € Gy (2"

This makes sense also if p = +oo or ¢ = +oo. We only have to use our
conventions as to G4, or the metric p’ for £*, as explained in Chapter 3, §11.

For example, consider
“f(z) = g as & — +o0” (AC S = B*, p= +o0, g € (T, ).
Here G, has the form (a, +oc], a € E', and G-, = (a, +00), while G, = G, (¢),
as usual. Noting that # € G-, means z > a (z € E'), we can rewrite (2) as

(Ve>0) (Fac EY) (VoeAlz>a) f(x)€Gy(e), or p/(f(z), q) <e. (3)

This means that f(z) becomes arbitrarily close to g for large x (z > a).
Next consider “f(z) — 400 as z — —o0.” Here G-, = (—o0, a) and
Gy = (b, +00]. Thus formula (2') yields (with S = T' = E*, and x varying over
El

)
(YVbe EY) Bac B (Ve e Az <a) flx)>Db (4)

similarly in other cases, which we leave to the reader.

Note 5. In (3), we may take A = N (the naturals). Then f: N — (T, p/)
is a sequence in T. Writing m for z, set u,, = f(m) and a = k € N to obtain

(Ve >0) (k) (Vm >k) um € Gy(e); ie., p'(um, q) <e.
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This coincides with our definition of the limit g of a sequence {u,,} (see
Chapter 3, §14). Thus limits of sequences are a special case of function limits.
Theorems on sequences can be obtained from those on functions f: A — (T, p')
by simply taking A = N and S = E* as above.

Note 6. Formulas (3) and (4) make sense also if S = E' (respectively,
S =T = E') since they do not involve any mention of +00. We shall use such
formulas also for functions f: A — T, with A C S C E' or T' C E', as the
case may be.

ITI. Relative Limits and Continuity. Sometimes the desired result (1)
or (2) does not hold in full, but only with A replaced by a smaller set B C A.
Thus we may have

(Ve>0) (36>0) (Vze BNG-,(9)) [flz)e Gyle).
In this case, we call q a relative limit of f at p over B and write
“f(x) = q as x — p over B”

or
lim  f(z) =q (if ¢ is unique);
rz—p,xEB

B is called the path over which z tends to p. If, in addition, p € Dy and
q = f(p), we say that f is relatively continuous at p over B; then (1) holds
with A replaced by B. Again, if this holds for every p € B, we say that f
is relatively continuous on B. Clearly, if B = A = Dy, this yields ordinary
(nonrelative) limits and continuity. Thus relative limits and continuity are
more general.

Note that for limits over a path B, x is chosen from B or B — {p} only.
Thus the behavior of f outside B becomes irrelevant, and so we may arbitrarily
redefine f on —B. For example, if p ¢ B but lim,—;, »ep f(x) = ¢ exists, we
may define f(p) = ¢, thus making f relatively continuous at p (over B). We
also may replace (S, p) by (B, p) (if p € B), or restrict f to B, i.e., replace
f by the function g: B — (T, p') defined by g(z) = f(z) for z € B (briefly,
g=f onB)4

A particularly important case is

ACSCE* eg,S=E".
Then inequalities are defined in S, so we may take

B ={z € A|z <p} (points in A, preceding p).

4 The function g is called the restriction of f to B denoted fg or f|g. Thus f is relatively
continuous on B iff fp is continuous.
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Then, writing G, for G4(¢) and a = p — ¢, we obtain from formula (2)
(VGq) Ba<p) VeeAla<z<p) f(z)eG,. (5)
If (5) holds, we call g a left limit of f at p and write
“f(z) = qasx— p~ 7 (“x tends to p from the left”).

If, in addition, ¢ = f(p), we say that f is left continuous at p. Similarly, taking
B={ze€A|x>p},

we obtain right limits and continuity. We write
f(x) = qasx—p"

iff ¢ is a right limit of f at p, i.e., if (5) holds with all inequalities reversed.

If the set B in question clusters at p, the relative limit (if any) is unique.
We then denote the left and right limit, respectively, by f(p~) and f(p*), and
we write

lim f(z) = f(p~) and lim_f(z) = f(p"). (6)

T—p~ z—pt

Corollary 3. With the previous notation, if f(z) — q as x — p over a path
B, and also over D, then f(z) = q as v — p over BUD.

Hence if Dy C E* and p € E*, we have

q=lim f(@) if 4= f(7) = (). (Bxercise)

We now illustrate our definitions by a diagram in E? representing a function
f: E' — E* by its graph, i.e., points (z, y) such that y = f(z).
Here
Gole) = (g—¢, q+2)

is an interval on the y-azis. The dotted lines show how to construct an interval
p—0,p+9) =G,

on the z-azis, satisfying formula (1) in Figure 13, formulas (5) and (6) in
Figure 14, or formula (2) in Figure 15. The point @ in each diagram belongs
to the graph; i.e., Q = (p, f(p)). In Figure 13, f is continuous at p (and also at
p1). However, it is only left-continuous at p in Figure 14, and it is discontinuous
at p in Figure 15, though f(p~) and f(p*) exist. (Why?)
Examples.

(a) Let f: A— T be constant on B C A; i.e.,

f(z) = qfor a fixed ¢ € T and all x € B.
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FIiGURE 13

FIGURrE 14

Then f is relatively continuous on B, and f(x) — q as x — p over B, at
each p. (Given € > 0, take an arbitrary 6 > 0. Then

(Vo e BNG-p(0)) flx) =q € Gyle),

as required; similarly for continuity.)

(b) Let f be the identity map on A C (S, p); i.e.,

Vxed) flz)=u.
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FIiGURE 15

Then, given € > 0, take § = € to obtain, for p € A,

(Vo€ ANGy(8) p(f(z), f(p)) =p(z, p) <d=e.

Thus by (1), f is continuous at any p € A, hence on A.
Define f: E' — E! by
f(z) = 1if x is rational, and f(x) = 0 otherwise.
(This is the Dirichlet function, so named after Johann Peter Gustav Leje-

une Dirichlet.)
No matter how small ¢ is, the globe

Gp(d) =(p—0,p+9)

(even the deleted globe) contains both rationals and irrationals. Thus as
x varies over G, (9), f(x) takes on both values, 0 and 1, many times and
so gets out of any Gy(), with g € E', ¢ < %

Hence for any ¢, p € E*, formula (2) fails if we take & = %, say. Thus
f has no limit at any p € E' and hence is discontinuous everywhere!
However, f is relatively continuous on the set R of all rationals by Exam-
ple (a).
Define f: E* — E! by

f(z) = [z] (= the integral part of z; see Chapter 2, §10).

Thus f(z) = 0 for z € [0, 1), f(z) = 1 for z € [1, 2), etc. Then f is
discontinuous at p if p is an integer (why?) but continuous at any other
p (restrict f to a small G,,(9) so as to make it constant).
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However, left and right limits v
exist at each p € E', even if p = 3F ‘04‘
n (an integer). In fact,
.| o
fl@)y=n,z€(n,n+1) \ \ \
RN \ \
and T
— _ N \ \ \
flzy=n—-1,z€ (n—-1,n), o 2 3 4 x
hence f(n*) = n and f(n™) = -

n — 1; f is right continuous on
E'. See Figure 16.

Define f: E' — E' by

f(z) = % if 2 # 0, and £(0) = 0.
(This is the so-called signum function, often denoted by sgn.)

Then (Figure 17)

flx)y=—-1ifx <0 )1
and
flz)y=1ifz>0. o X
Thus, as in (d), we infer that f -1
is discontinuous at 0, but con-
Ficure 17

tinuous at each p # 0. Also,
f(0T) =1 and f(07) = —1. Redefining f(0) = 1 or f(0) = —1, we
can make f right (respectively, left) continuous at 0, but not both.

Define f: E' — E' by (see Figure 18)

flx) = siné if z #0, and f(0) = 0.

Any globe G(8) about 0 con-
tains points at which f(z) =
1, as well as those at which
f(z) = =1 or f(z) = 0 (take
x = 2/(nm) for large integers n);
in fact, the graph “oscillates” in-
finitely many times between —1
and 1. Thus by the same argu-
ment as in (c), f has no limit at

FI1GURE 18

§1. Basic Definitions 157

2'.

0 (not even a left or right limit) and hence is discontinuous at 0. No
attempt at redefining f at 0 can restore even left or right continuity, let
alone ordinary continuity, at 0.
Define f: E? — E! by

T1Xo

f(0)=0and f(z) = p if = (w1, x2) # 0.

Let B be any line in E? through 0, given parametrically by
Z=tid, tcE',dfixed (sce Chapter 3, §§4-6),

so x1 = tuy and xe = tus. As is easily seen, for z € B, f(z) = f(u)
(constant) if T # 0. Hence

(VZ e BNG_o(9) (@) = f(a),

i.e., p(f(Z), f(W) =0 < ¢, for any € > 0 and any deleted globe about 0.

By (2'), then, f(Z) — f(@) as ¥ — 0 over the path B. Thus f has a
relative limit f(@) at 0, over any line = tu, but this limit is different
for various choices of 1, i.e., for different lines through 0. No ordinary
limit at 0 exists (why?); f is not even relatively continuous at 0 over the
line z = t@ unless f(a@) = 0 (which is the case only if the line is one of
the coordinate axes (why?)).

Problems on Limits and Continuity

. Prove Corollary 2. Why can one interchange Gp,(6) and G-, (d) here?

. Prove Corollary 3. By induction, extend its first clause to unions of n

paths. Disprove it for infinite unions of paths (see Problem 9 in §3).

Prove that a function f: E* — (T, p') is continuous at p iff

. Show that relative limits and continuity at p (over B) are equivalent

to the ordinary ones if B is a neighborhood of p (Chapter 3, §12); for
example, if it is some G,,.

. Discuss Figures 13-15 in detail, comparing f(p), f(p~), and f(p™); see

Problem 2'.

Observe that in Figure 13, different values of ¢ result at p and p; for
the same €. Thus ¢ depends on both ¢ and the choice of p.

. Complete the missing details in Examples (d)—(g). In (d), redefine f(x)

to be the least integer > x. Show that f is then left-continuous on E*.
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6. Give explicit definitions (such as (3)) for

(a) lim f(z) = —oc; (b) lim _f(z) =g
(c) lim f(x) = +oo; (d) lim F(z) = —o0;
(e) 11_1)1;1)17 f(@) = +o0; () 11_13% f(z) = —c0.

In each case, draw a diagram (such as Figures 13-15) and determine
whether the domain and range of f must both be in E*.

7. Define f: E* — E! by
4 —1
‘ if x# 1, and f(1) = 0.

fla) ==

Show that lim,_,; f(z) = 2 exists, yet f is discontinuous at p = 1. Make
it continuous by redefining f(1).
[Hint: For x # 1, f(z) = « + 1. Proceed as in Example (b), using the deleted globe
G-p(9)]

8. Find lim,_,, f(x) and check continuity at p in the following cases, assum-
ing that Dy = A is the set of all z € E* for which the given expression
for f(z) has sense. Specify that set.®

2

3z + 2
. : 2 K. .
e SR =
. 22 —4 a3 —8
(c) ml—l)H—ll(J;—i—Qil)7 (d) il—% z—2"
ot =t . : 3
(e) il—I}}z r—a (f) ;%(:p#»l) ’
. 1 2
2 _
[Example solution: Find lim o rl.
z—1 2+ 3
Here 5
st -1 a3
f(‘r)fzx-s-?;’A*E { 2}”7*1'

We show that f is continuous at p, and so (by Corollary 2)
. 4
lim () = fp) = 1(1) = 5.

Using formula (1), we fix an arbitrary € > 0 and look for a § such that

522 —1 4
- - <&
2r+3 5

(Ve e ANGp(9)) p(f(z), F(1)) = [f(2) = F(D] <e, ie,

5In (d) and (e), p ¢ A, yet one can restore continuity as in Problem 7. (Reduce the
fraction by @ — p for x # p and define f(p) accordingly.)
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or, by putting everything over a common denominator and using properties of abso-
lute values,

252 + 17|

|z — 1]
5|2z + 3|

< & whenever |z — 1| < § and = € A. (6)
(Usually in such problems, it is desirable to factor out x — p.)
By Note 4, we may assume 0 < § < 1. Then |z — 1| < § implies —1 <z —1 <1,
ie., 0<z <2 so
5|2z 4+ 3| > 15 and |25z 4+ 17| < 67.

Hence (6) will certainly hold if

67 15
|t — 1| = < ¢, e, if |z — 1| < —=.
15 67

To achieve it, we choose § = min(1, 15¢/67). Then, reversing all steps, we obtain
(6), and hence lirn1 f(z) = f(1) =4/5]
xr—r

9. Find (using definitions, such as (3))

. 1 3x + 2
(a) i (b) dim o7
. z3 . r—1
(c) xBToo 1— a2’ (d) zliglJr xz—3’
-1 -1
(e) lim 2. (f) lim|~ ]
z—3- T — 3 z—3lx — 3

10. Prove that if
lim f(z) =gqe E" (*C"),

r—rp

then for each scalar ¢,

lim cf(x) = cq.

T—p
11. Define f: E' — E! by
1
f(z) ==z -sin— if x # 0, and f(0) = 0.

T

Show that f is continuous at p =0, i.e.,
lim /(2) = £(0) = 0.
Draw an approximate graph (it is contained between the lines y = +x).
[Hint: |z - sin 1 0‘ < |z|.]
xr

*12. Discuss the statement: f is continuous at p iff

(YGrpy) (3Gp)  fIGy] C G-
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13.

14.

15.

16.
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Define f: E' — E! by
f(z) = z if z is rational
and

f(z) = 0 otherwise.

Show that f is continuous at 0 but nowhere else. How about relative
continuity?

Let A= (0, +o0) C E'. Define f: A — E* by
f(z) =0 if x is irrational
and

1
flz)y==ifx= m (in lowest terms)
n n

for some natural m and n. Show that f is continuous at each irrational,
but at no rational, point p € A.

[Hints: If p 4s irrational, fix € > 0 and an integer k > 1/e. In G (1), there are only
finitely many irreducible fractions

M S 0 with n < k,
n

so one of them, call it r, is closest to p. Put
¢ = min(1, |r —pl|)

and show that
(Ve e ANGp(9)) If(x) — f(p)| = fz) <e,

distinguishing the cases where z is rational and irrational.
If p is rational, use the fact that each Gp(d) contains irrationals z at which

f(@) =0=|f(=) — f(p)l = f(p).
Take € < f(p).]

Given two reals, p > 0 and ¢ > 0, define f: B! — E! by

f(0)=0and f(z) = (%) : [2} if x # 0;

x
here [q/z] is the integral part of ¢q/z.

(i) Is f left or right continuous at 0?7

(ii) Same question with f(z) = [z/p](¢/x).

Prove that if (S, p) is discrete, then all functions f: S — (T, p’) are
continuous. What if (7', p) is discrete but (S, p) is not?
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I. In §1 we gave the so-called “c, 6” definition of continuity. Now we present
another (equivalent) formulation, known as the sequential one. Roughly, it
states that f is continuous iff it carries convergent sequences {azm} C Dy into
convergent “image sequences” { f(x,)}. More precisely, we have the following
theorem.

Theorem 1 (sequential criterion of continuity). (i) A function
fr A= (T, p), with AC (S, p),

is continuous at a point p € A iff for every sequence {x,,} C A such that
Ty, — p in (S, p), we have f(zy,) — f(p) in (T, p'). In symbols,

(v {Im} - A | Ty — p) f(l’m) - f(p) (11)
(i1) Similarly, a point g € T is a limit of f atp (p € S) iff
(V{zm} CA=A{p}[2m = p) flzm) =4 (2)

Note that in (2") we consider only sequences of terms other than p.
Proof. We first prove (ii). Suppose ¢ is a limit of f at p, i.e. (see §1),
(Ve>0) (36>0) (Ve e ANG-p(9)) f(z) € Gyle). (2)
Thus, given ¢ > 0, there is 6 > 0 (henceforth fixed) such that
f(x) € Gq4(e) whenever z € A, x # p, and x € G,(9). (3)
We want to deduce (2"). Thus we fix any sequence

{wm} g A - {p}7 Ty — p~1

Then
(Ym) =z, € A and z,, #p,

and Gp(0) contains all but finitely many x,,. Then these z,, satisfy the con-
ditions stated in (3). Hence f(zm) € Gq(e) for all but finitely many m. As e
is arbitrary, this implies f(z,,) — ¢ (by the definition of lim f(z,,)), as is
required in (2"). Thus (2) = (2/). e

Conversely, suppose (2) fails, i.e., its negation holds. (See the rules for
forming negations of such formulas in Chapter 1, §§1-3.) Thus

(Fe>0) (V6>0) Gz € ANG-p(0) f(z) ¢ Gyle) (4)

LIf no such sequence exists, then (2/) is vacuously true and there is nothing to prove.
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by the rules for quantifiers. We fix an ¢ satisfying (4), and let
1
Oom=—, m=1,2,....
m

By (4), for each §,, there is z,,, (depending on d,,) such that

1
Tm € AﬂGﬁp<E> (5)
and
flan) € Gole). m=1,2,3, .. ©
We fix these Tm- As Ty € A and Tm 5‘& p, we obtain a sequence
{xm} g A— {p}

Also, as z,, € GP(%), we have p(@m,, p) < 1/m — 0, and hence z,, — p.
On the other hand, by (6), the image sequence {f(z,,)} cannot converge to ¢
(why?), i.e., (2) fails. Thus we see that (2') fails or holds accordingly as (2)
does.

This proves assertion (ii). Now, by setting ¢ = f(p) in (2) and (2), we also
obtain the first clause of the theorem, as to continuity. [

Note 1. The theorem also applies to relative limits and continuity over a
path B (just replace A by B in the proof), as well as to the cases p = +oo
and ¢ = foo in E* (for E* can be treated as a metric space; see the end of
Chapter 3, §11).

If the range space (T, p') is complete (Chapter 3, §17), then the image
sequences {f(z,,)} converge iff they are Cauchy. This leads to the following
corollary.

Corollary 1. Let (T, p') be complete, such as E™. Let a map f: A — T with
A C (S, p) and a point p € S be given. Then for f to have a limit at p,
it suffices that {f(xm)} be Cauchy in (T, p’) whenever {x,,} C A — {p} and
Ty, — p in (S, p).

Indeed, as noted above, all such {f(x,,)} converge. Thus it only remains to
show that they tend to one and the same limit g, as is required in part (ii) of
Theorem 1. We leave this as an exercise (Problem 1 below).

*Theorem 2 (Cauchy criterion for functions). With the assumptions of Corol-
lary 1, the function f has a limit at p iff for each € > 0, there is § > 0 such
that

o (f(@), f(2') < e for all z, ' € AN G-,(3).?

In symbols,
(Ve>0) (36>0) Vo, 2’ € ANG_,(9) p'(f(z), f(2')) <e. (7)

2 That is, f(z) is e-close to f(z') when = and @’ are §-close to p, but not equal to p.
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Proof. Assume (7). To show that f has a limit at p, we use Corollary 1. Thus
we take any sequence
{xm} C A—{p} with 2, = p
and show that {f(z,,)} is Cauchy, i.e.,
(Ve>0) 3k) (Vm,n>k) o (f(xm), flzn)) <e.
To do this, fix an arbitrary € > 0. By (7), we have
(Va, 2" € ANG-p(0)) /' (f(x), f(2') <e, (7)
for some § > 0. Now as z,, — p, there is k such that
(Vm,n>k) zpn,x, € Gp(9).
As {zm} € A — {p}, we even have x,, z,, € AN G-,(9). Hence by (7'),
(Vm, n>k) o (f(am), fzn)) <e&

ie, {f(xm)} is Cauchy, as required in Corollary 1, and so f has a limit at p.
This shows that (7) implies the existence of that limit.

The easy converse proof is left to the reader. (See Problem 2.) O

II. Composite Functions. The composite of two functions
f:S—=>Tandg: T — U,

denoted
gof (in that order),

is by definition a map of S into U given by
(go f)(x) =g(f(x), xeSs.

Our next theorem states, roughly, that g o f is continuous if g and f are. We
shall use Theorem 1 to prove it.

Theorem 3. Let (S, p), (T, p'), and (U, p’") be metric spaces. If a function
f: 8 — T is continuous at a pointp € S, and if g: T — U is continuous at the
point ¢ = f(p), then the composite function go f is continuous at p.

Proof. The domain of go f is . So take any sequence
{zm} C S with z,, — p.

As f is continuous at p, formula (1’) yields f(z,,) — f(p), where f(z,,) is in
T = D,. Hence, as g is continuous at f(p), we have

9(f(zm)) = g(f (D)), ie., (g0 f)(zm) — (g0 f)(p),

and this holds for any {z,,} C S with z,, — p. Thus g o f satisfies condition
(1') and is continuous at p. O
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Caution: The fact that

lim f(z) = ¢ and lim g(y) = r
y—a

T—p
does not imply

lim g(f(x)) =7

Tr—p

(see Problem 3 for counterexamples).

Indeed, if {z,,} € S—{p} and x,,, — p, we obtain, as before, f(z,) — ¢, but
not f(xmy,) # q. Thus we cannot re-apply formula (2') to obtain g(f(zm,)) — r
since (2') requires that f(x.,,) # g. The argument still works if ¢ is continuous
at ¢ (then (1’) applies) or if f(z) never equals q (then f(z,,) # ¢). It even
suffices that f(x) # q for x in some deleted globe about p (see §1, Note 4).
Hence we obtain the following corollary.

Corollary 2. With the notation of Theorem 3, suppose
f(x) = qasx—p, and g(y) = r asy — q.
Then
9(f(x)) = r asz —p,

provided, however, that

(i) g is continuous at q, or

(ii) f(z) # q for x in some deleted globe about p, or

(iii) f is one to one, at least when restricted to some G-,(0).

Indeed, (i) and (ii) suffice, as was explained above. Thus assume (iii). Then
f can take the value ¢ at most once, say, at some point

X € Gﬁp((s)
As g # p, let
"= p(xo, p) > 0.

Then xg ¢ G-, (0"), so f(z) # q on G-,(d"), and case (iii) reduces to (ii).
We now show how to apply Corollary 2.

Note 2. Suppose we know that

r = lim g(y) exists.
y—aq

Using this fact, we often pass to another variable z, setting y = f(x) where f
is such that ¢ = lim,_,, f(x) for some p. We shall say that the substitution (or
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“change of variable”) y = f(z) is admissible if one of the conditions (i), (ii), or
(iii) of Corollary 2 holds.? Then by Corollary 2,
lim g(y) = r = lim g(f(x))

Yy—q T—p

(vielding the second limit).

Examples.
(A) Let
1\z
= — > 1.
h(z) (1+ x) for [z > 1
Then
zgrfooh(x) =e.

For a proof, let n = f(z) = [z] be the integral part of x. Then for
xz>1,
1 n 1\n+1
(1+ n——i-l) <he) < (1+ g) . (Verify!) ®)
As © — 400, n tends to +oo over integers, and by rules for sequences,
1\ n+1 1 1\n 1\n
lim (1+7) = lim (1+7)(1+7) —1- lim (1+7) —l.e=e
with e as in Chapter 3, §15. Similarly one shows that also
1 n
lim <1 + 7> =e.
n—oo n -+ 1

Thus (8) implies that also lirf h(z) = e (see Problem 6 below).
Tr—+00

Remark. Here we used Corollary 2(ii) with

f(z) = [z], ¢ =400, and g(n) = (l + %)n

The substitution n = f(z) is admissible since f(z) = n never equals +o0, its
limit, thus satisfying Corollary 2(ii).

(B) Quite similarly, one shows that also

1\=
lim <1 + —) =e.
Tr—r—00 €T
See Problem 5.

3In particular, the so-called linear substitution y = ax + b (a, b € E', a # 0) is always
admissible since f(z) = ax + b yields a one-to-one map.
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In Examples (A) and (B), we now substitute = 1/z. This is admissible
by Corollary 2(ii) since the dependence between z and z is one to one.
Then

z:%ﬂo*' as ¢ — 400, and z - 07 as ¢ — —o0.
Thus (A) and (B) yield
g 1+ = Jip (1" =
Hence by Corollary 3 of §1, we obtain
lim (1 + 2)Y/% = e. (9)

z—0

More Problems on Limits and Continuity

1. Complete the proof of Corollary 1.

*2.

[Hint: Consider {f(zm)} and {f(x},)}, with
Zm — p and x,, — p.
By Chapter 3, §14, Corollary 4, p is also the limit of
/ /
L1, Tyy T2, LTy« vy
so, by assumption,
f(@1), fz), ...

Hence {f(zm)} and {f(z,,)} must have the same limit q. (Why?)]

converges (to g, say).

Complete the converse proof of Theorem 2 (cf. proof of Theorem 1 in
Chapter 3, §17).

. Define f, g: E' — E' by setting

(i) f(z) =2;g(y) =3 if y # 2, and g(2) = 0; or
(ii) f(z) =2 if x is rational and f(x) = 2x otherwise; g as in (i).

In both cases, show that

lim f(z) =2 and lim g(y) = 3 but not lim g(f(z)) = 3.2
r—1 y—2 r—1

. Prove Theorem 3 from “e, ¢” definitions. Also prove (both ways) that if

f is relatively continuous on B, and g on f[B], then g o f is relatively
continuous on B.

41n case (ii), disprove the existence of limg_1 g(f(z)).
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5.

=6.

=T.

10.

Complete the missing details in Examples (A) and (B).
[Hint for (B): Verify that

O Cx ) B G R (R (R A
Given f, g, h: A — E*, A C (S, p), with

f(z) < h(z) < g(x)
for x € G-,(d) N A for some 6 > 0. Prove that if

lim f(z) = lim g(z) = ¢,
then also
lim h(z) = q.
T—p

Use Theorem 1.

[Hint: Take any
{zm} C A — {p} with z, — p.
Then f(zm) — q, g(xm) — ¢, and
(Vm € ANG=p(8)  f(wm) < h(wm) < g(wm).
Now apply Corollary 3 of Chapter 3, §15.]

Given f, g: A — E*, AC (S, p), with f(z) > gand g(z) > rasz —p
(p € S), prove the following:
(i) If ¢ > r, then

(F0>0) (Ve e ANG-,(9)) f(z)> g(x).
(i1) (Passage to the limit in inequalities.) If
(V6 >0) Bz e ANG-,(9) flz) <g(a),

then ¢ < 7. (Observe that here A clusters at p necessarily, so the
limits are unique.)
[Hint: Proceed as in Problem 6; use Corollary 1 of Chapter 3, §15.]

. Do Problems 6 and 7 using only Definition 2 of §1.

[Hint: Here prove 7(ii) first.]

. Do Examples (a)—(d) of §1 using Theorem 1.

[Hint: For (c), use also Example (a) in Chapter 3, §16.]
Addition and multiplication in E' may be treated as functions
f, g: E* —» E*
with
flz,y) =z +yand g(z, y) = zy.
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11.

=13.

=14.

Chapter 4. Function Limits and Continuity

Show that f and g are continuous on E? (see footnote 2 in Chapter 3,
§15). Similarly, show that the standard metric
plz,y) = |z =yl

is a continuous mapping from E? to E'.
[Hint: Use Theorems 1, 2, and, 4 of Chapter 3, §15 and the sequential criterion.]

Using Corollary 2 and formula (9), find lin%(l + ma)'/* for a fixed m €
N. T—

. Let @ > 0 in E'. Prove that lim % = 1.
rz—0

[Hint: Let n = f(x) be the integral part of % (x #0). Verify that
q~1/(n+1) <a® < al/™ if a >1,
with inequalities reversed if 0 < a < 1. Then proceed as in Example (A), noting that

lim a'/" =1= lim o /(D
n—00 n—00

by Problem 20 of Chapter 3, §15. (Explain!)]
Given f, g: A — E*, A C (S, p), with

f<g forazinG-p(6)NA.
Prove that

(a) if lim f(x) = +o0, then also lim g(z) = +oc;
T—p T—p
(b) if lim g(z) = —oo, then also lim f(z) = —cc.
T—p T—p
Do it it two ways:
(i) Use definitions only, such as (2') in §1.
(ii) Use Problem 10 of Chapter 2, §13 and the sequential criterion.

Prove that
(i) if @ > 1 in E*, then
xr —T

. a . a
lim — =+o00 and lim — =0;
r—+o00 I r—+oo I

(i) if 0 < @ < 1, then

x —x
. a
lim = +0o0;
rz—+oco T

. a
lim — =0 and
r—4o00 I

(iii) ifa > 1 and 0 < g € !, then
xT —T

. a . a
lim — =+occ and lim —
z—+o00 x4 z—+oo x4

Il
L
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(iv) if 0<a<1and 0 < g€ E', then

x —T

. a . a
lim — =0and lim = +o00.
r—+4o0o x4 rx—4o0o0 9

[Hint: (i) From Problems 17 and 10 of Chapter 3, §15, obtain

n
lim — = +4o00.
n
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Then proceed as in Examples (A)—(C); (iii) reduces to (i) by the method used in

Problem 18 of Chapter 3, §15.]
=*15. For a map f: (S, p) = (T, p’), show that the following statements
equivalent:

(i) f is continuous on S.

(ii) (vACS) flA] C fA]

(iii) (VB CT) f~[B) 2 FB]

(iv) f~'[B] is closed in (S, p) whenever B is closed in (T}, p).
(v) f~1[B] is open in (S, p) whenever B is open in (T p').

are

[Hints: (i) = (ii): Use Theorem 3 of Chapter 3, §16 and the sequential criterion to

show that

pe A= f(p) € fIA].
(il) = (iii): Let A = f~'[B]. Then f[A] C B, so by (ii),
fAAIC FIATC B.

Hence . B .
FBI=AC fTUfIAN S fHBL (Why?)
(ili) = (iv): If B is closed, B = B (Chapter 3, §16, Theorem 4(ii)), so by (iii),
F7YB] = f7Y[B] 2 FL[B]; deduce (iv).

(iv) = (v): Pass to complements in (iv).
(v) = (i): Assume (v). Take any p € S and use Definition 1 in §1.]

16. Let f: E' — E' be continuous. Define ¢g: E' — E? by
9(z) = (z, f(z)).
Prove that
(a) g and g~
(b) the range of g, i.e., the set

Dy ={(z, f(2)) |z € E'},

I are one to one and continuous;

is closed in EZ.

[Hint: Use Theorem 2 of Chapter 3, §15, Theorem 4 of Chapter 3, §16, and
sequential criterion.]

the
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§3. Operations on Limits. Rational Functions

I. A function f: A — T is said to be real if its range D', lies in E*, complex
if D} C C, vector valued if D} is a subset of E™, and scalar valued if D} lies in
the scalar field of E™. (*In the latter two cases, we use the same terminology if
E™ is replaced by some other (fixed) normed space under consideration.) The
domain A may be arbitrary.

For such functions one can define various operations whenever they are de-
fined for elements of their ranges, to which the function values f(x) belong.
Thus as in Chapter 3, §9, we define the functions f+g, fg, and f/g “pointwise,”
setting

(f £0)(@) = () £ 9(2). (fo)(@) = 1) g(x), and (L) (@) = L)

whenever the right side expressions are defined. We also define |f|: A — E!
by
(Ve ed) |fl(z)=I[f(=)-

In particular, f+g is defined if f and g are both vector valued or both scalar
valued, and fg is defined if f is vector valued while g is scalar valued; similarly
for f/g. (However, the domain of f/g consists of those z € A only for which
g(x) #0.)

In the theorems below, all limits are at some (arbitrary, but fixed) point p
of the domain space (S, p). For brevity, we often omit “x — p.”

Theorem 1. For any functions f, g, h: A — EY(C), A C (S, p), we have the
following:
(i) If f, g, h are continuous at p (p € A), so are f + g and fh. So also is
f/h, provided h(p) # 0; similarly for relative continuity over B C A.
(ii) If f(x) — q, g(x) — r, and h(z) — a (all, as x — p over B C A), then

(a) f(x)£g(x) = qEr;
(b) f(z)h(z) — qa; and
(c) % — g, provided a # 0.

All this holds also if f and g are vector valued and h is scalar valued.
For a simple proof, one can use Theorem 1 of Chapter 3, §15. (An indepen-
dent proof is sketched in Problems 1-7 below.)

We can also use the sequential criterion (Theorem 1 in §2). To prove (ii),
take any sequence

{zm}ng{p}v T —> P-
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Then by the assumptions made,

flzm) = ¢, g(xm) — 7, and h(zy,) — a.
Thus by Theorem 1 of Chapter 3, §15,
f(x7ﬂ) N q

glem) —a

f(@m) £ g9(@m) = q£r, f(@m)g(zm) = qa, and
As this holds for any sequence {z,,} C B — {p} with z,,, — p, our assertion
(ii) follows by the sequential criterion; similarly for (i).

Note 1. By induction, the theorem also holds for sums and products of any
finite number of functions (whenever such products are defined).

Note 2. Part (ii) does not apply to infinite limits q, r, a; but it does apply
to limits at p = +oo (take E* with a suitable metric for the space ).

Note 3. The assumption h(z) — a # 0 (as © — p over B) implies that
h(z) # 0 for = in B N G-,(9) for some § > 0; see Problem 5 below. Thus the
quotient function f/h is defined on B N G-p(9) at least.

IT. If the range space of f is E™ (*or C™), then each function value f(z) is
a vector in that space; thus it has n real (*respectively, complex) components,
denoted
fk(x), k:L 2,...,71.

Here we may treat f, as a mapping of A = Dy into E' (*or C); it carries
each point z € A into fi(z), the kth component of f(z). In this manner, each
function
fr A= E"™ (*C")
uniquely determines n scalar-valued maps
fu: A— E' (0),
called the components of f. Notation: f = (f1, ..., fn)-
Conversely, given n arbitrary functions
friA=FEY(C), k=1,2,...,n,
one can define f: A — E™ (*C™) by setting

f(@) = (fi(@), f2(@), s ful2)-

Then obviously f = (f1, f2, -, fn). Thus the fi in turn determine f uniquely.
To define a function f: A — E™ (*C™) means to give its n components fi,. Note
that

F@) = (@), s fale) = 3 enful@), e f= s (1)
k=1 k=1
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where the €5 are the n basic unit vectors; see Chapter 3, §§1-3, Theorem 2.
Our next theorem shows that the limits and continuity of f reduce to those of
the fk

Theorem 2 (componentwise continuity and limits). For any function f: A —
E"™ (*C™), with A C (S, p) and with f = (f1, ..., fn), we have that

(i) f is continuous at p (p € A) iff all its components fi are, and
(ii)) f(z) >qasx—p (peS)iff
(@)= qrasxz—p (k=1,2,...,n),
i.e., iff each fi has, as its limit at p, the corresponding component of q.

Similar results hold for relative continuity and limits over a path B C A.

We prove (ii). If f(z) — g as  — p then, by definition,

(Ve>0) (36>0) (Yo € ANG,(6) > [f(x) —al = /D filx) —al*s
k=1

in turn, the right-hand side of the inequality given above is no less than each

[fru(z) —au], k=1,2,...,n.
Thus
(Ve>0)(36>0) (Vee ANG-p(9) |fulz) —q| <&

ie, fi(z) > aq, k=1,...,n.
Conversely, if each fi(z) — qi, then Theorem 1(ii) yields

n n
Z e fr(z) — Z e
k=1 k=1

By formula (1), then, f(z) — ¢ (for >_,_, éxgr = ¢). Thus (ii) is proved;
similarly for (i) and for relative limits and continuity.

Note 4. Again, Theorem 2 holds also for p = oo (but not for infinite ¢).

Note 5. A compler function f: A — C may be treated as f: A — E2.
Thus it has two real components: f = (fi, f2). Traditionally, fi and fo are
called the real and imaginary parts of f, also denoted by f,. and fiy, so

f = fre +1- fim-

By Theorem 2, f is continuous at p iff fre and fim are.

! Here we treat & as a constant function, with values & (cf. §1, Example (a)).
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Example.

The complex exponential is the function f: E' — C defined by
f(x) = cosz + 1 -sinx, also written f(x) = ™.

As we shall see later, the sine and the cosine functions are continuous.
Hence so is f by Theorem 2.

III. Next, consider functions whose domain is a set in E™ (*or C™). We call
them functions of n real (*or complex) variables, treating T = (1, ..., T,) as
a variable n-tuple. The range space may be arbitrary.

In particular, a monomial in n variables is a map on E™ (*or C™) given by
a formula of the form

n
f(@) = aziay® -y = a- [ 2,
k=1

where the my, are fixed integers > 0 and a € E! (*or a € C).2 If a # 0, the
sum m = Y ;_, my is called the degree of the monomial. Thus
[z, y, 2) = 32°y2" = 3a%y'2?

defines a monomial of degree 6, in three real (or complex) variables z, y, z.
(We often write z, y, z for 1, x2, x3.)

A polynomial is any sum of a finite number of monomials; its degree is, by
definition, that of its leading term, i.e., the one of highest degree. (There may
be several such terms, of equal degree.) For example,

[z, y, z) = 32°y2" — 229"

defines a polynomial of degree 8 in x, y, z. Polynomials of degree 1 are some-
times called linear.

A rational function is the quotient f/g of two polynomials f and g on E™
(*or C™).3 Its domain consists of those points at which g does not vanish. For
example,

2
4 — 3zy
h(z, y) = ———
zy —1
defines a rational function on points (z, y), with zy # 1. Polynomials and
monomials are rational functions with denominator 1.

Theorem 3. Any rational function (in particular, every polynomial) in one
or several variables is continuous on all of its domain.

2 We also allow a to be a vector, while the xy are scalars.
3 This is valid also if one allows the coefficients of f to be vectors (provided those of g,
and the variables zj, remain scalars).
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Proof. Consider first a monomial of the form
(@) =a, (k fixed);

it is called the kth projection map because it “projects” each z € E™ (*C")
onto its kth component zy.

Given any € > 0 and p, choose § = ¢. Then

(VT eGp(d) [f(®) = D)=z —pi| < ,/_eri —pil>=p(z,p) <e.

Hence by definition, f is continuous at each p. Thus the theorem holds for
projection maps.
However, any other monomial, given by

f(2) = ax"ay'® -,

is the product of finitely many (namely of m = my +mqo+---+m,,) projection
maps multiplied by a constant a. Thus by Theorem 1, it is continuous. So
also is any finite sum of monomials (i.e., any polynomial), and hence so is
the quotient f/g of two polynomials (i.e., any rational function) wherever it is
defined, i.e., wherever the denominator does not vanish. [

IV. For functions on E™ (*or C"), we often consider relative limits over a
line of the form

Z = p + téy, (parallel to the kth axis, through p);

see Chapter 3, §54—6, Definition 1. If f is relatively continuous at p over that
line, we say that f is continuous at p in the kth variable x) (because the other
components of T remain constant, namely, equal to those of p, as T runs over
that line). As opposed to this, we say that f is continuous at p in all n variables
jointly if it is continuous at p in the ordinary (not relative) sense. Similarly,
we speak of limits in one variable, or in all of them jointly.

Since ordinary continuity implies relative continuity over any path, joint
continuity in all n variables always implies that in each variable separately,
but the converse fails (see Problems 9 and 10 below); similarly for limits at p.

Problems on Continuity of Vector-Valued Functions

1. Give an “g, 0” proof of Theorem 1 for f + g.
[Hint: Proceed as in Theorem 1 of Chapter 3, §15, replacing max(k’, k”’) by § =
min(¢’, 6”). Thus fix e >0 and p € S. If f(z) — q and g(z) — r as © — p over B,
then (3¢’,6” > 0) such that
(Vz € BNG-p(8)) |f(z)—ql < % and (Vo € BN G-p(8")) |g(z) — 7| < g

Put § = min(¢’, §”), etc.]
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In Problems 2, 3, and 4, E = E™ (*or another normed space), F is its scalar
field, BC A C (S, p), and & — p over B.

2. For a function f: A — FE prove that
f(@) = q=I[f(x) —q =0,

equivalently, iff f(x) —q— 0.

[Hint: Proceed as in Chapter 3, §14, Corollary 2.]
3. Given f: A — (T, p/), with f(z) = q as @ — p over B. Show that for

some 0 > 0, f is bounded on BN G-,(0), i.e.,

fIBNG-p(0)] is a bounded set in (T, p').
Thus if T = E, there is K € E' such that
Vxze BNG-,(9)) |flz)|< K

(Chapter 3, §13, Theorem 2).

4. Given f, h: A — E' (C) (or f: A— E, h: A — F), prove that if one

of f and h has limit 0 (respectively, 0), while the other is bounded on

BN G-p(9), then h(z)f(x) — 0 (0).
5. Given h: A — E' (C), with h(z) — a as * — p over B, and a # 0.
Prove that
(3e,8 >0) (Ve e BNG-p(9)) |h(z)| >,

i.e., h(x) is bounded away from 0 on B N G-,(d). Hence show that 1/h
is bounded on B N G-,(6).
[Hint: Proceed as in the proof of Corollary 1 in §1, with ¢ = @ and » = 0. Then use

(Vo € BNG_p(5)) |$‘ < é.]

6. Using Problems 1 to 5, give an independent proof of Theorem 1.

[Hint: Proceed as in Problems 2 and 4 of Chapter 3, §15 to obtain Theorem 1(ii).
Then use Corollary 2 of §1.]

7. Deduce Theorems 1 and 2 of Chapter 3, §15 from those of the present
section, setting A= B =N, S = E*, and p = +o0.
[Hint: See §1, Note 5.]
8. Redo Problem 8 of §1 in two ways:
(i) Use Theorem 1 only.
(ii) Use Theorem 3.
[Example for (i): Find 11311(962 +1).

Here f(x) = 2? + 1, or f = gg + h, where h(z) = 1 (constant) and g(z) = z
(identity map). As h and g are continuous (§1, Examples (a) and (b)), so is f by
Theorem 1. Thus lim1 flx)=f1)=12+1=2.

z—
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Or, using Theorem 1(ii), lim (22 4 1) = lim 22 4 lim 1, etc.]
z—1 z—1 z—1
9. Define f: E? — E! by

flz, y) *y ith £(0,0) =0

’ =71 o W ’ =y

NEE)

Show that f(x, y) — 0 as (x, y) — (0, 0) along any straight line through
0, but not over the parabola y = 22 (then the limit is ). Deduce that

f is continuous at 0 = (0, 0) in = and y separately, but not jointly.
10. Do Problem 9, setting
flz,y)=0if 2 =0, and f(z, y) = @ o= ll/e? f £0.4
x
11. Discuss the continuity of f: E? — E' in x and y jointly and separately,

at 0, when
22y
(&) f(z,y)= ORI f(0,0) = 0;

(b) f(z, y) = integral part of = + y;

(©) f(x, y>:w+%ifx¢o, £0,49) =0

Ty
al
(€) f(, y) = ~sin(a? + |ay) it 2 £ 0, and F(0, y) = 0.

[Hints: In (c) and (d), |f(z, y)| < || +|yl; in (e), use |sinal < [al]

@) flz,y) =—=+ xsini if xy # 0, and f(z, y) = 0 otherwise;

4 Use Problem 14 in §2 for limit computations.
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84. Infinite Limits. Operations in E*

As we have noted, Theorem 1 of §3 does not apply to infinite limits,' even if
the function values f(x), g(x), h(z) remain finite (i.e., in E*). Only in certain
cases (stated below) can we prove some analogues.

There are quite a few such separate cases. Thus, for brevity, we shall adopt
a kind of mathematical shorthand. The letter ¢ will not necessarily denote a
constant; it will stand for

“a function f: A — E', A C (S, p), such that f(z) — ¢ € E! as x — p.”?

Similarly, “0” and “£o00” will stand for analogous expressions, with ¢ replaced
by 0 and £oo, respectively.
For example, the “shorthand formula” (+00) + (4+00) = 00 means
“The sum of two real functions, with limit +oco at p (p € 5), is itself a
function with limit +oc at p.”3
The point p is fixed, possibly +oo (if A C E*). With this notation, we have
the following theorems.
Theorems.
1. (£o0) + (£o0) = £oo.

2. (£00) + ¢ = g+ (Fo00) = £o0.

3. (£00) - (fo0) = +00.

4. (£00) - (Foo) = —00.

5. | £ oo| = +o0.

6. (£o00) ¢ =¢q- (£o0) = +oo if ¢ > 0.
7. (£00) - qg=q- (Fo0) = Foo if ¢ < 0.
8. —(£00) = Foo.

9. wz(:l:oo)-l ifq#0

q q

10. (% —0.
11.

(
12. (+00)~® = 0.
13. (

LTt even has no meaning since operations on Zoco have not been defined.

2 Note that q is finite throughout.

3 Similarly for (—oco) + (—00) = —oc. Both combined are written as “(00) + (£oo) =
+00.”
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14. (+00)7 =0 if ¢ < 0.
15. If ¢ > 1, then g7 = +oo and ¢~ = 0.
16. If0 < q <1, then ¢v>° =0 and ¢~ = +oo.

We prove Theorems 1 and 2, leaving the rest as problems. (Theorems 11-16
are best postponed until the theory of logarithms is developed.)

1. Let f(z) and g(z) — +oo as © — p. We have to show that
f(@) + g(x) = +oo,
i.e., that
(Vbe EY) (36>0) (Yo € ANG-,(8)) f(z)+g(x) >b

(we may assume b > 0). Thus fix b > 0. As f(z) and g(x) — +oo, there
are &, 6" > 0 such that

(Ve e ANG-,(8") f(x) >band (Vo € ANG_,(8")) g(z) > b.
Let 6 = min(é’, §"’). Then
Vze ANG-,(0)) f(z)+g(xz)>b+b>0b,

as required; similarly for the case of —oco.

2. Let f(x) — +oo and g(z) — g € E'. Then there is 6’ > 0 such that for
xin ANG-,(8"), l[¢ — g(z)|] <1, so that g(z) > ¢ — 1.
Also, given any b € E!, there is 6" such that

Vz e ANG-,(8") f(z)>b—g+1.
Let 6 = min(¢’, ¢”). Then
(V2 € ANG-y(3)) f(@)+g(x)>b—q+1)+(g—1)=b,
as required; similarly for the case of f(z) — —oco.

Caution: No theorems of this kind exist for the following cases (which there-
fore are called indeterminate expressions):
+o0 0
+00) + (—00), (£00)-0, ——, =, (£c0)?, 0° 1%~ 1*
(hoo) +(~00), (£00):0, T 5, (00) (1)
In these cases, it does not suffice to know only the limits of f and g. It
is necessary to investigate the functions themselves to give a definite answer,
since in each case the answer may be different, depending on the properties of
f and g. The expressions (1*) remain indeterminate even if we consider the
simplest kind of functions, namely sequences, as we show next.
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Examples.
(a) Let
Um = 2m and v, = —m.

(This corresponds to f(x) = 2z and g(z) = —z.) Then, as is readily seen,

Uy, —> +00, Uy — —00, and Uy, + Uy = 2m — m = m — +00.
If, however, we take z,,, = 2m and y,, = —2m, then

Tm + Ym = 2m — 2m = 0;

thus &, +ym is constant, with limit 0 (for the limit of a constant function
equals its value; see §1, Example (a)).

Next, let

U = 2m and z,, = —2m + (—=1)".
Then again
U — +00 and z,, — —00, but uy,;, + 2, = (—1)™;

Uy + 2y “oscillates” from —1 to 1 as m — 400, so it has no limit at all.

These examples show that (+00) + (—o0) is indeed an indeterminate
expression since the answer depends on the nature of the functions in-
volved. No general answer is possible.

(b) We now show that 1t is indeterminate.
Take first a constant {x}, ¢, = 1, and let y,,, = m. Then

T = 1, Ym — +00, and z¥ = 1" =1 =1z, — 1.

If, however, z,, = 1+ % and y,,, = m, then again y,,, — +oco0 and z,,, — 1
(by Theorem 10 above and Theorem 1 of Chapter 3, §15), but

. 1\m
does not tend to 1; it tends to e > 2, as shown in Chapter 3, §15. Thus
again the result depends on {z,,} and {ym,}.
In a similar manner, one shows that the other cases (1*) are indeterminate.

Note 1. It is often useful to introduce additional “shorthand” conventions.
Thus the symbol oo (unsigned infinity) might denote a function f such that
1F(@)] = +00 as @ —

we then also write f(z) — oo. The symbol 0" (respectively, 07) denotes a
function f such that
fz) > 0asxz—p
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and, moreover,
f(x) >0 (f(x) <0, respectively) on some G-p(9).

We then have the following additional formulas:

. (F00) (£o0)

(i) 5 =00, = =Foo
(ii) If ¢ > 0, then Oi“' = 400 and Oi— = —00.
(i) % = .
(iv) é =0.

The proof is left to the reader.

Note 2. All these formulas and theorems hold for relative limits, too.
So far, we have defined no arithmetic operations in E*. To fill this gap
(at least partially), we shall henceforth treat Theorems 1-16 above not only as
certain limit statements (in “shorthand”) but also as definitions of certain op-
erations in E*. For example, the formula (+00) + (+00) = +o0 shall be treated
as the definition of the actual sum of +00 and 400 in E*, with 400 regarded
this time as an element of E* (not as a function). This convention defines the
arithmetic operations for certain cases only; the indeterminate expressions (1*)
remain undefined, unless we decide to assign them some meaning.
In higher analysis, it indeed proves convenient to assign a meaning to at
least some of them. We shall adopt these (admittedly arbitrary) conventions:
(££00) + (Foo) = (F00) — (£o0) = 400; 00 =1; o
{ 0- (£o0) = (£o0) - 0 =0 (even if 0 stands for the zero-vector). @)

Caution: These formulas must not be treated as limit theorems (in “short-
hand”). Sums and products of the form (2*) will be called “unorthodoz.”

Problems on Limits and Operations in E*
1. Show by examples that all expressions (1*) are indeterminate.

2. Give explicit definitions for the following “unsigned infinity” limit state-
ments:

(a) lim f(z) = oo; (b) lim f(z) = oc; (¢) lim f(z) = oo.

r—p z—pt r—00

3. Prove at least some of Theorems 1-10 and formulas (i)—(iv) in Note 1.
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4. In the following cases, find lim f(z) in two ways: (i) use definitions only;
(ii) use suitable theorems and justify each step accordingly.

1 . xz(z—1)
® g 5 =0 ®) 7 e
2?2 -2 +1 2?2 -2z +1
_ d) llm ——.
© M e @l e
22 —2rx+1

(e) i$x273x+2

(= 00).

[Hint: Before using theorems, reduce by a suitable power of z.]

5. Let
flz) = Zakzk and g(z) = Zbkzk (an #0, by, #0).
k=0 k=0
. . flx) ., o ) i
Find lim ——= if (i) n > m; (ii) n < m; and (iii)) n =m (n, m € N).

o g(z)

6. Verify commutativity and associativity of addition and multiplication
in E*, treating Theorems 1-16 and formulas (2*) as definitions. Show
by examples that associativity and commutativity (for three terms or
more) would fail if, instead of (2*), the formula (+00) 4 (Foo) = 0 were
adopted.

[Hint: For sums, first suppose that one of the terms in a sum is +o0o; then the sum
is +o0o. For products, single out the case where one of the factors is 0; then consider
the infinite cases.]

7. Continuing Problem 6, verify the distributive law (z +y)z = zz + yz in
E*, assuming that z and y have the same sign (if infinite), or that z > 0.
Show by examples that it may fail in other cases; e.g., if t = —y = 400,
z=—1.

§5. Monotone Functions

A function f: A — E*, with A C E*, is said to be nondecreasing on a set
B CAiff

x <y implies f(z) < f(y) for z, y € B.
It is said to be nonincreasing on B iff
x <y implies f(z) > f(y) for z, y € B.

Notation: f1 and f|] (on B), respectively.
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In both cases, f is said to be monotone or monotonic on B. If f is also one
to one on B (i.e., when restricted to B), we say that it is strictly monotone
(increasing if f1 and decreasing if f).

Clearly, f is nondecreasing iff the function —f = (—1)f is nonincreasing.
Thus in proofs, we need consider only the case f1. The case f| reduces to it
by applying the result to —f.

Theorem 1. If a function f: A — E* (A C E*) is monotone on A, it has a
left and a right (possibly infinite) limit at each point p € E*.
In particular, if f1 on an interval (a, b) # 0, then

f(p™) = sup f(x) forp e (a,b]
a<z<p

and
fw*) = inf f(z) forp€ [a,b).
p<z<b
(In case fl, interchange “sup” and “inf.”)

Proof. To fix ideas, assume f1.

Let p € E* and B = {z € A | z < p}. Put ¢ = sup f[B] (this sup always
exists in E*; see Chapter 2, §13). We shall show that ¢ is a left limit of f at p
(i.e., a left limit over B).

There are three possible cases:

(1) If q is finite, any globe G, is an interval (c, d), ¢ < ¢ < d, in E*. As
¢ < q = sup f[B], ¢ cannot be an upper bound of f[B] (why?), so ¢ is
exceeded by some f(z), 2o € B. Thus

¢ < f(zg), o < p.
Hence as f1, we certainly have
¢ < f(zg) < f(x) for all x > zy (z € B).
Moreover, as f(x) € f[B], we have
f(x) < sup f[B] = q < d,

soc< f(z) <d;ie., f(z) € (¢, d) =Gq.
‘We have thus shown that

(VGy) Bzo<p) VzeB|xzg<z) flz)edy,
S0 q is a left limit at p.
(2) If ¢ = 400, the same proof works with G, = (¢, +00]. Verify!
(3) If ¢ = —o0, then
(Vz e B) f(x) <sup f[B] = —oo,
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ie., f(x) < —o0, so f(z) = —oo (constant) on B. Hence ¢ is also a left
limit at p (§1, Example (a)).

In particular, if fT on A = (a, b) with a,b € E* and a < b, then B =

(a, p) for p € (a, b]. Here p is a cluster point of the path B (Chapter 3, §14,

Example (h)), so a unique left limit f(p~) exists. By what was shown above,

g=f(p~)=sup f[B] = sup f(z), as claimed.
a<z<p
Thus all is proved for left limits.

The proof for right limits is quite similar; one only has to set

B={zecA|xz>p}, ¢g=inf f[B]. O

Note 1. The second clause of Theorem 1 holds even if (a, b) is only a
subset of A, for the limits in question are not affected by restricting f to (a, b).
(Why?) The endpoints a and b may be finite or infinite.

Note 2. If Dy = A = N (the naturals), then by definition, f: N — E* is a
sequence with general term x,, = f(m), m € N (see §1, Note 2). Then setting
p = 400 in the proof of Theorem 1, we obtain Theorem 3 of Chapter 3, §15.
(Verify!)

Example.
The exponential function F : E* — E' to the base a > 0 is given by

F(z) =a".

It is monotone (Chapter 2, §§11-12, formula (1)), so F(07) and F(0T)
exist. By the sequential criterion (Theorem 1 of §2), we may use a suitable
sequence to find F(07), and we choose x,, = = — 0T. Then

1
F(0%) = lim F<—> = lim a¥/™ =1
m—00 m m—00

(see Chapter 3, §15, Problem 20).

Similarly, taking @,, = — — 07, we obtain F(07) = 1. Thus

+) — =) — 1i — 1 [
F(0™)=F(0 )—i%F(I)—i%a =1.

(See also Problem 12 of §2.)

Next, fix any p € E'. Noting that

F(z) =a" = a?™ P = aPa” P,

we set y =z — p. (Why is this substitution admissible?) Then y — 0 as

T — p, SO we get

lim F(z) =lima? - lim a® P =aP lim a¥ = a? - 1 = a? = F(p).
T—p T—p y—0
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As lim,,, F(z) = F(p), F is continuous at each p € E'. Thus all
exponentials are continuous.

Theorem 2. If a function f: A — E* (A C E*) is nondecreasing on a finite
or infinite interval B = (a, b) C A and if p € (a, b), then
Fa®) < f(p7) < fp) < fF) < FO07), e

and for no = € (a, b) do we have

F7) < flx) < £(p) or f(p) < f(2) < f(pT)!
similarly in case fl (with all inequalities reversed).

Proof. By Theorem 1, f1 on (a, p) implies
fla*)= int () and f(p) = sup f(a);
a<z<p

a<z<p

thus certainly f(a%) < f(p~). As f1, we also have f(p) > f(z) for all = €
(a, p); hence
f(p) = sup f(z)=f(p~).

a<z<p
Thus
Fa®) < f7) < f(p);
similarly for the rest of (1).
Moreover, if a < z < p, then f(z) < f(p~) since

f(p™) = sup f(z).

a<z<p

If, however, p < z < b, then f(p) < f(z) since f1. Thus we never have

f(p™) < f(z) < f(p). Similarly, one excludes f(p) < f(z) < f(p*). This
completes the proof. [

Note 3. If f(p™), f(p™), and f(p) exist (all finite), then

[f(p) = f(p7)| and [f(p") — f(p)]
are called, respectively, the left and right jumps of f at p; their sum is the
(total) jump at p. If f is monotone, the jump equals |f(p™) — f(p7)|-
For a graphical example, consider Figure 14 in §1. Here f(p) = f(p~) (both
finite), so the left jump is 0. However, f(pT) > f(p), so the right jump is
greater than 0. Since

flp)=f(p~) = lim f(z),

T—p-

f is left continuous (but not right continuous) at p.

L In other words, the interval [f(p~), f(pT)] contains no f(z) except f(p).
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Theorem 3. If f: A — E* is monotone on a finite or infinite interval (a, b)
contained in A, then all its discontinuities in (a, b), if any, are “jumps,” that
is, points p at which f(p~) and f(p*) exist, but f(p~) # f(p) or f(pT) # f(p).?
Proof. By Theorem 1, f(p~) and f(p*) exist at each p € (a, b).

If, in addition, f(p~) = f(p™) = f(p), then

lim f(z) = £(p)

by Corollary 3 of §1, so f is continuous at p. Thus discontinuities occur only

if f(p~) # f(p) or f(pT) # f(p). O

Problems on Monotone Functions

1. Complete the proofs of Theorems 1 and 2. Give also an independent
(analogous) proof for nonincreasing functions.

2. Discuss Examples (d) and (e) of §1 again using Theorems 1-3.

3. Show that Theorem 3 holds also if f is piecewise monotone on (a, b),
i.e., monotone on each of a sequence of intervals whose union is (a, b).

4. Consider the monotone function f defined in Problems 5 and 6 of Chap-
ter 3, §11. Show that under the standard metric in E', f is continuous
on E' and f~!is continuous on (0, 1). Additionally, discuss continuity
under the metric p’.

=-5. Prove that if f is monotone on (a, b) C E*, it has at most countably
many discontinuities in (a, b).
[Hint: Let f1. By Theorem 3, all discontinuities of f correspond to mutually disjoint
intervals (f(p~), f(pt)) # 0. (Why?) Pick a rational from each such interval, so
these rationals correspond one to one to the discontinuities and form a countable set
(Chapter 1, §9)].

6. Continuing Problem 17 of Chapter 3, §14, let

G111 = <1 2), Gy = (1 2), Gog = (7 8), and so on;

373 99 99
that is, G; is the ith open interval removed from [0, 1] at the mth step
of the process (i =1,2,...,2m 1 m=1,2 ... ad infinitum).
Define F': [0, 1] — E! as follows:
(i) F(0)=0;
oy 21 —1
(ii) if 2 € Gy, then F(z) = Tl and

2 Note that f(p~) and f(pT) may not exist if f is not monotone. See Examples (c) and
(f) in §1.
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(iii) if « is in none of the G,,; (i.e., z € P), then

F(z) = sup{F(y) ‘ Y€ UGmi’ y < :c}

m,i
Show that F' is nondecreasing and continuous on [0, 1]. (F' is called
Cantor’s function.)

7. Restate Theorem 3 for the case where f is monotone on A, where A is
a (not necessarily open) interval. How about the endpoints of A?

8§6. Compact Sets

We now pause to consider a very important kind of sets. In Chapter 3, §16,
we showed that every sequence {Z,,} taken from a closed interval [a, b] in E™
must cluster in it (Note 1 of Chapter 3, §16).! There are other sets with the
same remarkable property. This leads us to the following definition.

Definition 1.
A set A C (S, p) is said to be sequentially compact (briefly compact) iff
every sequence {z,,} C A clusters at some point p in A.
If all of S is compact, we say that the metric space (S, p) is compact.?

Examples.

(a) Each closed interval in E™ is compact (see above).

(a’) However, nonclosed intervals, and E™ itself, are not compact.

For example, the sequence x, = 1/n is in (0, 1] C E*, but clusters
only at 0, outside (0, 1]. As another example, the sequence z;,, = n has
no cluster points in E'. Thus (0, 1] and E' fail to be compact (even
though E! is complete); similarly for E" (*and C™).

(b) Any finite set A C (S, p) is compact. Indeed, an infinite sequence in such
a set must have at least one infinitely repeating term p € A. Then by
definition, this p is a cluster point (see Chapter 3, §14, Note 1).

(c) The empty set is “vacuously” compact (it contains no sequences).

(d) E* is compact. See Example (g) in Chapter 3, §14.
Other examples can be derived from the theorems that follow.

! Think of la, 13] as of a container so “compact” that it “squeezes” into clustering any
sequence that is inside it, and it supplies the cluster point.

2 Hence A is compact iff (A, p) is compact as a subspace of (S, p). Note that {z,»} clusters
at p iff there is a subsequence x,,, — p (Chapter 3, §16, Theorem 1).
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Theorem 1. If a set B C (S, p) is compact, so is any closed subset A C B.

Proof. We must show that each sequence {z,,} C A clusters at some p € A.
However, as A C B, {x,,} is also in B, so by the compactness of B, it clusters
at some p € B. Thus it remains to show that p € A as well.

Now by Theorem 1 of Chapter 3, §16, {x,,} has a subsequence x,,, — p.
As {zy,, } € A and A is closed, this implies p € A (Theorem 4 in Chapter 3,
§16). O

Theorem 2. Every compact set A C (S, p) is closed.

Proof. Given that A is compact, we must show (by Theorem 4 in Chapter 3,
§16) that A contains the limit of each convergent sequence {z,,} C A.

Thus let @, — p, {z} C A. As A is compact, the sequence {x,,} clusters
at some ¢ € A, i.e., has a subsequence x,,, — ¢ € A. However, the limit of the
subsequence must be the same as that of the entire sequence. Thus p = ¢ € A;
i.e., pisin A, as required. O

Theorem 3. Every compact set A C (S, p) is bounded.

Proof. By Problem 3 in Chapter 3, §13, it suffices to show that A is contained
in some finite union of globes. Thus we fix some arbitrary radius ¢ > 0 and,
seeking a contradiction, assume that A cannot be covered by any finite number
of globes of that radius.

Then if z; € A, the globe Gy, (¢) does not cover A, so there is a point zo € A
such that

x2 & Gy, (e), Le., p(z1, T2) > €.

By our assumption, A is not even covered by G, (¢) UGy, (). Thus there is a
point x5 € A with

x3 & Gy, () and x3 ¢ Gy, (€), €., p(xs, x1) > € and p(x3, x2) > €.

Again, A is not covered by U?:l G, (), so there is a point x4 € A not in that
union; its distances from x1, xo, and x3 must therefore be > ¢.

Since A is never covered by any finite number of e-globes, we can continue
this process indefinitely (by induction) and thus select an infinite sequence
{zm} C A, with all its terms at least e-apart from each other.

Now as A is compact, this sequence must have a convergent subsequence
{@m, }, which is then certainly Cauchy (by Theorem 1 of Chapter 3, §17). This
is impossible, however, since its terms are at distances > ¢ from each other,
contrary to Definition 1 in Chapter 3, §17. This contradiction completes the
proof. [

Note 1. We have actually proved more than was required, namely, that no
matter how small € > 0 is, A can be covered by finitely many globes of radius
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€ with centers in A. This property is called total boundedness (Chapter 3, §13,
Problem 4).

Note 2. Thus all compact sets are closed and bounded. The converse fails
in metric spaces in general (see Problem 2 below). In E” (*and C™), however,
the converse is likewise true, as we show next.

Theorem 4. In E™ (*and C™) a set is compact iff it is closed and bounded.

Proof. In fact, if a set A C E™ (*C™) is bounded, then by the Bolzano—
Weierstrass theorem, each sequence {z,,} C A has a convergent subsequence
T, — p. If A is also closed, the limit point p must belong to A itself.

Thus each sequence {x,,} C A clusters at some p in A, so A is compact.
The converse is obvious. [

Note 3. In particular, every closed globe in E™ (*or C™) is compact since
it is bounded and closed (Chapter 3, §12, Example (6)), so Theorem 4 applies.

We conclude with an important theorem, due to G. Cantor.

Theorem 5 (Cantor’s principle of nested closed sets). Ewvery contracting se-
quence of nonvoid compact sets,

FFoF2--2F, 2,

in a metric space (S, p) has a nonvoid intersection; i.e., some p belongs to all
Fon.

For complete sets Fy,, this holds as well, provided the diameters of the sets
F,, tend to 0: dF,, — 0.

Proof. We prove the theorem for complete sets first.

As F,, # 0, we can pick a point x,, from each F,, to obtain a sequence
{zm}, Tm € Fy,. Since dF,, — 0, it is easy to see that {z,,} is a Cauchy
sequence. (The details are left to the reader.) Moreover,

(Vm) x, € F,, C F.

Thus {z,,} is a Cauchy sequence in Fi, a complete set (by assumption).

Therefore, by the definition of completeness (Chapter 3, §17), {z,,} has a
limit p € Fy. This limit remains the same if we drop a finite number of terms,
say, the first m —1 of them. Then we are left with the sequence x,,, Tymt1, - .,
which, by construction, is entirely contained in F,, (why?), with the same limit
p. Then, however, the completeness of F;,, implies that p € F},, as well. As m
is arbitrary here, it follows that (Vm) p € F,, i.e.,

o0
pE ﬂ F,,, as claimed.

m=1

The proof for compact sets is analogous and even simpler. Here {z,,} need
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not be a Cauchy sequence. Instead, using the compactness of Fi, we select
from {x,,} a subsequence z,,, — p € F} and then proceed as above. [

Note 4. In particular, in E™ we may let the sets Fj,, be closed intervals
(since they are compact). Then Theorem 5 yields the principle of nested in-
tervals: Every contracting sequence of closed intervals in E™ has a nonempty
intersection. (For an independent proof, see Problem 8 below.)

Problems on Compact Sets
1. Complete the missing details in the proof of Theorem 5.

2. Verify that any infinite set in a discrete space is closed and bounded but
not compact.
[Hint: In such a space no sequence of distinct terms clusters.]

3. Show that E™ is not compact, in three ways:
(i) from definitions (as in Example (a/));
(ii) from Theorem 4; and

(iii) from Theorem 5, by finding in E™ a contracting sequence of infinite
closed sets with a void intersection. For example, in E' take the
closed sets F,, = [m, +o0), m =1, 2, .... (Are they closed?)

4. Show that E* is compact under the metric p’ defined in Problems 5 and
6 in Chapter 3, §11. Is E' a compact set under that metric?

[Hint: For the first part, use Theorem 2 of Chapter 2, §13, noting that G4 is also a
globe under p’. For the second, consider the sequence =, = n.]

5. Show that a set A C (S, p) is compact iff every infinite subset B C A
has a cluster point p € A.

[Hint: Select from B a sequence {zm, } of distinct terms. Then the cluster points of
{xm} are also those of B. (Why?)]

6. Prove the following.
(i) If A and B are compact, so is AU B, and similarly for unions of

n sets.

(ii) If the sets A; (i € I) are compact, so is [, 4;, even if I is infinite.

il
Disprove (i) for unions of infinitely many sets by a counterexample.
[Hint: For (ii), verify first that ;< A; is sequentially closed. Then use Theorem 1.]

7. Prove that if z,, — p in (S, p), then the set

B=A{p, z1, 22, ..., Ty ...}

is compact.
[Hint: If B is finite, see Example (b). If not, use Problem 5, noting that any infinite
subset of B defines a subsequence xm,; — p, so it clusters at p.]
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8.

=10.
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Prove, independently, the principle of nested intervals in E™, i.e., The-
orem 5 with -

F, = [@m, bm] C E,
where

) amn) and Bm = (bmla ey bmn)»

[Hint: As Fipq41 € Fin, Gmy1 and 5m+1 are in Fn,; hence by properties of closed
intervals,

dm = (aml, e

amk < mt1,k SOmyr k Sk, K=1,2,...,n.
Fixing k, let Ay be the set of all a,,, m =1, 2, .... Show that A is bounded above
by each by, so let py, = sup Ay in E'. Then
(Vm)  amik <pk < bimg. (Why?)

Unfixing k, obtain such inequalities for k =1, 2, ..., n. Let p = (p1, ..., px). Then

(Ym) P E [@m, bm], i.e., P E ﬂFm, as required.

Note that the theorem fails for nonclosed intervals, even in E'; e.g., take F, =
(0, 1/m] and show that ,, Fin = 0.]

. From Problem 8, obtain a new proof of the Bolzano—Weierstrass theo-

rem.
[Hint: Let {Z,,} € [a, b] C E™; put Fy = [a, b] and set

dFy = p(a, b) =d (diagonal of Fp).

Bisecting the edges of Fp, subdivide Fp into 27 intervals of diagonal d/2;® one of
them must contain infinitely many z,,. (Why?) Let F; be one such interval; make
it closed and subdivide it into 2" subintervals of diagonal d/22. One of them, Fb,
contains infinitely many x,,; make it closed, etc.

Thus obtain a contracting sequence of closed intervals Fy, with

d
dFm, = om’ m=1,2,....
From Problem 8, obtain
oo
pe () Fm

Show that {Zm} clusters at p.]
Prove the Heine—Borel theorem: If a closed interval Fy C E™ is covered
by a family of open sets G; (i € I), i.e.,
Fo C U Gi,
i€l
then it can always be covered by a finite number of these G;.

[Outline of proof: Let dFy = d. Seeking a contradiction, suppose Fy cannot be
covered by any finite number of the G;.

3 This is achieved by drawing n planes perpendicular to the axes (Chapter 3, §§4-6).
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11.

12.

13.

14.

As in Problem 9, subdivide Fy into 2" intervals of diagonal d/2. At least one
of them cannot be covered by finitely many G;. (Why?) Choose one such interval,
make it closed, call it Fy, and subdivide it into 2" subintervals of diagonal d/22.
One of these, F», cannot be covered by finitely many G;; make it closed and repeat
the process indefinitely.

Thus obtain a contracting sequence of closed intervals Fy, with

d

:27m7

dFpm m=1,2....

From Problem 8 (or Theorem 5), get p € () Fi,.
As p € Fp, p is in one of the G;; call it G. As G is open, P is its interior point,
so let G D Gp(e). Now take m so large that d/2"" = dFy, < €. Show that then

Fn C Gﬁ(a) - G.

Thus (contrary to our choice of the Fy,) Fp, is covered by a single set G;. This
contradiction completes the proof.]

Prove that if {z,,,} C A C (S, p) and A is compact, then {z,,} converges
iff it has a single cluster point.
[Hint: Proceed as in Problem 12 of Chapter 3, §16.]

Prove that if § # A C (5, p) and A is compact, there are two points
p, q € A such that dA = p(p, q).
[Hint: As A is bounded (Theorem 3), dA < +o00. By the properties of suprema,

1
(Vn) (3 Tn, Yn € A) dA — — < P(ZL'n, yn) < dA. (EXplaiIlI)
n

By compactness, {xn} has a subsequence x,, — p € A. For brevity, put =} = n,,
Y = Yny,- Again, {y} } has a subsequence y}gm — q € A. Also,

1
dA— —— < p(a},,, i) < dA.

Nk, m
Passing to the limit (as m — 400), obtain
dA < p(p, q) < dA
by Theorem 4 in Chapter 3, §15.]

Given nonvoid sets A, B C (S, p), define
p(A, B) =inf{p(z, y) |z € A, y € B}.

Prove that if A and B are compact and nonempty, there are p € A and
q € B such that p(p, q) = p(4A, B). Give an example to show that this
may fail if A and B are not compact (even if they are closed in E!).
[Hint: For the first part, proceed as in Problem 12.]

Prove that every compact set is complete. Disprove the converse by
examples.
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*87. More on Compactness

Another useful approach to compactness is based on the notion of a covering
of a set (already encountered in Problem 10 in §6). We say that a set F is
covered by a family of sets G; (i € I) iff

FclJa.
iel
If this is the case, {G;} is called a covering of F. If the sets G; are open, we
call the set family {G;} an open covering. The covering {G;} is said to be finite
(infinite, countable, etc.) iff the number of the sets Gj is.

If {G;} is an open covering of F, then each point z € F' is in some G; and is
its interior point (for G; is open), so there is a globe G, (g,) C G;. In general,
the radii e, of these globes depend on z, i.e., are different for different points
x € F. If, however, they can be chosen all equal to some e, then this ¢ is called
a Lebesgue number for the covering {G;} (so named after Henri Lebesgue).
Thus € is a Lebesgue number iff for every x € F, the globe G (¢) is contained
in some G;. We now obtain the following theorem.

Theorem 1 (Lebesgue). Every open covering {G;} of a sequentially compact
set F C (S, p) has at least one Lebesgue number e. In symbols,

(3e>0) Yz e F) (3i) Gale) C Gi. (1)

Proof. Secking a contradiction, assume that (1) fails, i.e., its negation holds.
As was explained in Chapter 1, §§1-3, this negation is

(Ve>0) Bz € F) (Vi) Ga.(e) ZGi

(where we write z. for = since here x may depend on €). As this is supposed
to hold for all € > 0, we take successively
1 1
e=1 -, ..., — ....
2 n
Then, replacing “x.” by “x,,” for convenience, we obtain

(¥n) G, € F) (Vi) G(%) ¢ G @)

Thus for each n, there is some x, € F such that the globe Gzn(%) is not
contained in any G;. We fix such an z,, € F for each n, thus obtaining a
sequence {z,} C F. As F' is compact (by assumption), this sequence clusters
at some p € F.

The point p, being in F', must be in some G; (call it G), together with some

globe Gp(r) € G. As pis a cluster point, even the smaller globe Gi;,(5) contains
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infinitely many x,,. Thus we may choose n so large that % < §and z, € Gy(3).
For that n, G4, (1) C G,(r) because

1 1 r ror
- < 4l <4l =
(Vaz € Gz”(n)) p(z,p) < p(z,zn) + p(zn,p) < - + 3 < 5 + 5 =T

As Gp(r) € G (by construction), we certainly have
1
—) C -
Go,(2) S Gol C G

However, this is impossible since by (2) no Gy, (%) is contained in any Gi.
This contradiction completes the proof. [

Our next theorem might serve as an alternative definition of compactness.
In fact, in topology (which studies spaces more general than metric spaces),
this is is the basic definition of compactness. It generalizes Problem 10 in §6.

Theorem 2 (generalized Heine-Borel theorem). A set F' C (S, p) is compact
iff every open covering of F' has a finite subcovering.

That is, whenever F is covered by a family of open sets G; (i € I), F' can
also be covered by a finite number of these Gj.

Proof. Let F be sequentially compact, and let F' C |JG;, all G; open. We
have to show that {G;} reduces to a finite subcovering.

By Theorem 1, {G;} has a Lebesgue number ¢ satisfying (1). We fix this
€ > 0. Now by Note 1 in §6, we can cover F' by a finite number of e-globes,

FC|JGule), areF
k=1

Also by (1), each G, () is contained in some G;; call it G;, . With the G;, so

fixed, we have
n

Fc|JGule)C Lnj G-
k=1

k=1

Thus the sets G, constitute the desired finite subcovering, and the “only if”
in the theorem is proved.

Conversely, assume the condition stated in the theorem. We have to show
that F' is sequentially compact, i.e., that every sequence {z,,} C F clusters at
some p € F.

Seeking a contradiction, suppose F' contains no cluster points of {x,,}. Then
by definition, each point x € F' is in some globe G, containing at most finitely
many T.,,. The set I is covered by these open globes, hence also by finitely
many of them (by our assumption). Then, however, F' contains at most finitely
many %, (namely, those contained in the so-selected globes), whereas the
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sequence {z,,} C F was assumed infinite. This contradiction completes the
proof. [

§8. Continuity on Compact Sets. Uniform Continuity

I. Some additional important theorems apply to functions that are contin-
uous on a compact set (see §6).

Theorem 1. If a function f: A — (T, p'), A C (S, p), is relatively continuous
on a compact set B C A, then f[B] is a compact set in (T, p'). Briefly,

the continuous image of a compact set is compact.

Proof. To show that f[B] is compact, we take any sequence {y,,} C f[B] and
prove that it clusters at some g € f[B].

As ym € f[B], ym = f(z,) for some z,, in B. We pick such an z,, € B for
each y,,, thus obtaining a sequence {x,,} C B with

f(xm):ymy 7”2172,....
Now by the assumed compactness of B, the sequence {z,,} must cluster at
some p € B. Thus it has a subsequence z,,, — p. As p € B, the function f
is relatively continuous at p over B (by assumption). Hence by the sequential
criterion (§2), ;,, — p implies f(zm,) — f(p); i.e.,
Ym, = f(p) € f[B.
Thus g = f(p) is the desired cluster point of {y,,}. O

This theorem can be used to prove the compactness of various sets.
Examples.
(1) A closed line segment Lla, b] in E™ (*and in other normed spaces) is
compact, for, by definition,
Lla, b ={a+ti|0<t<1}, where 4 =0b— a.

Thus L[a, b] is the image of the compact interval [0, 1] C E* under the
map f: E' — E", given by f(t) = a + tii, which is continuous by
Theorem 3 of §3. (Why?)
(2) The closed solid ellipsoid in E?,
2?2y 2
{(x,z,z) ‘ §+b_2+c_2§ },

is compact, being the image of a compact globe under a suitable contin-
uous map. The details are left to the reader as an exercise.
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Lemma 1. Every nonvoid compact set F C E' has a mazimum and a mini-
mum.

Proof. By Theorems 2 and 3 of §6, F' is closed and bounded. Thus F' has an
infimum and a supremum in E* (by the completeness axiom), say, p = inf F
and g = sup F. It remains to show that p, ¢ € F.

Assume the opposite, say, ¢ ¢ F. Then by properties of suprema, each globe
G4(6) = (¢ — 0, ¢+ 0) contains some x € B (specifically, ¢ — 6 < z < q) other
than q (for ¢ ¢ B, while x € B). Thus

(V3 >0) FNG_y(5) #0;

i.e., F clusters at ¢ and hence must contain q (being closed). However, since
q ¢ F, this is the desired contradiction, and the lemma is proved. O

The next theorem has many important applications in analysis.

Theorem 2 (Weierstrass).

(i) If a function f: A — (T, p') is relatively continuous on a compact set
B C A, then f is bounded on B; i.e., f[B] is bounded.

(ii) If, in addition, B # 0 and f is veal (f: A — E'), then f[B] has a
maximum and a minimum; i.e., [ attains a largest and a least value at
some points of B.

Proof. Indeed, by Theorem 1, f[B] is compact, so it is bounded, as claimed
in (i).

If further B # () and f is real, then f[B] is a nonvoid compact set in E!, so
by Lemma 1, it has a maximum and a minimum in E'. Thus all is proved. O

Note 1. This and the other theorems of this section hold, in particular, if
B is a closed interval in E™ or a closed globe in E™ (*or C™) (because these
sets are compact—see the examples in §6). This may fail, however, if B is
not compact, e.g., if B = (a, b). For a counterexample, see Problem 11 in
Chapter 3, §13.

Theorem 3. If a function f: A — (T, p'), A C (S, p), is relatively continuous
on a compact set B C A and is one to one on B (i.e., when restricted to B),
then its inverse, f=1, is continuous on f[B].*

Proof. To show that f~! is continuous at each point ¢ € f[B], we apply the
sequential criterion (Theorem 1 in §2). Thus we fix a sequence {y,,} C f[B],
Ym — q € f[B], and prove that f~(y,,) — f1(q).

I Note that f need not be one to one on all of its domain A, only on B. Thus f~! need
not be a mapping on f[A], but it is one on f[B]. (We use “f~!” here to denote the inverse
of f so restricted.)
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Let f~1(ym) = m and f~1(q) = p so that
Ym = f(zm), ¢ = f(p), and m, p € B.
We have to show that z,, — p, i.e., that
(Ve>0) (3k) Vm>k) plxm,, p) <e.

Seeking a contradiction, suppose this fails, i.e., its negation holds. Then
(see Chapter 1, §§1-3) there is an € > 0 such that

(VE) @mi > k) plem,,p) = ¢, (1)

where we write “my” for “m” to stress that the mj; may be different for different
k. Thus by (1), we fix some my, for each k so that (1) holds, choosing step by
step,

Mmpy1 >mg, k=1,2,....

Then the z,,, form a subsequence of {z,,}, and the corresponding y,,, =
f(zm,) form a subsequence of {y,,}. Henceforth, for brevity, let {z,,} and
{ym} themselves denote these two subsequences. Then as before, z,, € B,

Ym = f(zm) € f[B], and ym — ¢, ¢ = f(p). Also, by (1),
(Vm) p(@m,p) > e (z,, stands for ,,, ). (2)
Now as {x,,} C B and B is compact, {z,,} has a (sub)subsequence
Ty, — p’ for some p’ € B.
As f is relatively continuous on B, this implies
f@m,) = ym, = ().

However, the subsequence {y,,,} must have the same limit as {y,,}, i.e., f(p).
Thus f(p') = f(p), whence p =p’ (for f is one to one on B), 80 Zy,, = p’ = p.
This contradicts (2), however, and thus the proof is complete.? [

Examples (continued).
(3) For a fixed n € N, define f: [0, +o0) — E! by
flz) =z™

Then f is one to one (strictly increasing) and continuous (being a mono-
mial; see §3). Thus by Theorem 3, f~1 (the nth root function) is relatively
continuous on each interval

f[[a’ b” = [an’ bn]v

hence on [0, +00).

2We call f bicontinuous if (as in our case) both f and f~! are continuous.
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See also Example (a) in §6 and Problem 1 below.

II. Uniform Continuity. If f is relatively continuous on B, then by
definition,

(Ve >0) (Ype B) (36> 0) (Vo € BNG,() p(f(a), Jp) <e.  (3)

Here, in general, § depends on both € and p (see Problem 4 in §1); that is, given
€ > 0, some values of 6 may fit a given p but fail (3) for other points.

It may occur, however, that one and the same ¢ (depending on ¢ only)
satisfies (3) for all p € B simultaneously, so that we have the stronger formula

(Ve>0) (36>0) (Vp,z € B|p(z,p) <8) p(fx), f(p)) <e® (4)

Definition 1.

If (4) is true, we say that f is uniformly continuous on B.

Clearly, this implies (3), but the converse fails.

Theorem 4. If a function f: A— (T, p'), A C (S, p), is relatively continuous
on a compact set B C A, then f is also uniformly continuous on B.

Proof (by contradiction). Suppose f is relatively continuous on B, but (4)
fails. Then there is an € > 0 such that

(V0>0) (3p, € B) plx,p) <9, and yet p'(f(x), f(p)) > &
here p and x depend on §. We fix such an ¢ and let
b=, 2
2 m

Then for each ¢ (i.e., each m), we get two points x,,, p,, € B with

s ) < - )

and
o' (f(@m), flpm)) >e, m=1,2,.... (6)

Thus we obtain two sequences, {z,,} and {p,,}, in B. As B is compact,
{zm} has a subsequence z,,, — ¢ (¢ € B). For simplicity, let it be {z,,} itself;
thus

Tm — ¢, q€EDB.

3 In other words, f(z) and f(p) are e-close for any p, * € B with p(p, ) < d.
4 See Example (h) below.
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Hence by (5), it easily follows that also p,, — ¢ (because p(zy,, pm) — 0; see
Problem 4 in Chapter 3, §17). By the assumed relative continuity of f on B,
it follows that

f(zm) = f(q) and f(pm) — f(q) in (T, p').

This, in turn, implies that p'(f(zm), f(pm)) — 0, which is impossible, in view
of (6). This contradiction completes the proof. [

One type of uniformly continuous functions are so-called contraction map-
pings. We define them in Example (a) below and hence derive a few noteworthy
special cases. Some of them are so-called isometries (see Problems, footnote 5).

Examples.

(a) A function f: A — (T, p'), A C (S, p), is called a contraction map (on
A) iff

p(z,y) > p'(f(2), f(y)) for all z, y € A.

Any such map is uniformly continuous on A. In fact, given ¢ > 0, we
simply take § = . Then (Vz, p € A)

p(z, p) < ¢ implies p'(f(z), f(p)) < p(z, p) <d=e¢,

as required in (3).

(b) As a special case, consider the absolute value map (norm map) given by
f(z) =|Z| on E™ (*or another normed space).

It is uniformly continuous on E™ because

12 = [pl] < & = pl, ie., p'(f(2), f(P) < p(2, D),
which shows that f is a contraction map, so Example (a) applies.
(¢) Other examples of contraction maps are
(1) constant maps (see §1, Example (a)) and
(2) projection maps (see the proof of Theorem 3 in §3).
Verify!
(d) Define f: E! — E! by

f(z) =sinz
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By elementary trigonometry, |sinz| < |z|. Thus (Vz, p € E1)
[f(z) = f(p)| = | sinz — sinp|

1 1
=2 sini(a:—p)-cos§(x+p)

<2

1
sin i(x -p)

1
<2 fo—p|= o —p.

and f is a contraction map again. Hence the sine function is uniformly
continuous on E'; similarly for the cosine function.

Given ) # A C (S, p), define f: S — E! by
f(x) = pla, A) where p(x, A) = inf p(z, y).
IS
It is easy to show that

(Va,peS) pz, A) <p(z, p) + p(p, A),

ie.,

f(@) < pp, z) + f(p), or f(z) — f(p) < p(p, x).
Similarly, f(p) — f(z) < p(p, ). Thus

|f(x) = f(P)] < plp; @);
i.e., f is uniformly continuous (being a contraction map).
The identity map f: (S, p) = (S, p), given by
f(z) =,
is uniformly continuous on S since
p(F(z), 1(8)) = plz, p) (a contraction map!)

However, even relative continuity could fail if the metric in the domain
space S were not the same as in S when regarded as the range space
(e.g., make p’ discrete!)

Define f: E* — E! by
f(@)=a+bx (b#0).
Then
(Va,pe BY) |f(@) = f®)| = bl |z —pl;

ie.,

p(f(z), f(p)) = [b] p(z, p).
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Thus, given € > 0, take § = £/|b|. Then
plx, p) <6 = p(f(z), f(p)) = bl p(x, p) < |b| 0 =&,

proving uniform continuity.

(h) Let

(F3e>0) (Vd>0) (3x,pe B)

F@) = % on B = (0, +00).

Then f is continuous on B, but not uniformly so. Indeed, we can prove
the negation of (4), i.e.,

pla, p) <dand p'(f(z), f(p)) Z2e. (&)
Take € =1 and any § > 0. We look for x, p such that

[z —pl < dand [f(z) - f(p)] Z &,

ie.,

This is achieved by taking

1 p
= mi = =c. ify!
P mm(é7 2)7 z=3 (Verify!)
Thus (4) fails on B = (0, +00), yet it holds on [a, +00) for any a > 0.
(Verify!)

Problems on Uniform Continuity;
Continuity on Compact Sets

. Prove that if f is relatively continuous on each compact subset of D,

then it is relatively continuous on D.
[Hint: Use Theorem 1 of §2 and Problem 7 in §6.]

. Do Problem 4 in Chapter 3, §17, and thus complete the last details in

the proof of Theorem 4.

. Give an example of a continuous one-to-one map f such that f~! is not

continuous.

[Hint: Show that any map is continuous on a discrete space (S, p).]

. Give an example of a continuous function f and a compact set D C

(T, p') such that f~1[D] is not compact.
[Hint: Let f be constant on E'.]

. Complete the missing details in Examples (1) and (2) and (c¢)—(h).

. Show that every polynomial of degree one on E™ (*or C™) is uniformly

continuous.
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7.

=8.

10.

11.

12.

Show that the arcsine function is uniformly continuous on [—1, 1].
[Hint: Use Example (d) and Theorems 3 and 4.

Prove that if f is uniformly continuous on B, and if {z,,} C B is
a Cauchy sequence, so is {f(xm,)}. (Briefly, f preserves Cauchy se-
quences.) Show that this may fail if f is only continuous in the ordinary
sense. (See Example (h).)

. Prove that if f: S — T is uniformly continuouson B C S, and g: T'— U

is uniformly continuous on f[B], then the composite function g o f is
uniformly continuous on B.

Show that the functions f and f~' in Problem 5 of Chapter 3, §11 are
contraction maps,” hence uniformly continuous. By Theorem 1, find
again that (E*, p’) is compact.
Let A’ be the set of all cluster points of A C (S, p). Let f: A — (T, p')
be uniformly continuous on A, and let (7, p’) be complete.

(i) Prove that lim,_,, f(z) exists at cach p € A’

(ii) Thus define f(p) = lim,_,, f(z) for each p € A" — A, and show

that f so extended is uniformly continuous on the set A = AUA’.S
(iii) Consider, in particular, the case A = (a, b) C E', so that
A=A =]a,b].

[Hint: Take any sequence {zm} C A, z,m, — p € A’. As it is Cauchy (why?), so is
{f(zm)} by Problem 8. Use Corollary 1 in §2 to prove existence of limgz_, f(z).
For uniform continuity, use definitions; in case (iii), use Theorem 4.]

Prove that if two functions f, g with values in a normed vector space
are uniformly continuous on a set B, so also are f+ g and af for a fixed
scalar a.

For real functions, prove this also for fV g and f A g defined by
(f Vg)(x) = max(f(z), g(x))

and

(f Ag)(x) = min(f(x), g(x)).

[Hint: After proving the first statements, verify that

1 1
max(a, b) = §(a+ b+ |b—al|) and min(a, b) = §(a+ b—1|b—al)

and use Problem 9 and Example (b).]

5 They even are so-called isometries; a map f: (S, p) — (T, p') is an isometry iff for all =

and y in S, p(z, y) = p'(f(2), f(¥))-
61t is an easier problem to prove ordinary continuity. Do that first.
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13.

14.

15.

16.

17.
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Let f be vector valued and h scalar valued, with both uniformly contin-
uous on B C (S, p).
Prove that
(i) if f and h are bounded on B, then hf is uniformly continuous on
B;

(ii) the function f/h is uniformly continuous on B if f is bounded on
B and h is “bounded away” from 0 on B, i.e.,

(30>0) (YzeB) |h(zx)] >4
Give examples to show that without these additional conditions, hf and
f/h may not be uniformly continuous (see Problem 14 below).

In the following cases, show that f is uniformly continuous on B C E*,
but only continuous (in the ordinary sense) on D, as indicated, with
0<a<b< +oo.

(a) £(z) = -5 B=la, +00); D = (0, 1)
(b) f(x) =% B = [a, bl; D = [a, +o0).
() flx )—sm— B and D as in (a).
() f(z) = zcosz; B and D as in (b).

Prove that if f is uniformly continuous on B, it is so on each subset
ACB.

For nonvoid sets A, B C (5, p), define
p(A, B) = inf{p(z, y) |z € A, y € B}.

Prove that if p(A, B) > 0 and if f is uniformly continuous on each of A
and B, it is so on AU B.

Show by an example that this fails if p(A, B) =0, even if ANB =10
(e.g., take A =0, 1], B = (1, 2] in E', making f constant on each of A
and B).

Note, however, that if A and B are compact, AN B = () implies
p(A, B) > 0. (Prove it using Problem 13 in §6.) Thus AN B = 0
suffices in this case.

Prove that if f is relatively continuous on each of the disjoint closed sets
P, Fy, ..., F,,

it is relatively continuous on their union

n
F= U B
k=1
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=18.

19.

hence (see Problem 6 of §6) it is uniformly continuous on F' if the F},
are compact.

[Hint: Fix any p € F. Then p is in some F}, say, p € F}.
p & Fa, ...,
closed).

Deduce that there is a globe Gp(d) disjoint from each of Fs, ..., Fy, so that
FNGp(d) = F1 NGp(d). From this it is easy to show that relative continuity of f
on F follows from relative continuity on F}.]

As the F}, are disjoint,
Fp; hence p also is no cluster point of any of Fy, ..., Fy, (for they are

Let po, p1, - - ., Pm be fixed points in E™ (*or in another normed space).

Let
f(t) =D+ (t = k)(Pr+1 — Pr)
whenever k <t<k+1,tc E',k=0,1,...,m—1.
Show that this defines a uniformly continuous mapping f of the in-
terval [0, m] C E! onto the “polygon”

m—1

U Zlpx: prsa.
k=0

In what case is f one to one? Is f~!
L[pk, pr+1]? On the entire polygon?

[Hint: First prove ordinary continuity on [0, m| using Theorem 1 of §3.
points 1, 2, ...

uniformly continuous on each

(For the
, m — 1, consider left and right limits.) Then use Theorems 1-4.]

Prove the sequential criterion for uniform continuity: A function
f: A — T is uniformly continuous on a set B C A iff for any two
(not necessarily convergent) sequences {z,,} and {y,} in B, with
(T, Ym) — 0, we have p'(f(2m), f(ym)) — O (i.e., [ preserves con-
current pairs of sequences; see Problem 4 in Chapter 3, §17).

89. The Intermediate Value Property

Definition 1.

A function f: A — E* is said to have the intermediate value property,
or Darbouz property,’ on a set B C A iff, together with any two function
values f(p) and f(p1) (p, pr € B), it also takes all intermediate values
between f(p) and f(p1) at some points of B.

In other words, the image set f[B] contains the entire interval between
F(p) and f(py) in E*.

I This property is named after Jean Gaston Darboux, who investigated it for derivatives

(see Chapter 5, §2, Theorem 4).
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Note 1. It follows that f[B] itself is a finite or infinite interval in E*, with
endpoints inf f[B] and sup f[B]. (Verify!)

Geometrically, if A C E*, this means that the curve y = f(x) meets all
horizontal lines y = ¢, for ¢ between f(p) and f(p1). For example, in Figure 13
in §1, we have a “smooth” curve that cuts each horizontal line y = ¢ between
f£(0) and f(p1); so f has the Darboux property on [0, p1]. In Figures 14 and
15, there is a “gap” at p; the property fails. In Example (f) of §1, the property
holds on all of B! despite a discontinuity at 0.