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Preface

This is a multipurpose text. When taken in full, including the “starred” sec-
tions, it is a graduate course covering differentiation on normed spaces and
integration with respect to complex and vector-valued measures. The starred
sections may be omitted without loss of continuity, however, for a junior or
senior course. One also has the option of limiting all to E™, or taking Riemann
integration before Lebesgue theory (we call it the “limited approach”). The
proofs and definitions are so chosen that they are as simple in the general case
as in the more special cases. In a nutshell, the basic ideas of measure theory
are given in Chapter 7, §§1 and 2. Not much more is needed for the “limited
approach.”

In Chapter 6 (Differentiation), we have endeavored to present a modern
theory, without losing contact with the classical terminology and notation.
(Otherwise, the student is unable to read classical texts after having been
taught the “elegant” modern theory.) This is why we prefer to define derivatives
as in classical analysis, i.e., as numbers or vectors, not as linear mappings. The
latter are used to define a modern version of differentials.

In Chapter 9, we single out those calculus topics (e.g., improper integrals)
that are best treated in the context of Lebesgue theory.

Our principle is to keep the exposition more general whenever the general
case can be handled as simply as the special ones (the degree of the desired
specialization is left to the instructor). Often this even simplifies matters—
for example, by considering normed spaces instead of E™ only, one avoids
cumbersome coordinate techniques. Doing so also makes the text more flexible.

Publisher’s Notes

Text passages in blue are hyperlinks to other parts of the text.
Several annotations are used throughout this book:

* This symbol marks material that can be omitted at first reading.

=> This symbol marks exercises that are of particular importance.



About the Author

Elias Zakon was born in Russia under the czar in 1908, and he was swept
along in the turbulence of the great events of twentieth-century Europe.

Zakon studied mathematics and law in Germany and Poland, and later he
joined his father’s law practice in Poland. Fleeing the approach of the German
Army in 1941, he took his family to Barnaul, Siberia, where, with the rest of
the populace, they endured five years of hardship. The Leningrad Institute of
Technology was also evacuated to Barnaul upon the siege of Leningrad, and
there Zakon met the mathematician I. P. Natanson; with Natanson’s encour-
agement, Zakon again took up his studies and research in mathematics.

Zakon and his family spent the years from 1946 to 1949 in a refugee camp
in Salzburg, Austria, where he taught himself Hebrew, one of the six or seven
languages in which he became fluent. In 1949, he took his family to the newly
created state of Israel and he taught at the Technion in Haifa until 1956. In
Israel he published his first research papers in logic and analysis.

Throughout his life, Zakon maintained a love of music, art, politics, history,
law, and especially chess; it was in Israel that he achieved the rank of chess
master.

In 1956, Zakon moved to Canada. As a research fellow at the University of
Toronto, he worked with Abraham Robinson. In 1957, he joined the mathemat-
ics faculty at the University of Windsor, where the first degrees in the newly
established Honours program in Mathematics were awarded in 1960. While
at Windsor, he continued publishing his research results in logic and analysis.
In this post-McCarthy era, he often had as his house-guest the prolific and
eccentric mathematician Paul Erdds, who was then banned from the United
States for his political views. Erdds would speak at the University of Windsor,
where mathematicians from the University of Michigan and other American
universities would gather to hear him and to discuss mathematics.

‘While at Windsor, Zakon developed three volumes on mathematical analysis,
which were bound and distributed to students. His goal was to introduce
rigorous material as early as possible; later courses could then rely on this
material. We are publishing here the latest complete version of the last of
these volumes, which was used in a two-semester class required of all Honours
Mathematics students at Windsor.



Chapter 6

Differentiation on E™ and Other
Normed Linear Spaces

§1. Directional and Partial Derivatives

In Chapter 5 we considered functions f: E' — E of one real variable.

Now we take up functions f: E' — E where both E' and E are normed
spaces.t

The scalar field of both is always assumed the same: E* or C (the complex
field). The case E = E* is excluded here; thus all is assumed finite.

We mostly use arrowed letters g, @, . . ., Z, §, Z for vectors in the domain space
E’, and nonarrowed letters for those in F and for scalars.

As before, we adopt the convention that f is defined on all of E’, with
f(Z) = 0 if not defined otherwise.

Note that, if p € E’, one can express any point & € E’ as
T =p+td,
with t € E' and @ a unit vector. For if & # p, set

—

1
t=17 ~pl and @ = (7 - p);
and if ¥ = p, set t =0, and any 4 will do. We often use the notation

A =F—-p=ti (tcFE', t,ick).

T+
Il

First of all, we generalize Definition 1 in Chapter 5, §1.

Definition 1.
Given f: B/ — E and p,@ € E' (@ # 0), we define the directional
derivative of f along @ (or d-directed derivative of f) at p’ by

(1) Daf(5) = lim 115 + 1) — (7))

1 We now presuppose §§9-12 of Chapter 3, including the “starred” parts.



2 Chapter 6. Differentiation on E™ and Other Normed Linear Spaces

if this limit exists in E (finite).
We also define the «-directed derived function,

Dﬁf: E — E,
as follows. For any p € E’,

Da (@) { lim %[f(ﬁ @) — f(F)] if this limit exists,

0 otherwise.

Thus Dgzf is always defined, but the name derivative is used only if the
limit (1) exists (finite). If it exists for each p in a set B C E’, we call Dz f (in
classical notation 0f/0) the @-directed derivative of f on B.

Note that, as t — 0, & tends to j over the line & = p'+ ti. Thus Dz f(p)
can be treated as a relative limit over that line. Observe that it depends on
both the direction and the length of @. Indeed, we have the following result.

Corollary 1. Given f: E' — E, 4 # 0, and a scalar s # 0, we have

Moreover, Dz f(P) is a genuine derivative iff Dz f(P) is.
Proof. Set ¢t = s6 in (1) to get

sDaf(P) = lim 2115 + 0sil) ~ £(7)] = Dy f(7). O

In particular, taking s = 1/|@|, we have

1
I I =1 and Dgf = ;Dsgf

Thus all reduces to the case Dz f, where ¥ = s@ is a unit vector. This device,
called normalization, is often used, but actually it does not simplify matters.

If E' = E™ (C™), then f is a function of n scalar variables z, (k=1,...,n)
and E’ has the n basic unit vectors €. This example leads us to the following
definition.

Definition 2.

If in formula (1), E' = E"™ (C™) and @ = €}, for a fixed k < n, we call
Dg f the partially derived function for f, with respect to xy, denoted

<

|st| =

£

of
Dy f or 8—%7

§1. Directional and Partial Derivatives 3

and the limit (1) is called the partial derivative of f at p, with respect to
Ty, denoted

o 0 . af
Dy f(p), or aka f(p), or 87“ -

If it exists for all p € B, we call Dy f the partial derivative (briefly,
partial) of f on B, with respect to xy.
In any case, the derived functions Dy f (k= 1,...,n) are always de-
fined on all of E™ (C™).
If B' = B3 (C?), we often write z,y, z for 21, 29, x3, and
of of of 2
—, =, — for D k=1,2,3).
8.7)7 ayu Oz or kf ( ) 4y )

Note 1. If E' = E', scalars are also “vectors,” and D; f coincides with f’
as defined in Chapter 5, §1 (except where f/ = +00). Explain!

Note 2. As we have observed, the @-directed derivative (1) is obtained by
keeping & on the line ¥ = p + tu.

If @ = €%, the line is parallel to the kth axis; so all coordinates of T, except
xy, remain fized (z; = p;, i # k), and f behaves like a function of one variable,
. Thus we can compute Dy f by the usual rules of differentiation, treating
all z; (i # k) as constants and zj, as the only variable.

For example, let f(z,y) = x2y. Then

of

_ — ey and X = =22
e =D f(x,y) = 2zy and By =Daf(z,y) =2

Note 3. More generally, given ¢ and @ # 0, set
n(t) = f(p +td), teE.
Then h(0) = f(p); so

Daf(5) = iy 7 (57 + 1)) — /7))

t—0
o () = h(0)
t—0 t—20
=1'(0)

if the limit exists. Thus all reduces to a function h of one real variable.

For functions f: E* — F, the existence of a finite derivative (“differentia-
bility”) at p implies continuity at p (Theorem 1 of Chapter 5, §1). But in the
general case, f: B/ — E, this may fail even if Dgf(p) exists for all @ # 0.

2 Similarly in the case E/ = E? (C?).
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Examples.
(a) Define f: E? — E! by

2
flay) = 2

:x4+y27 f(070):0

Fix a unit vector @ = (u1,uz) in E2. Let p = (0,0). To find Dz f(p), use
the h of Note 3:

N . . tudu .
h(t) = f(p +tu) = f(tu) = f(tur,tuz) = ﬁ if ug # 0,
1 2

and h = 0 if up = 0. Hence
u?
D f(F) = 1'(0) = % if us #0,
2

and h/(0) = 0 if uy = 0. Thus Dy (0) exists for all @. Yet f is discontin-
wous at 0 (see Problem 9 in Chapter 4, §3).

(b) Let

r+y ifzy=0,

[z, y) ={

Then f(z,y) = z on the z-axis; so D1 f(0,0) = 1.

Similarly, Dy f(0,0) = 1. Thus both partials exist at 0.

Yet f is discontinuous at 0 (even relatively so) over any line y = ax
(a # 0). For on that line, f(z,y) = 1 if (z,y) # (0,0); so f(z,y) — 1;
but £(0,0) =0+ 0 = 0.

Thus continuity at 0 fails. (But see Theorem 1 below!)

1 otherwise.

Hence, if differentiability is to imply continuity, it must be defined in a
stronger manner. We do it in §3. For now, we prove only some theorems on
partial and directional derivatives, based on those of Chapter 5.

Theorem 1. If f: E' — E has a u-directed derivative at p € E’, then [ is
relatively continuous at p over the line

T=p+ti (0+#decE).

Proof. Set h(t) = f(§ +ti), t € E'.

By Note 3, our assumption implies that A (a function on E') is differentiable
at 0.

By Theorem 1 in Chapter 5, §1, then, h is continuous at 0; so

lim h(t) = h(0) = f (),

§1. Directional and Partial Derivatives 5

ie.,

lim (7 + 1) = (7).

But this means that f(Z) — f(p)) as & — p’ over the line & = p + ti, for, on
that line, 7 = p + tu.
Thus, indeed, f is relatively continuous at p, as stated. O

Note that we actually used the substitution ¥ = p + tu. This is admissi-
ble since the dependence between z and ¢ is one-to-tone (Corollary 2(iii) of
Chapter 4, §2). Why?

Theorem 2. Let E' >4 =¢—p, @ #0.

If f: E' = E is relatively continuous on the segment I = L[p, q] and has a

@ -directed derivative on I — Q (Q countable), then

(2) 1f(@) = f(D)| < sup[Daf(Z)], Tel-Q.

Proof. Set again h(t) = f(p + tu) and g(t) = p + tad.
Then h = f o g, and g is continuous on E'. (Why?)
As f is relatively continuous on I = L[p, (], so is h = f o g on the interval
J =1[0,1] C E* (cf. Chapter 4, §8, Example (1)).
Now fix tg € J. If £g = g+ tod € I — @, our assumptions imply the
existence of
Da f(@o) = lim + [f(Fo + 1) — (o)

t—=0

1., Lo R R
= lim —[f (P + tow@ + t@) — f(D + to)]
t—0 t

1
= lim ;[h(to +1t) — h(to)]
= h'(to). (Explain!)
This can fail for at most a countable set @’ of points ¢y € J (those for which

To € Q)
Thus h is differentiable on J — @’; and so, by Corollary 1 in Chapter 5, §4,

|h(1) = h(0)| < sup [N (t)]= sup |Dgzf(Z).
teJ-Q’ Tel-Q

Now as h(1) = f(7 + @) = f(¢) and h(0) = f(p), formula (2) follows. [
Theorem 3. If in Theorem 2, E = E' and if f has a ii-directed derivative at

—»
’

least on the open line segment L(P,q), then

(3) 1(@) — f(P) = Da f(Zo)

for some Xy € L(P,q)
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The proof is as in Theorem 2, based on Corollary 3 in Chapter 5, §2 (instead
of Corollary 1 in Chapter 5, §4)
Theorems 2 and 3 are often used in “normalized” form, as follows.

Corollary 2. If in Theorems 2 and 3, we set
1
r=|i|=1¢—p|#0 and ¥ = -1,
r

then formulas (2) and (3) can be written as

(2) |£(@) = D) <|d =Pl sup |Ds f(Z)], & €l-Q,
and
(3) (@) = f(P) =|q — | Dz f(Zo)

for some Xy € L(P,q).

For by Corollary 1,
Daf=rDsf =|q—p|Dsf;

o (2) and (3') follow.

Problems on Directional and Partial Derivatives

1. Complete all missing details in the proof of Theorems 1 to 3 and Corol-
laries 1 and 2.

2. Complete all details in Examples (a) and (b). Find D, f(p) and Dy f(p)
also for ' # 0. Do Example (b) in two ways: (i) use Note 3; (ii) use
Definition 2 only.

3. In Examples (a) and (b) describe Dz f: E* — E!'. Compute it for

=L1)=p

In (b), show that f has no directional derivatives Dy f(p) except if
4 || €1 or @ || €2. Give two proofs: (i) use Theorem 1; (ii) use definitions
only.

4. Prove that if f: E™ (C™) — E has a zero partial derivative, Dy f = 0,
on a convex set A, then f(#) does not depend on zy, for ¥ € A. (Use
Theorems 1 and 2.)

5. Describe D;f and Dsf on the various parts of E2, and discuss the
relative continuity of f over lines through 0, given that f(z,y) equals:

(1) 7x2x+yy2 ; (ii) the integral part of = + y;
1 _ y

11) — + T sm — T ;
( ) || (iv) y 2 4+ y?

(v) sin(y cos x), (vi) z¥.

§1. Directional and Partial Derivatives 7

(Set f = 0 wherever the formula makes no sense.)

=-6. Prove that if f: E' — E! has a local maximum or minimum at § € E’,
then Dz f(p)) = 0 for every vector @ # 0 in E'.
[Hint: Use Note 3, then Corollary 1 in Chapter 5, §2.]

7. State and prove the Finite Increments Law (Theorem 1 of Chapter 5,
§4) for directional derivatives.
[Hint: Imitate Theorem 2 using two auxiliary functions, h and k.|

8. State and prove Theorems 4 and 5 of Chapter 5, §1, for directional
derivatives.

§2. Linear Maps and Functionals. Matrices

For an adequate definition of differentiability, we need the notion of a linear
map. Below, E', E”, and E denote normed spaces over the same scalar field,
E'or C.

Definition 1.

A function f: E' — E is a linear map if and only if for all ¥,¢ € E' and
scalars a, b

(1) f(aZ +by) = af (F) + bf(¥);
equivalently, iff for all such ¥, ¥, and a
f@+9) = f(x) + f(y) and f(a) = af(Z). (Verify!)

If E = E’, such a map is also called a linear operator.
If the range space F is the scalar field of E', (i.e., E* or C,) the linear
map f is also called a (real or complex) linear functional on E'.

Note 1. Induction extends formula (1) to any “linear combinations”:

m

@) f(i ot = > sz

for all #; € E’ and scalars a;.
Briefly: A linear map f preserves linear combinations.

Note 2. Taking a = b= 0 in (1), we obtain f(G) =0 if f is linear.

Examples.
(a) Let £/ = E™(C"™). Fix a vector ¥ = (vq, ...
VZeE) f(X)=%-7T

,Up) in B and set
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(inner product; see Chapter 3, §§1-3 and §9).
Then
F(aF +b) = (aF) - 7+ (b7) -

=a(Z -

If, however, E' = C"™, then
n
f@)=Z-T=> apbp =Y s,

where vy, is the conjugate of the complex number vy.
By Theorem 3 in Chapter 4, §3, f is continuous (a polynomiall).

Moreover, f(Z) = Z - ¥ is a scalar (in E' or C). Thus the range of f
lies in the scalar field of E'; so f is a linear functional on E’.

Let I = [0,1]. Let E' be the set of all functions u: I — E that are of
class CD*> (Chapter 5, §6) on I, hence bounded there (Theorem 2 of
Chapter 4, §8).

As in Example (C) in Chapter 3, §10, E’ is a normed linear space, with
norm

[[ul] = sup [u()].
el

Here each function u € FE’ is treated as a single “point” in E’. The
distance between two such points, u and v, equals |ju — v||, by definition.
Now define a map D on E’ by setting D(u) = u’ (derivative of v on
I). As every u € E’ is of class CD®, so is u’.
Thus D(u) = v € E', and so D: E' — E' is a linear operator. (Its
linearity follows from Theorem 4 in Chapter 5, §1.)

Let again I = [0,1]. Let E’ be the set of all functions u: I — E that are
bounded and have antiderivatives (Chapter 5, §5) on I. With norm ||ul|
as in Example (b), E’ is a normed linear space.

Now define ¢: £’ — E by

¢(u):/01u7

with [u as in Chapter 5, §5. (Recall that folu is an element of E if
u: I = E.) By Corollary 1 in Chapter 5, §5, ¢ is a linear map of E’ into

§2. Linear Maps and Functionals. Matrices 9

E. (Why?)
(d) The zero map f =0 on E’ is always linear. (Why?)

Theorem 1. A linear map f: E' — E is continuous (even uniformly so) on
all of B iff it is continuous at 0; equivalently, iff there is a real ¢ > 0 such that

(VF e E) |f(7) <.
(We call this property linear boundedness.)

Proof. Assume that f is continuous at 0. Then, given € > 0, there is § > 0
such that

If(@) = FO)| = [f(@)] <e
whenever |7 — 0| = |Z| < J.

Now, for any T # 0, we surely have

or 1)
—| == <.
‘2@\ 2~
Hence
. or
i | <
w20 |r(g5)| <o

or, by linearity,

0
R 7| <
I

ie.,
2
@) < Xz
By Note 2, this also holds if # = 0.
Thus, taking ¢ = 2¢/4, we obtain
(3) (V¥ € E') f(Z)<cZ| (linear boundedness).

Now assume (3). Then
(V&g e E) [f(@—9)| <@ g
or, by linearity,
(4) VT, geE) |f@) - f@)<di -7

Hence f is uniformly continuous (given ¢ > 0, take § = ¢/¢). This, in turn,
implies continuity at 0; so all conditions are equivalent, as claimed. [J

L This is the so-called uniform Lipschitz condition.
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A linear map need not be continuous.? But, for E™ and C", we have the
following result.
Theorem 2.
(i) Any linear map on E™ or C™ is uniformly continuous.
(ii) Ewvery linear functional on E™ (C™) has the form
f(@)=2 -7 (dot product)
for some unique vector v € E™ (C™), dependent on f only.

Proof. Suppose f: E™ — FE is linear; so f preserves linear combinations.
But every £ € E™ is such a combination,

T = Zxk€k (Theorem 2 in Chapter 3, §§1-3).

Thus, by Note 1,
1) = f (Z xkak) = f(@).

k=1 k=1
Here the function values f(€};) are fixed vectors in the range space E, say,

f(@) =w € E,
so that
(5) J@) =) anf(@) = wpop, v €E.

k=1

k=1

Thus f is a polynomial in n real variables xj, hence continuous (even uniformly
so, by Theorem 1).

In particular, if E = E* (i.e., f is a linear functional) then all v, in (5) are
real numbers; so they form a vector

U= (v1,...,v%) in E™,
and (5) can be written as
f @)=z 7.
The vector ¥/ is unique. For suppose there are two vectors, ¥ and ¢/, such that
(VZeE™ f(@)=2-7=2- 4.
Then
(VZeE™ Z-(U—1u)=0.

2 See Problem 2(ii) below.
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By Problem 10 of Chapter 3, §§1-3, this yields ¢ — @ = 0, or ¥ = @. This
completes the proof for £ = E".

It is analogous for C™; only in (ii) the vy are complez and one has to replace
them by their conjugates vy, when forming the vector ¢’ to obtain f(¥) = Z - ¥.
Thus all is proved. [0

Note 3. Formula (5) shows that a linear map f: E™ (C") — E is uniquely
determined by the n function values vy = f(€}).
If further £ = E™ (C™), the vectors vy, are m-tuples of scalars,

Uk = (Vig,y -+ -5 Umnk)-

We often write such vectors vertically, as the n “columns” in an array of m
“rows” and n “columns”:

U111 V12 ... Uin

V21 V22 e Von
(6)

Uml Um2 .. Umn

Formally, (6) is a double sequence of mn terms, called an m x n matriz. We
denote it by [f] = (vik), where for k =1,2,...,n,
F(€r) = vk = (Vik, -+ -, Vmk)-

Thus linear maps f: E™ — E™ (or f: C™ — C™) correspond one-to-one to
their matrices [f].
The easy proof of Corollaries 1 to 3 below is left to the reader.

Corollary 1. If f,g: E' — E are linear, so is
h=af 4+ bg

for any scalars a,b.
If further E' = E™ (C™) and E = E™ (C™), with [f] = (vix) and [g] = (wik),
then

[h] = (avir + bw;y).

Corollary 2. A map f: E" (C™) — E is linear iff

F@) =Y v,
k=1

where v, = f(€).

Hint: For the “if,” use Corollary 1. For the “only if,” use formula (5) above.
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Corollary 3. If f: E' — E” and g: E” — E are linear, so is the composite
h=gof.
Our next theorem deals with the matriz of the composite linear map g o f.

Theorem 3. Let f: E' — E” and g: E"” — E be linear, with
E = E"(C"), E" = E™ (C™), and E = E" (C").
If [f] = (vik) and [g] = (wji), then
[h] = [g o f] = (zjk),

where

m
(7) zjk:ijivik, i=12,....,r, k=1,2,...,n.

i=1

Proof. Denote the basic unit vectors in E' by

€y oseh,
those in E” by

e
and those in E by

€ly...,Cp

Then for £k =1,2,...,n,

m T
fley) = v = Zvikeg' and h(e},) = szkej7
j=1

i=1
and for i =1,... m,
glef) = wjie;.
=1
Also,
hieh) = a7 (64 = o (Y- vael) = Y vnate) = Do (S sy )
i=1 i=1 i=1 j=1
Thus

r r m
!/
h(ek) = E Zjk€j = E ( E w]-wik)ej.
j=1 1 Ni=1

j=
But the representation in terms of the e; is unique (Theorem 2 in Chapter 3,
§§1-3), so, equating coefficients, we get (7). O
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Note 4. Observe that z;; is obtained, so to say, by “dot-multiplying” the
jth row of [g] (an r x m matrix) by the kth column of [f] (an m x n matrix).

It is natural to set
9] [f]=lg o fl,
or
(wji) (vie) = (2jk);
with z;;, as in (7).
Caution. Matrix multiplication, so defined, is not commutative.
Definition 2.

The set of all continuous linear maps f: E' — E (for fixed £ and F) is
denoted L(E', E).

If E = F’', we write L(E) instead.

For each f in L(E', E), we define its norm by

£l = sup [£(&)].°
|#|<1

Note that || f|| < +o00, by Theorem 1.

Theorem 4. L(E’, E) is a normed linear space under the norm defined above
and under the usual operations on functions, as in Corollary 1.
Proof. Corollary 1 easily implies that L(E’, E) is a vector space. We now
show that || - || is a genuine norm.

The triangle law,

If+gll < 171+ Mgl

follows exactly as in Example (C) of Chapter 3, §10. (Verify!)

Also, by Problem 5 in Chapter 2, §88-9, sup |af(Z)| = |a|sup |f(Z)|. Hence
llaf]] = |al||f]] for any scalar a.

As noted above, 0 < || f|| < +o0.

It remains to show that ||f|| = 0 iff f is the zero map. If

Il = sup [f(Z)] =0,
|#]<1
then |f(Z)| = 0 when |#| < 1. Hence, if Z # 0,
z 1
— )= —=f(@) =0.
1(7) = @/ @
As f(0) = 0, we have f(7) =0 for all ¥ € E'.
Thus || f|| = 0 implies f = 0, and the converse is clear. Thus all is proved. O

3 Equivalently, || f| = SUpPz_5 |f(Z)|/|Z]; see Note 5 below.
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Note 5. A similar proof, via f ( %) and properties of lub, shows that

171l = up{ m
and
(V& e E) [f@)] <]
It also follows that || f|| is the least real ¢ such that
(VZ e E) [f(@)] <zl

Verify. (See Problem 3'.)
As in any normed space, we define distances in L(E’, E') by

ef,9) = IIf =4l

making it a metric space; so we may speak of convergence, limits, etc., in it.
Corollary 4. If f € L(E',E") and g € L(E", E), then

lig o fII < llgllIF1-
Proof. By Note 5,
(V& e E) |g(f@)I < gl l£@)] < gl II£1|Z].

Hence -
e 20) [ LE <palis,
and so .
lol171 2 sup 2= D jgo gy,
40

Problems on Linear Maps and Matrices

1. Verify Note 1 and the equivalence of the two statements in Definition 1.

2. In Examples (b) and (c) show that
fn — f (uniformly) on I iff ||f, — f|| = O,

ie., fn— fin E'.
[Hint: Use Theorem 1 in Chapter 4, §2.]
Hence deduce the following.
(i) If E is complete, then the map ¢ in Example (c) is continuous.
[Hint: Use Theorem 2 of Chapter 5, §9, and Theorem 1 in Chapter 4, §12.]

(ii) The map D of Example (b) is not continuous.
[Hint: Use Problem 3 in Chapter 5, §9.]

3.
3.
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Prove Corollaries 1 to 3.

Show that

7= sup 17(@)] = sup /()] = sup @)

|#]=1 F£0 |Z|

[Hint: From linearity of f deduce that |f(&)| > |f(cx)]| if |¢| < 1. Hence one may
disregard vectors of length < 1 when computing sup |f(Z)|. Why?]

. Find the matrices [f], [g], [h], [k], and the defining formulas for the

linear maps f: E? - E', g: E3 - E* h: E* - E? k: E' — E3 if
i) fler) =3, f(éz) =2

(i) g(€1) = (1,0, -2,4), g(€2) = (0,2, -1, 1), g(€3) = (0, 1,0, —1);

(iil) A(e1) = (2, ) h(€2) = (0, =2), h(€3) = (1,0), h(€4) = (=1,1);
) K(

(iv) k(1) = (0,1,-1).

. In Problem 4, use Note 4 to find the product matrices [k][f], [g] K],

[f]11h], and [h] [¢g]. Hence obtain the defining formulas for ko f, g o k,
foh,and hog.

. For m x n matrices (with m and n fixed) define addition and multipli-

cation by scalars as follows:
alf]+blg] = [af +bg] if f,g € L(E",E™) (or L(C",C™)).

Show that these matrices form a vector space over E! (or C).

. With matrix addition as in Problem 6, and multiplication as in Note 4,

show that all n X n matrices form a noncommutative ring with unity,
i.e., satisfy the field axioms (Chapter 2, §§1-4) except the commutativity
of multiplication and existence of multiplicative inverses (give counterex-
amples!).

Which is the “unity” matrix?

. Let f: E/ — E be linear. Prove the following statements.

(i) The derivative Dz f(p) exists and equals f(@) for every p, 4 € E’
(@ #0);
(ii) f is relatively continuous on any line in E’ (use Theorem 1 in §1);

(iii) f carries any such line into a line in E.

. Let g: E” — E be linear. Prove that if some f: B/ — E” has a -

directed derivative at p € E’, so has h = gof, and Dzh(p) = g(Dgz f(P)).
[Hint: Use Problem 8.]
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10. A set A in a vector space V (A C V) is said to be linear (or a linear
subspace of V) iff aZ + by € A for any Z,¥ € A and any scalars a, b.
Prove the following.

(i) Any such A is itself a vector space.
(ii) If f: B/ — E is a linear map and A is linear in E’ (respectively,
in E), so is f[A] in E (respectively, so is f~1[A] in E').

11. A set A in a vector space V is called the span of aset B C A (A = sp(B))
iff A consists of all linear combinations of vectors from B. We then also
say that B spans A.

Prove the following:

(i) A =sp(B) is the smallest linear subspace of V that contains B.
(ii) If f: V — E is linear and A = sp(B), then f[A] =sp(f[B]) in E.

12. A set B ={&1,Z9,...,Z,} in a vector space V is called a basis iff each
v € V has a unique representation as

n
U= E aifi
i=1

for some scalars a;. If so, the number n of the vectors in B is called the
dimension of V, and V is said to be n-dimensional. Examples of such
spaces are E™ and C™ (the &}, form a basis!).
(i) Show that B is a basis iff it spans V (see Problem 11) and its
elements ¥; are linearly independent, i.e.,

n
g a;Z; = 0 iff all a; vanish.
i=1

(ii) If E’ is finite-dimensional, all linear maps on E’ are uniformly
continuous. (See also Problems 3 and 4 of §6.)

13. Prove that if f: E! — E is continuous and (Vz,y € E')

f@+y) = f2)+ f(y),

then f is linear; so, by Corollary 2, f(z) = vz where v = f(1).

[Hint: Show that f(ax) = af(x); first for a = 1,2,... (note: nx =z +z+---+x,
n terms); then for rational a = m/n; then for a =0 and a = —1. Any a € E' is a
limit of rationals; so use continuity and Theorem 1 in Chapter 4, §2.]

83. Differentiable Functions

As we know, a function f: E! — E (on E!) is differentiable at p € E! iff, with
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Af = f(z)— f(p) and Az =z — p,
f'(p) = lim % exists  (finite).

Setting Ax =z —p=1t, Af = f(p+1t) — f(p), and f'(p) = v, we may write
this equation as

lim|— fv’ =0,
t—0l ¢
or
o1
(1) }g%mlf(pﬂ)—f(p)—vtIZO

Now define a map ¢: E' — F by ¢(t) = tv, v = f'(p) € E.
Then ¢ is linear and continuous, i.e., ¢ € L(E!, E); so by Corollary 2 in §2,
we may express (1) as follows: there is a map ¢ € L(E*, E) such that

o1

lim H\Af —¢(t)| = 0.
We adopt this as a definition in the general case, f: E' — E, as well.
Definition 1.

A function f: E' — E (where E’ and E are normed spaces over the same
scalar field) is said to be differentiable at a point p € E’ iff there is a map

¢ € L(E',E)
such that 1
lim, —|Af — 6(7)] = 0;
750 |t
that is,
. 1 Lo R R
(2) lim —=[f(p+1)— f(p) —¢()] = 0.
70 |t]

As we show below, ¢ is unique (for a fixed p), if it exists.
We call ¢ the differential of f at p, briefly denoted df. As it depends
on p, we also write df (p;t) for df (¢) and df (p; -) for df.

Some authors write f/(p) for df(p; -) and call it the derivative at p, but
we shall not do this (see Preface). Following M. Spivak, however, we shall use
“If'(P)]” for its matriz, as follows.

Definition 2.
If B/ = E"(C") and E = E™(C™), and f: E' — E is differentiable at
P, we set

(")) = ldf (75 - )]
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and call it the Jacobian matriz of f at p.

Note 1. In Chapter 5, §6, we did not define df as a mapping. However, if
E' = E', the function value

df (p;t) = vt = f'(p) Az

is as in Chapter 5, §6.
Also, [f'(p)] is a 1 x 1 matrix with single term f’(p). (Why?) This motivated
Definition 2.

Theorem 1 (uniqueness of df). If f: E' — E is differentiable at P, then the
map ¢ described in Definition 1 is unique (dependent on f and p only).

Proof. Suppose there is another linear map g: £’ — E such that

T)— f(d) - g({)]:; E[Af g(f)] =0.

—

() lim [+

m
t—0 |t| —0

Let h = ¢ — g. By Corollary 1 in §2, h is linear.
Also, by the triangle law,

(@) = |6(F) = g(F)] < |Af = ¢(E) +|Af = g(F)].
Hence, dividing by |£],

P(QN:iWNNS—Mf¢(N INEG)

It [t £ [
By (3) and (2), the right side expressions tend to 0 as i — 0. Thus

lim h(t ) =0.
i —0 ‘ ‘

This remains valid also if # — 0 over any line through 0, so that £ /| | remains
constant, say t /|U'| = @, where @ is an arbitrary (but fixed) unit vector.
Then

—

(5)-so

is constant; so it can tend to 0 only if it equals 0, so h(@) = 0 for any unit
vector 1.

Since any & € E’ can be written as ¥ = |Z| @, linearity yields
M@) = |Z| h(i@) = 0.

Thus h = ¢ —g = 0 on E’, and so ¢ = g after all, proving the uniqueness
of . [
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Theorem 2. If f is differentiable at p, then

(i) f is continuous at P

(i) for any @ # 0, f has the @-directed derivative
Da f(P) = df (7; 7).

Proof. By assumption, formula (2) holds for ¢ = df (p; - ).

Thus, given ¢ > 0, there is § > 0 such that, setting Af = f(F+1) — f(7),
we have

(4) 7 ||Af o(t)| < & whenever 0 < |£] < 6;

or, by the triangle law,
(5) [AfI < |AF = o) + o) < elf| +1o(E)], 0<[F] <6

Now, by Definition 1, ¢ is linear and continuous; so
lim |¢(7)] = |¢(0)] = 0.
t —0

Thus, making ¥ — 0 in (5), with ¢ fixed, we get
lim [Af] = 0.
t —0

As t is just another notation for AZ = Z — 7, this proves assertion (1).
Next, fix any @ # 0 in E’, and substitute @ for £ in (4).
In other words, t is a real variable, 0 < t < §/|i|, so that { = til satisfies
0<|f] <.
Multiplying by ||, we use the linearity of ¢ to get
el > %7 ¢(tU)‘ _ ‘¥7¢ )| = (p+tut)—f(p)

As ¢ is arbitrary, we have

S ,
¢(a@) = lim — [f (7 + @) — £(7)].
But this is simply Dz f(p), by Definition 1 in §1.
Thus Dy /(7) = 6(7) = df (7 @), proving (ii). 0

Note 2. If £/ = E™ (C™), Theorem 2(ii) shows that if f is differentiable at
P, it has the n partials

Dif(p) =df(Ps€%), k=1,...,n.
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But the converse fails: the existence of the Dy f(p) does not even imply con-
tinuity, let alone differentiability (see §1). Moreover, we have the following
result.

Corollary 1. If E' = E™ (C") and if f: E' — FE is differentiable at p, then

(6) Ztkaf Ztk—f

where T = (t1,...,t,).

Proof. By definition, ¢ = df (p; - ) is a linear map for a fixed p.
If B/ = E™ or C™, we may use formula (3) of §2, replacing f and & by ¢
and ', and get

-

e
1

~—

= df(7;0) = Y thdf (7;6%) = >t Drf ()
k=1 k=1

by Note 2. [

Note 3. In classical notation, one writes Azy, or dxy, for ¢ in (6). Thus,
omitting 7 and £, formula (6) is often written as

8f af of
! d ——d ——dx,.
(6") f = gprdort g-deat ot o de
In particular, if n = 3, we write x,y, z for x1, 9, x3. This yields
af 8f af
6" df = == dy
(") F= e ™ T gy W g d

(a familiar calculus formula).

Note 4. If the range space E in Corollary 1 is E' (C), then the Dy f(p)
form an n-tuple of scalars, i.e., a vector in E™ (C™).

In case f: E™ — E', we denote it by

M=

VI(P) = (D1f(P), .-, Dnf(P)) = ) _ ExDrf (D).

x>~
Il

1

In case f: C™ — C, we replace the Dy f(p) by their conjugates Dy f(p) and set
n —_—
p) = Z éxDyf (D)
k=1

The vector V f(p) is called the gradient of f (“grad f”) at p.
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From (6) we obtain
(7) df (5;1) =Y _teDpf () =1 - V(D)

(dot product of & by Vf(p)), provided f: E" — E' (or f: C™ — C) is differ-
entiable at p.
This leads us to the following result.
Corollary 2. A function f: E" — E (or f: O™ — C) is differentiable at P
iff
L1 L or P
(8) lim —|f(pf+t)—f(p)—t -v[=0
—

for some U € E™ (C™).

In this case, necessarily T = Vf(P) and t - T = df (5;1), t € E™(C™).
Proof. If f is differentiable at p, we may set ¢ = df (p; - ) and ¥ = V f(p).

Then by (7),

o) = df (5 1) =1t ¥

so by Definition 1, (8) results.

Conversely, if some @ satisfies (8), set ¢(f) = ¢ - . Then (8) implies (2),
and ¢ is linear and continuous.

Thus by definition, f is differentiable at p; so (7) holds.

Also, ¢ is a linear functional on E™ (C™). By Theorem 2(ii) in §2, the ¥ in
¢(t) =1 -7 is unique, as is ¢.

Thus by (7), T = V f(p) necessarily. O

Corollary 3 (law of the mean). If f: E™ — E* (real) is relatively continuous
on a closed segment L[p, ], P # ¢, and differentiable on L(p,q), then

(9) H@) = f(P) = (7 —p)-VI(Zo)
for some ¥y € L(P,q).
Proof. Let

-

r=1g-pl, ¥ = (@~ 5), and i = (7 - 7).
By (7) and Theorem 2(ii),
Dy f(¥) = df (Z;0) = 0 - Vf(Z)
for Z € L(p, ). Thus by formula (3') of Corollary 2 in §1,
(@) = fP) =rDy f(Zo) =V - V[(Zo) = (7 —P) - VI(Zo)

for some Zo € L(p,q). O
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As we know, the mere existence of partials does not imply differentiability.
But the existence of continuous partials does. Indeed, we have the following
theorem.

Theorem 3. Let E' = E" (C™).

If f: E' — FE has the partial derivatives Dif (k = 1,...,n) on all of an
open set A C E', and if the Dy f are continuous at some p € A, then [ is
differentiable at p.

Proof. With p as above, let

n n
) = Ztkaf(ﬁ) with ¢ = Ztkgk cr.
k=1 k=1
Then ¢ is continuous (a polynomial!) and linear (Corollary 2 in §2).
Thus by Definition 1, it remains to show that

LIAf - o(F)] =

lim —
£0 [t ]

im
—0
that is,
1. 7

(10) hI i f+ Ztkaf ’

To do this, fix € > 0. As A is open and the Dy f are continuous at p’ € A,
there is a 0 > 0 such that Gz(d) C A and simultaneously (explain this!)

(V@€ Gp9)) |Def(@) = Duf(B)l < k=1,.

Hence for any set I C Gy(9)

(11) S}éI;|Dkf(f) — D f(P)| < (Why?)

3o

Now fix any £ € E’, 0 < |t < 8, and let 7, = 7,
k

ﬁk:ﬁ+zt76“ kzl,..,7n.
i=1

Then
Po=0+Y ti€i=p+1,
i=1

[P — Pr_il| = [txl|, and all ), lie in Gz(0), for

k k n
Ztiei = Z [t:]? < Z Iti|* = [t'] <6,
i=1 i=1 i=1

‘ﬁk —ﬁl =
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as required.
As Gp(9) is convex (Chapter 4, §9), the segments I, = L[P),_;, 7] all lie in
G5(0) C A; and by assumption, f has all partials there.
Hence by Theorem 1 in §1, f is relatively continuous on all Ij.

23

All this also applies to the functions g, defined by
(VT e E) gu(@) = f(@)—xxDpf(P), k=1,...,n.
(Why?) Here

(12)

(Why?)
Thus by Corollary 2 in §1, and (11) above,

Py = Dr—1| sup [Dyf(Z) — Dif ()]

since

Dygi(Z)

L9 (Pr) — gk (Pr—1)| < 1P

= Dy f(%)

— Dy f(p).

zely

3
Itkl< —[t],
n

By = Pl = [t < [,

by construction.

Combine with (12

differ by tr; so we obtain
L9k (%) — gk (Pr—1)| = [f (D) —

(13)

Also,

Thus

YEDY tkaf(ﬁ)‘ =

k=1

<

IN
[

), recalling that the kth coordinates zy, for p), and p)_4,

f@+1T) = f(F) = Af (see above).

n

> U@

k=1

™

k) —

J(Br—1) — te Di f (7))

n-—|t| = elt].
n

As ¢ is arbitrary, (10) follows, and all is proved. O

Theorem 4. If f: E" —
(f1,---

f=
(14)

E™ (or f: C™ —
s fm), then [f(D)] is an m X n matriz,

[f'®)] = [Drfi()], i=1,...

C"™) is differentiable at P, with

m, k=1,....n
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Proof. By definition, [f/(p)] is the matrix of the linear map ¢ = df (p; -),
¢ = (¢17 .. >¢m) Here

¢(f) = tuDif(P)
k=1

by Corollary 1.
As f=(f1,..., fm), we can compute Dy, f(p) componentwise by Theorem 5
of Chapter 5, §1, and Note 2 in §1 to get

Dif(p) = (D f1(P), -, Difm(P))

m

=Y eDufip), k=12...n,
i=1

where the e} are the basic vectors in E™ (C™). (Recall that the & are the
basic vectors in E™ (C™).)

Thus .
¢(F) = Zeéﬂﬁi({)-
=1
Also,
S(F) =Dty eiDifi(P) =D _ei > teDifi(p)-
k=1 i=1 =1 k=1

The uniqueness of the decomposition (Theorem 2 in Chapter 3, §§1-3) now
yields

¢i(f) = > _tDpfi(p), i=1,...,m, T e€E"(C").
k=1

If here t = &, then ¢;, = 1, while t; = 0 for j # k. Thus we obtain
¢7(€k):Dkfz(ﬁ)7 izl?"'am7k:17"'an'

Hence
¢(€k) - (U1k> V2ky - - - 7Umk)7
where
vik = ¢i(€k) = D fi (D).

But by Note 3 of §2, v1j, ..., Umi (written vertically) is the kth column of
the m x n matrix [¢] = [f/(p)]. Thus formula (14) results indeed. O

In conclusion, let us stress again that while Dy f(p) is a constant, for a fixed
P, df(p; -) is a mapping
¢ € L(E', E),

especially “tailored” for p.
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The reader should carefully study at least the “arrowed” problems below.

Problems on Differentiable Functions

1. Complete the missing details in the proofs of this section.
2. Verify Note 1. Describe [f/(7)] for f: E! — E™, too. Give examples.
=3. A map f: E' — F is said to satisfy a Lipschitz condition (L) of order
a >0 at piff
(30>0) 3K € B") (VT € G5(9)) |f(@) — f(p)| < K|Z —p|*.
Prove the following.

(i) This implies continuity at 7 (but not conversely; see Problem 7 in

Chapter 5, §1).

(ii) L of order > 1 implies differentiability at p, with df(p;-) = 0
on E'.

(iii) Differentiability at p’ implies L of order 1 (apply Theorem 1 in §2
to ¢ = df).

(iv) If f and g are differentiable at p, then

1

lim —— |Af||Ag| = 0.
513};|A5|| fl1Agl =0

4. For the functions of Problem 5 in §1, find those p at which f is differ-
entiable. Find

V@), df(p; ), and [f'(p)].
[Hint: Use Theorem 3 and Corollary 1.]
=-5. Prove the following statements.

(i) If f: B/ — FE is constant on an open globe G C E’, it is differen-
tiable at each p € G, and df (p, -) =0 on E'.

(ii) If the latter holds for each p' € G — @ (Q countable), then f is
constant on G (even on G) provided f is relatively continuous
there.

[Hint: Given p, ¢ € G, use Theorem 2 in §1 to get f(p) = f(q).]

6. Do Problem 5 in case G is any open polygon-connected set in E'. (See
Chapter 4, §9.)

=-7. Prove the following.
(i) If f,g: E' — E are differentiable at p, so is

h=af +bg,
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=8.

=9.

10.

11.
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for any scalars a,b (if f and g are scalar valued, a and b may be
vectors); moreover,

d(af + bg) = adf + bdyg,
ie.,
dh(p;t) = adf(5;1) + bdg(p;t), © € E'.
(ii) In case f,g: E™ — E' or C™ — C, deduce also that
Vh(p) = aV f(D) +bVg(p).
Prove that if f,g: E' — E'(C) are differentiable at §, then so are

g
h=gfand k= =.
f

(the latter, if f(p) # 0). Moreover, with a = f(p) and b = g(p)), show
that

(i) dh =adg +bdf and
(i) dk = (adg — bdf)/a?.
If further E/ = E™ (C™), verify that
(iti) VA(P) = aVyg(p) +bVf(p) and
(iv) Vk(p) = (aVg(p) — bV f(p))/a®.

Prove (i) and (ii) for vector-valued g, too.
[Hints: (i) Set ¢ = adg + bdf, with a and b as above. Verify that

Ah = ¢(F) = g(P)(Af — df (£)) + f(7)(Ag — dg(T)) + (Af)(Ag).
Use Problem 3(iv) and Definition 1.
(ii) Let F(£) = 1/f(f'). Show that dF = —df/a?. Then apply (i) to gF']
Let f: E/ — E™(C™), f = (f1,--., fm). Prove that
(i) f is linear iff all its m components fj are;

(ii) f is differentiable at p’ iff all fi are, and then df = (df, ..
Hence if f is complex, df = dfie + @ - dfim-

S dfm).

Prove the following statements.
(i) If f € L(E',E) then f is differentiable on E’, and df (p; ) = f,
pEE.
(ii) Such is any first-degree monomial, hence any sum of such mono-
mials.

Any rational function is differentiable in its domain.
[Hint: Use Problems 10(ii), 7, and 8. Proceed as in Theorem 3 in Chapter 4, §3.]
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12.

13.

14.

15.

*16.

17.

Do Problem 8(i) in case g is only continuous at p, and f(p) = 0. Find
dh.

Do Problem 8(i) for dot products h = f - g of functions f,g: E' —
E™(C™).
Prove the following.
(i) If ¢ € L(E™, EY) or ¢ € L(C™,C), then ||¢|| = |§|, with ¥ as in §2,
Theorem 2(ii).

(i) If f: E® — E' (f: C™ — C') is differentiable at 7, then
ldf (05 - )l = IV F (D).

Moreover, in case f: E™ — E',

V(D) = Daf(p) if li| =1
and —_—
Ny 0 — 7)
V) = Daf(5) when i = oo
thus

VI@)] = max Daf ().

[Hints: Use the equality case in Theorem 4(c’) of Chapter 3, §§1-3. Use formula (7),
Corollary 2, and Theorem 2(ii).]
Show that Theorem 3 holds even if
(i) Dy f is discontinuous at p, and
(ii) f has partials on A — @ only (Q countable, p’ € @), provided f is
continuous on A in each of the last n — 1 variables.

[Hint: For k = 1, formula (13) still results by definition of D; f, if a suitable § has
been chosen.|

Show that Theorem 3 and Problem 15 apply also to any f: £/ — E
where E’ is n-dimensional with basis {@1,...,%,} (see Problem 12 in
§2) if we write Dy f for Dy, f.

[Hints: Assume |t =1, 1 < k < n (if not, replace @y, by @y /|t@|; show that this
yields another basis). Modify the proof so that the ), are still in G(d). Caution:
The standard norm of E™ does not apply here.]

Let fy: B! — E' be differentiable at py (k = 1,...,n). For ¥ =
(x1,...,2n) € E™, set
F(Z) = felax) and G(&) = [] frlzr).
k=1 k=1
Show that F' and G are differentiable at p = (p1,...,pn). Express

VF(p) and VG(P) in terms of the fy (pk).
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[Hint: In order to use Problems 7 and 8, replace the fj by suitable functions defined
on E™. For VG(p), “imitate” Problem 6 in Chapter 5, §1.]

§4. The Chain Rule. The Cauchy Invariant Rule

To generalize the chain rule (Chapter 5, §1), we consider the composite h = go f
of two functions, f: E/ — E"” and g: B — FE, with E', E”, and FE as before.

Theorem 1 (chain rule). If
fiE —-E"andg: E' - E
are differentiable at P’ and § = f(P), respectively, then
h=gof
is differentiable at P/, and
(1) dh(ps -) = dg(q; -) o df (P -).

Briefly: “The differential of the composite is the composite of differentials.”

Proof. Let U =df(p; -), V =dg(q; -), and ¢ =V o U.

As U and V are linear continuous maps, so is ¢. We must show that ¢ =
dh(p; -). .

Here it is more convenient to write AZ or & — p for the “¢” of Definition 1
in §3. For brevity, we set (with ¢ = f(p))

(2) w(T) = Ah — ¢(AT) = W(E) = h(p) — o(F —p), TeFE,
3) u(@) = Af —U(AZ) = f(Z) - f(P) -U(F - p), TEF,
(4) o(i) = Ag = V(AY) = 9(§) —9(q) ~ V(7 —7), §€E"
Then what we have to prove (see Definition 1 in §3) reduces to

(5) lim w(F)

=0,
@7 |7 — Pl

while the assumed existence of df(p; -) = U and dg(q; -) = V can be ex-
pressed as

(5" lim ———= =0,

and

(5") lim.
Y
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From (2) and (3), recalling that h = go f and ¢ =V o U, we obtain
w(Z) = g(f()) — 9(q) = V(U@ - p))
=9(f(@)) —9(q) = V(f (@) = f(P) — w(ZT)).
Using (4), with ¥ = f(Z), and the linearity of V', we rewrite (6) as
w(Z) = g(f(T)) — 9(q) = V(f(@) = f(P) = V(u(Z))
= o(f(Z)) + V(u(T)).
(Verify!) Thus the desired formula (5

)
V(@) _,

(6)

will be proved if we show that

(©) BN
and
o) @)

=
iy | T — P

Now, as V is linear and continuous, formula (5’) yields (6’). Indeed,

lim @) _ limV( u(&) ):V(o):o

a=p |T—pl  aop \|T - D]

by Corollary 2 in Chapter 4, §2. (Why?)
Similarly, (5”) implies (6”) by substituting ¥ = f(&), since

(7) - F5)| < K17 - 7]
by Problem 3(iii) in §3. (Explain!) Thus all is proved. O
Note 1 (Cauchy invariant rule). Under the same assumptions, we also have
(7) dh(p; 1) = dg(g; 5)

if ¥ =df(p;t), t € E.
For with U and V' as above,

Thus if

we have

proving (7).
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Note 2. If
E' =E*(C"), E"=E™(C™),and E = E" (C")

then by Theorem 3 of §2 and Definition 2 in §3, we can write (1) in matriz
form,

(WD) = ' (@I (D)),

resembling Theorem 3 in Chapter 5, §1 (with f and g interchanged). Moreover,
we have the following theorem.

Theorem 2. With all as in Theorem 1, let
E/ — En (Cn)’ E// — Em (C«’m)7

and
f=f fm)
Then

Dyh(p Zng ) Di.fi(P);

or, in classical notation,

(8) — :Z i‘fi(ﬁ), k=1,2,...,n.

axk

Proof. Fix any basic vector € in £’ and set
§=df(p;ek), §=(s1,...,5m)€ E".
As f is differentiable at 7, so are its components f; (Problem 9 in §3), and
s; = dfi(p; €x) = Dr fi(D)

by Theorem 2(ii) in §3. Using also Corollary 1 in §3, we get

Zs Dig(q ZDkfz (@)
But as § = df (p; €), formula (7) yields
dg(q; §) = dh(p; €x) = Dih(p)
by Theorem 2(ii) in §3. Thus the result follows. [

Note 3. Theorem 2 is often called the chain rule for functions of several
variables. 1t yields Theorem 3 in Chapter 5, §1, if m =n = 1.
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In classical calculus one often speaks of derivatives and differentials of vari-
ables y = f(x1,...,x,) rather than those of mappings. Thus Theorem 2 is
stated as follows.

Let u=g(y1,...,ym) be differentiable. If, in turn, each
yi = fi(z1,...,2n)

is differentiable for i = 1,...,m, then u is also differentiable as a com-
posite function of the n variables xy, and (“simplifying” formula (8)) we
have

ou Jy;
/ p—
(8 axk Zayz dor k= 1,2,...,n.

It is understood that the partials

ou Jy;
and
a’Ek axk
while the Ou/dy; are at § = f(p), where f = (f1,..., fm). This “variable”
notation is convenient in computations, but may cause ambiguities (see the
next example).

are taken at some p € F’,

Example.

Let u = g(z,y, z), where z depends on = and y:
z = fs(z,y).
Set fi(z,y) =, fa(z,y) =y, f = (f1,f2, f3), and h =g o f; s0
hz,y) = g9(x,y, 2).

By (&),
ou 8u8x+8u8y+8u 0z
oz Oz Ox Oy Oz 0z Ox’
Here
oxr _90fr _ oy
9 = on =1 and 6:13_0’

for fy does not depend on xz. Thus we obtain
Oou Ou Ou 0z
®) r = ox 9z 0x
(Question: Is (9u/0z) (0z/0x) = 07?)

The trouble with (9) is that the variable u “poses” as both g and h.
On the left, it is h; on the right, it is g.
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To avoid this, our method is to differentiate well-defined mappings, not
“variables.” Thus in (9), we have the maps

g: E®> = F and f: E* — E3,

with f1, f2, f3 as indicated. Then if h = g o f, Theorem 2 states (9)
unambiguously as

D1h(p) = D1g(q) + D3g(q) - D1f(P),
where 5 € E? and
i: f(ﬁ) = (p17p27f3(ﬁ))'
(Why?) In classical notation,

oh 8g 89 0 fs
dr  dr ' 9z Oz
(avoiding the “paradox” of (9)).

Nonetheless, with due caution, one may use the “variable” notation where
convenient. The reader should practice both (see the Problems).

Note 4. The Cauchy rule (7), in “variable” notation, turns into

" Ou "\ Ou
1 =N dyi =Y o duy,
(10) du 2 oy dy T dzxy,

where dzy, = t;, and dy; = dfi(F;1).
Indeed, by Corollary 1 in §3,

dh(p' Z Dyh(p

Now, in (7),

-ty and dg(q; 5) = Y Dig(q) - si-

i=1

§=(51,---,5m) = df (P 1 )
so by Problem 9 in §3,

dfi(p;t) = s, i=1,...,m.
Rewriting all in the “variable” notation, we obtain (10).

The “advantage” of (10) is that du has the same form, independently of
whether w is treated as a function of the z; or of the y; (hence the name
“invariant” rule). However, one must remember the meaning of dzy and dy;,
which are quite different.

The “invariance” also fails completely for differentials of higher order (§5).

The advantages of the “variable” notation vanish unless one is able to “trans-
late” it into precise formulas.
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Further Problems on Differentiable Functions

1. For E = E" (C") prove Theorem 2 directly.
[Hint: Find
Dyphj(®), j=1,...,m

from Theorem 4 of §3, and Theorem 3 of §2. Verify that
Dih(p) = e;Dihy(5) and Dig(q) = e;Dig; ()
=1 j
where the e; are the basic unit vectors in E”. Proceed.]
2. Let g(I,y7Z) =Uu, T = fl(r70)7 Yy = f2(r7 9)7 Z = f3(7‘7 9)7 and
f = (f17f27f3): E2 - E3'
Assuming differentiability, verify (using “variables”) that

8 ou 6u 8u ou

by computing derivatives from (8 ). Then do all in the mapping notation
for H=go f, dH(p;1).

3. For the specific functions f, g, h, and k of Problems 4 and 5 of §2, set
up and solve problems analogous to Problem 2, using

(@) kof;  (b)gok;  (c) foly (d) hog.
4. For the functions of Problem 5 in §1, find the formulas for df (7;7). At
which p’ does df (p; - ) exist in each given case? Describe it for a chosen p'.

5. From Theorem 2, with E = E* (C), find
Vh(p ZDkg WV fi (D).

6. Use Theorem 1 for a new solution of Problem 7 in §3 with £ = E' (C).
[Hint: Define F' on E’ and G on E? (C?) by

= (f(&),9(&)) and G(¥) = ay1 + byz.

Then h = af +bg = Go F. (Why?) Use Problems 9 and 10(ii) of §3. Do all in
“variable” notation, too.]

7. Use Theorem 1 for a new proof of the “only if” in Problem 9 in §3.
[Hint: Set f; = g o f, where g(£) = z; (the ith “projection map”) is a monomial.
Verify!]

8. Do Problem 8(i) in §3 for the case B/ = E? (C?), with
f(@) =21 and ¢g(Z) = xa.
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10.

11.

12.
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(Simplify!) Then do the general case as in Problem 6 above, with
G() = y1y.

. Use Theorem 2 for a new proof of Theorem 4 in Chapter 5, §1. (Proceed

as in Problems 6 and 8, with £/ = E', so that D1h = k') Do it in the
“variable” notation, too.

Under proper differentiability assumptions, use formula (8') to express
the partials of u if

(i) w=g(2,y), z = f(r)h(0), y = r + h(O) + 0 (r);
(i) w=g(r,0), r = f(z + f(y), 0 = f(xf(y));
(iii) u = g(z¥,y?, 2.
Then redo all in the “mapping” terminology, too.
Let the map g: E' — E! be differentiable on E'. Find |Vh(p)]| if
h=go f and
() £(7) = an, 7 € B
k=1
(ii) f(®)=|Z|]? ¥ € E™

(Euler’s theorem.) A map f: E" — E' (or C" — C) is called homoge-
neous of degree m on G iff

(Vte B (C) [f(tZ)=t"f(Z)
when Z, t € G. Prove the following statements.
(i) If so, and f is differentiable at ' € G (an open globe), then
P V() =mf(p).
*(ii) Conversely, if the latter holds for all 5 € G and if 0 & G, then f is
homogeneous of degree m on G.
(iif) What if 0 € G?

[Hints: (i) Let g(t) = f(tp). Find ¢’'(1). (iii) Take f(z,y) = 22y? if 2 <0, f =0 if
x> 0,G=Go(1)]

13. Try Problem 12 for f: E' — E, replacing p - V f(p) by df (7; D).
14. With all as in Theorem 1, prove the following.

(i) If E' = E* and § = f/(p) # 0, then h/(p) = Dzg(q).

(ii) If 7 and @ are nonzero in E’ and aii 4 b7 # 0 for some scalars a, b,
then

Dgityos f (7)) = aDg f(p) + 0Dy f (D).
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(iii) If f is differentiable on a globe Gz, and 4 # 0 in E', then
Daf () = lim Dz (7).
[Hints: Use Theorem 2(ii) from §3 and Note 1.]
15. Use Theorem 2 to find the partially derived functions of f, if
(1) flz,y,2) = (sin(xy/2))";
(ii) f(z,y) = log, [tan(y/z)|.
(Set f = 0 wherever undefined.)

85. Repeated Differentiation. Taylor’s Theorem

In §1 we defined @ -directed derived functions, Dz f for any f: E' — E and any
7#0in E.

Thus given a sequence {u;} C E' — {(_)‘}7 we can first form Dg, f, then
Dz,(Dg, f) (the wa-directed derived function of Dz, f), then the @s-directed
derived function of Dy, (Dgz, f), and so on. We call all functions so formed the
higher-order directional derived functions of f.

If at each step the limit postulated in Definition 1 of §1 exists for all 7 in a
set B C E’, we call them the higher-order directional derivatives of f (on B).

If all @; are basic unit vectors in E™ (C™), we say “partial” instead of “di-
rectional.”

We also define DL f = Dz f and

k k—
(1) Di ay..a,f = Dan(Dgig, a  f), k=23,...,
and call D§1 ..,/ & directional derived function of order k. (Some authors
denote it by ngﬁk—luﬂilf')
If all @; equal 4, we write Dgf instead.
For partially derived functions, we simplify this notation, writing 12 ... for
€1€ ... and omitting the “k” in D* (except in classical notation):
0% f 0*f
Diof=D%.f=—" Dy f=D2. f=—=2_ ectc.
12f 61ezf 61’1 85()27 11f €1€1f 6%’%7

We also set DY f = f for any vector .
Example.
(A) Define f: E? — E! by

fz,y) = M

f(ovo) = 07 72 + y2
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Then Thus by assumption, the derivative D2 f(p) exists. Also,
of y(z* +4a?y® —y*)
a. = le(.f, y) = B} o\2 s ! 1 L _
o @) Hi(s) = Jim < (Hi(s + As) — Hy(s)
whence D f(0,y) = —y if y # 0; and also RTINS S Py
00 0.0) Aim = Daf(& + As - 7) = Da f(T)].
. z, - s .
D1 £(0,0) = ilg}) - 45 = 0. (Verify!) But the last limit is D2 f(Z), by definition. Thus, setting
Thus D; f(0,y) = —y always, and so Di12f(0,y) = —1; D12f(0,0) = —1. hi(s) = Hi(s) — Dz f (),
Similarly, we get
x(z? — 422y — y*) W(s) = H'(s) — D2 f(7
Dy f(z,y) = @+ 22 +(5) t(s) wof (D)

= D% [ (%) — Dz f (D).
We see that h; is differentiable on I, and by (2),

sup |hy(s)| < sup |D75 f(Z) — D3z f(B)] < ¢
sel zeG

if x # 0 and D5 f(0,0) = 0. Thus (V) Dsf(z,0) = 2 and so
Dglf(l‘70) =1 and Dzlf(o, 0) =1 75 D12f(0, 0) = —1.

The previous example shows that we may well have D1of # Doy f, or more
generally, D2_f # D?m f. However, we obtain the following theorem.

uv

for all ¢ € I. Hence by Corollary 1 of Chapter 5, §4,
!
Theorem 1. Given nonzero vectors @ and U in E’, suppose f: E' — E has [he(s) — he(0) < |s] ilgl) [ht(0)] < Isle-

the derivatives -
Dzf, Dsf, and Dy f ut by definition,

hi(s) = Da f(F + tii + s7) — sDg5 f(F

on an open set A C E'. +(s) £ ) 1)

If D2_f is continuous at some p € A, then the derivative D% f(p) also and
ezists and equals D2 f(p). hi(0) = Dz f(p + ta).
Proof. By Corollary 1 in §1, all reduces to the case |@| =1 = |¢]. (Why?) Thus
Given € > 0, fix § > 0 so small that G = G(d) C A and simultaneously (3) \Dat f(5 + 1 + 57) — Dt f(5 + @) — sD2 f(5)] < |s]e
(2) ;Ielg‘Déﬁf(f)_D?Iﬁf(ﬁ)‘gg for all S,tGI.
Next, set
(by the continuity of D2 f at ). Go(t) = f(7 + tii + sT) — f(7 + tid)
Now (Vs,t € E') define H;: E' — E by
and
Ht(s) = D1Tf(ﬁ+ i+ 517) gs(t) = Gs(t) — st - D?[ﬁf(ﬁ)
Let As before, one finds that (Vs € I) g, is differentiable on I and that
)
1=(-5.3): gi(t) = D f(F + 111 + 57) — Da f (5 + 1) — sD% £ (7)
If s,t € I, the point & = p' 4 tu + s¥ is in Gz() C A, since for s,t € I. (Verify!)

5 Hence by (3),

0 ’
Z 5l = |tii - 7 4= sup |gs(t)| < |s|e.
|7 —p| = |td + sU| < 2+2 0. tel\ AQIESE
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Again, by Corollary 1 of Chapter 5, §4,

|95(£) = 95 (0)] < |stle,

or by the definition of g5 (assuming s,¢ € I — {0} and dividing by st),

U+t + 57) — [+ 00)] = D3 () — <[5+ 57) — S| < =

(Verify!) Making s — 0 (with ¢ fixed), we get, by the definition of Dy f,
1 I | . 2
gDaf(p + i) — EDﬁf(p) —Dgsf(P)| <e

whenever 0 < [t| < /2.
As ¢ is arbitrary, we have

D24 f(5) =l 1 (Do f (5 + ) — D (7).

But by definition, this limit is the derivative D2 f(). Thus all is proved. O

Note 1. By induction, the theorem extends to derivatives of order > 2.

Thus the derivative Dglazu-ﬁk f is independent of the order in which the ;
follow each other if it exists and is continuous on an open set A C E’, along
with appropriate derivatives of order < k.

If E' = E™ (C™), this applies to partials as a special case.

For E™ and C" only, we also formulate the following definition.
Definition 1.
Let E' = E™(C™). We say that f: E' — E is m times differentiable at
p € E' iff f and all its partials of order < m are differentiable at p..

If this holds for all ' in a set B C E’, we say that f is m times
differentiable on B.

If, in addition, all partials of order m are continuous at p (on B), we
say that f is of class CD™, or continuously differentiable m times there,
and write f € CD™ at j (on B).

Finally, if this holds for all natural m, we write f € CD* at p’ (on B,
respectively).

Definition 2.

Given the space B/ = E™(C™), the function f: E' — E, and a point
p € E’', we define the mappings

dmf(ﬁ;‘)7 m:]"27"‘7
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from E’ to E by setting for every t = (t1,...,t,)

We call d™ f(p; - ) the mth differential (or differential of order m) of f at p.
By our conventions, it is always defined on E™ (C™) as are the partially derived
functions involved.

If f is differentiable at 7 (but not otherwise), then d'f(p;%) = df(7;t)
by Corollary 1 in §3; d' f(7; -) is linear and continuous (why?) but need not
satisfy Definition 1 in §3.

In classical notation, we write dx; for t;; e.g.,

B n n 62f

j=1i=1

dl‘i dl‘j.

Note 2. Classical analysis tends to define differentials as above in terms of
partials. Formula (4) for d™ f is often written symbolically:

P P) P
(5)  d"f= (—dz1+—d:p2+-~+a

m
d ) . om=1,2,...
0xq O0xo T Tn) fom ’

Indeed, raising the bracketed expression to the mth “power” as in algebra
(removing brackets, without collecting “similar” terms) and then “multiplying”
by f, we obtain sums that agree with (4). (Of course, this is not genuine
multiplication but only a convenient memorizing device.)

Example.
(B) Define f: E* — E' by
f(z,y) = zsiny.
Take any p = (z,y) € E%. Then

Dy f(z,y) =siny and Dy f(z,y) = x cosy;
Diaf(z,y) = Da1f(z,y) = cosy,
Duif(x,y) =0, and Do f(z,y) = —wsiny;
Dy f(2,y) = Duiaf(z,y) = Dia1 f(z,y) = Da11 f(z,y) =0,
Dag1 f(2,y) = Da1af(w,y) = Digaf(z,y) = —siny, and
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Dasaf(z,y) = —xcosy; etc.

As is easily seen, f has continuous partials of all orders; so f € CD> on
all of E2. Also,

df (55 1) = t1 D1 f(§) + t2 D2 f ()
=t18iny + tax cosy.

In classical notation,

of of
[ )
df—df—axd:r—i—aydy
=sinydx + x cosy dy;
0% f 0 f 0 f
2p_ 9 12 9 T 4 2
d“f 92 dz= + 9z 0y dz dy + B dy

=2 cosydx dy — xsiny dy?;
A3 f = —3siny dz dy® — zcosy dy®;
and so on. (Verify!)

We can now extend Taylor’s theorem (Theorem 1 in Chapter 5, §6) to the
case B’ = E" (C™).
Theorem 2 (Taylor). Letd =& —§ #0 in E' = E™(C").
If f: E' — E is m + 1 times differentiable on the line segment
I=L[p7 CE

then .
JE) ~ ) = Y 5 d'F () + R,
i=1
with
(6) Rl < (mﬁml),, Kn€E
and
(6) 0< K, < su113|dm+1f(§; ).
se

Proof. Define g: E' — E’ and h: B - Eby g(t) = +ti and h= fog.
As E' = E™ (C™), we may consider the components of g,

g5 (t) = pr + tug, k <n.

Clearly, gy, is differentiable, g;,(¢) = uy.
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By assumption, so is f on I = L[p,Z]. Thus, by the chain rule, h = fog is
differentiable on the interval J = [0,1] C E; for, by definition,

p+td € Lip, 7] iff t € [0,1].
By Theorem 2 in §4,

(7) W (t) = Dif(f+ti) - ux = df( + tii; i), te.J.

(Explain!)
By assumption (and Definition 1), the Dy f are differentiable on I. Hence,
by (7), i/ is differentiable on J. Reapplying Theorem 2 in §4, we obtain

n n

W(8) = > Dig (5 +t@) - ugu,

j=1k=1
=d*f(p +ti; @), teld
By induction, A is m + 1 times differentiable on J, and
(8) RO =d' f(F +tid; @), ted i=1,2,...,m+1.
The differentiability of A" (i < m) implies its continuity on J = [0, 1].

Thus h satisfies Theorem 1 of Chapter 5, §6 (with z =1, p =0, and Q = 0);
hence

hw) - no) =30 g,
i=1

7!
KT”

9) Ryl < —™ K, € E*
K, §sup|h(m+1)( )|
teJ

By construction,

S0
h(1) = f(F + @) = f(Z) and h(0) = f(P).
Thus using (8) also, we see that (9) implies (6), indeed. O
Note 3. Formula (3') of Chapter 5, §6, combined with (8), also yields

1 1
Rp=— [ hU"D@) - (1—t)™dt
m! Jo
1 1
= ﬁ/ d™ (5 + tas i) - (1 — )™ dt.
- JO
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Corollary 1 (the Lagrange form of R,,). If E = E' in Theorem 2, then
1
10 Ry = ———d"™" (54
(10) e
for some § € L(p, &).

Proof. Here the function h defined in the proof of Theorem 2 is real; so The-
orem 1’ and formula (3’) of Chapter 5, §6 apply. This yields (10). Explain! O

Corollary 2. If f: E™ (C™) — E is m times differentiable at p and if 4 # 0
(P, @ € E™(C™)), then the derivative D f(p) exists and equals d™ f(p; ).

This follows as in the proof of Theorem 2 (with ¢ = 0). For by definition,

D f(7) = i £ + 5i) ~ f(7)
= tim _ [h(s) ~ h(0)]
— 1(0) = df (7 @)
by (7). Induction yields
D f(p) = h™(0) = d™ (@)
by (8). (See Problem 3.)

Example.
(C) Continuing Example (B), fix
p=(1,0);
thus replace (z,y) by (1, 0) there. Instead, write (x,y) for Z in Theorem 2.
Then
U= —p=(z—1,y);
0

u; =2 — 1 =dr and ug =y = dy,
and we obtain
df (p; @) = D1f(1,0) - (x — 1) + D2 f(1,0) -y
= (sin0) - (x — 1)+ (1-cos0) -y
=Y
d*f(p; ) = D11 f(1,0) - (z = 1)* + 2 D12 f(1,0) - (z = 1)y
+ Do f(1,0) - y°
=(0)-(z —1)*+2(cos0) - (z — 1)y — (1-sin0) - ¢/*
=2(z -1y

§5. Repeated Differentiation. Taylor’s Theorem 43

and for all § = (s1,s2) € I,
d3f(§; ﬁ) = D111f($1, 82) . ({L‘ — 1)3 + 3D112f($17 82) . ({L‘ — 1)2y
(107) +3Digaf(s1,82) - (x — 1)y + Dagaf(s1,2) - y°
= —3sinsy - (x — 1)y? — 51 cos s - >

Hence by (6) and Corollary 1 (with m = 2), noting that f(p) = f(1,0) =
0, we get

f(x,y) =z -siny

11
() =y+(r—1)y+ R,

where for some 5 € I,

1 1
Ry = §d3f(.§';ﬁ) =3 [—3sin82 “(z — 1)y — 51 cos 53 ~y3].

As § € L(p, &), where p = (1,0) and & = (z,y), $1 is between 1 and x;
S0
1] < max(jz], 1) < o] + 1.

Finally, since |sinsz| <1 and |cos s2| < 1, we obtain
1
[Bo| < & [Ble =11+ (] + 1) yl] ™

This bounds the maximum error that arises if we use (11) to express z siny
as a second-degree polynomial in (x — 1) and y. (See also Problem 4 and
Note 4 below.)

Note 4. Formula (6), briefly

A= g,
i=1

1!

generalizes formula (2) in Chapter 5, §6.
As in Chapter 5, §6, we set

Pol@) = 15) + 3 3 A (77 )
i=1

and call P, the mth Taylor polynomial for f about p, treating it as a function
of n variables xy, with & = (x1,...,2,).
When expanded as in Example (C), formula (6) expresses f(Z) in powers of

Uk = Tk — Pk, k::la"'7n>

plus the remainder term R,,.
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If f € CD* on some Gy and if R,, — 0 as m — oo, we can express f(Z) as
a convergent power series

m—0o0

F@) = Jim Pul@) = f(5) + 3 3 4S5 7 ~ 5).
i=1 "

We then say that f admits a Taylor series about p, on Gp.

Problems on Repeated Differentiation and Taylor Expansions

1.

Complete all details in the proof of Theorem 1. What is the motivation
for introducing the auxiliary functions h; and g in this particular way?

. Is symbolic “multiplication” in Note 2 always commutative? (See Ex-

ample (A).) Why was it possible to collect “similar” terms

0% f 0% f
92 0y dx dy and By o dy dx

in Example (B)? Using (5), find the general formula for d®f. Expand it!

. Carry out the induction in Theorem 2 and Corollary 2. (Use a suitable

notation for subscripts: kiks ... instead of jk....)

. Do Example (C) with m = 3 (instead of m = 2) and with p = (0, 0).

Show that R,, — 0, i.e., f admits a Taylor series about p'.
Do it in the following two ways.
(i) Use Theorem 2.

(ii) Expand siny as in Problem 6(a) in Chapter 5, §6, and then mul-
tiply termwise by z.

Give an estimate for R3.

. Use Theorem 2 to expand the following functions in powers of = — 3 and

y + 2 exactly (choosing m so that R, = 0).
(i) flz,y) = 2zy® - 3y® + y2® — 2%
ii z,y) =zt — 23y% + 22y — 1;
Y Y Y
iii z,y) = 2%y — axy® — 3.
(ili) f(z,y) = 2%y — azxy

. For the functions of Problem 15 in §4, give their Taylor expansions up

to Rg, with

in case (i) and

in (ii). Bound R,.
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7.

=10.

11.

(Generalized Taylor theorem.) Let @ = # — 5 # 0 in E' (E’ need not
be E™ or C™); let I = L[p, Z]. Prove the following statement:

If f: E' — F and the derived functions D% f (i < m) are relatively
continuous on I and have @-directed derivatives on I —Q (@ countable),
then formula (6) and Note 3 hold, with d* f(p; @) replaced by D f(p).
[Hint: Proceed as in Theorem 2 without using the chain rule or any partials or
components. Instead of (8), prove that h("(t) = D%f(ﬁ«k td) on J —Q', Q =
g7'[Q]]

(i) Modify Problem 7 by setting
 F-j
U= 5s—-5-
|7 —p]

Thus expand f(#) in powers of |Z — p].

(ii) Deduce Theorem 2 from Problem 7, using Corollary 2.

. Given f: E?(C?) — E, f € CD™ on an open set A, and 5 € A, prove

that (Vi € E? (C?))
mmm=2(%@?mmﬂa1SKm
=0 M
where the (]Z) are binomial coefficients, and in the jth term,
ki=ky=---=k;=2
and
kj+1:"’:ki:1~
Then restate formula (6) for n = 2.
[Hint: Use induction, as in the binomial theorem.]
Given p € E' = E"(C™) and f: E' — E, prove that f € CD! at 7 iff
f is differentiable at p and

(Ve>0) (36>0) (V& € Gp(8)) |ld f(F; ) —d"f(@; )l <e,

with norm || || as in Definition 2 in §2. (Does it apply?)
[Hint: If f € CD?, use Theorem 2 in §3. For the converse, verify that

n

> Dk f(B) — Dif ()]tr

k=1

e > |d' f(p;1) — d' f(&@;1)] =

if & € Gy(8) and [£'| < 1. Take i = &}, to prove continuity of Dy f at ]
Prove the following.
(i) If ¢: E™ — E™ is linear and [¢] = (vix), then

1% <> vkl
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(ii) If f: E™ — E™ is differentiable at p, then
2
ldf (7; -)|1* < Z |Di fi(F

(iii) Hence find a new converse proof in Problem 10 for f: E™ — E™.

Consider f: C™ — C™, too.
[Hints: (i) By the Cauchy-Schwarz inequality, |¢(Z)|? < |Z|? Zi,k lvik|?. (Why?)
(ii) Use part (i) and Theorem 4 in §3.]
12. (i) Find d?u for the functions of Problem 10 in §4, in the “variable”
and “mapping” notations.
(ii) Do it also for

-1
2

= fla,y,2) = (@ +y* +2?)
and show that Dq1f + Daof + Dssf = 0.

(iii) Does the latter hold for u = arctan Yq
x

13. Let u = g(z,y), © = rcosf, y = rsinf (passage to polars).
Using “variables” and then the “mappings” notation, prove that if g
is differentiable, then

(1) ? = cosf u +sin 6 g—z and

r ox

ou 1 Ou\?2

(87’) +<; %) '
Pu g o
orao or” " g2

(i) |Vg(z,y)]> =

iii) Assuming g € C'D?, express as in (i).
g9 ; €XP

14. Let f,g: E' — E' be of class CD? on E'. Verify (in “variable” notation,

t00) the following statements.
(i) D11h = a?Dash if a € E* (fixed) and

h(z,y) = flaz +y) + g(y — ax).
(ii) 22D11h(z,y) + 22y Dioh(z,y) + y?Dash(z,y) = 0 if
_ Y Y
h(w,y) = wt(m) +g<x>'
(lll) Dlh . D21h = DQ}L : Dllh lf

h(z,y) = g(f(z) +y).
Find Dqsh, too.
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15. Assume E’ = E"(C™) and E” = E™(C™). Let f: B/ — E” and
g: B’ — E be twice differentiable at p € E' and ¢ = f(p) € E”,
respectively, and set h = g o f.

Show that h is twice differentiable at p’, and
Eh(p;T) = d*g(3;3) + dg(3;7),
where t € E', § = df(p;t), and 7 = (v1,...,vm) € B’ satisfies
vzzd2fl(ﬁ7f‘)7 Zzlaym

Thus the second differential is not invariant in the sense of Note 4 in §4.
[Hint: Show that

m m m
Dy h(p) = ZZDUQ )Dy. fi(9) D f (P +ZDL9 ) D1 fi (D).
Jj=1i=1
Proceed.]
16. Continuing Problem 15, prove the invariant rule:

d"h(p;t) = d"g(; %),

if f is a first-degree polynomial and g is r times differentiable at ¢
[Hint: Here all higher-order partials of f vanish. Use induction.]

§6. Determinants. Jacobians. Bijective Linear Operators

We assume the reader to be familiar with elements of linear algebra. Thus we
only briefly recall some definitions and well-known rules.

Definition 1.
Given a linear operator ¢: E™ — E™ (or ¢: C™ — C™), with matrix

[¢}:(vlk)7 i7k:17'~'7n>

we define the determinant of [¢] by

V11 V12 ... Vin
V21 V22 N Von
det[¢] = det(vix) =
(1)
Un1 Un2 ... Unn

= Z(*l))‘vlklv%z e Unk, s
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where the sum is over all ordered n-tuples (k1, ..., k;,) of distinct integers
k]‘ (1 < ]{Z]‘ < ’I’L), and
\ 0 if Hj<m(km —k;)>0and
1 if Hj<m(km —kj) <O.

Recall (Problem 12 in §2) that a set B = {¥/1,72,...,0,} in a vector space
E is a basis iff
(i) B spans E, i.e., each U € F has the form

n
U= E aﬂ_}'i
i=1
for some scalars a;, and
(ii) this representation is unique.

The latter is true iff the ¥; are independent, i.e.,

n
Zaiﬁi:(j(:)ai:(], i=1,...,n.
i=1
If E has a basis of n vectors, we call E n-dimensional (e.g., E™ and C™).
Determinants and bases satisfy the following rules.
(a) Multiplication rule. If ¢, g: E™ — E™ (or C™ — C™) are linear, then

detlg] - det[¢] = det([g] [¢]) = det[g o ]
(see §2, Theorem 3 and Note 4).
(b) If ¢(Z) = & (identity map), then [¢] = (vix), where
{ 0 ifi#kand
Vik =
1 ifi=k;
hence det[¢] = 1. (Why?) See also the Problems.

(¢) An n-dimensional space E is spanned by a set of n vectors iff they are
independent. If so, each basis consists of exactly n vectors.

Definition 2.
For any function f: E™ — E™ (or f: C™ — C"™), we define the f-induced
Jacobian map Jy: E" — E1 (Jp: C™ — C) by setting
J¢(Z) = det(vig),
where v, = Dy fi(Z), £ € E" (C™), and f = (f1,..., [n)-

The determinant

J5(p) = det(Dy.fi(P))
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is called the Jacobian of f at p.
By our conventions, it is always defined, as are the functions Dy, f;.

Explicitly, J¢(p) is the determinant of the right-side matrix in formula (14)
in §3. Briefly,

By Definition 2 and Note 2 in §5,
J7(p) = detld" f(p; -)].
If f is differentiable at p,
J¢(P) = det[f'(7)].

Note 1. More generally, given any functions v;,: E' — E!(C), we can
define a map f: E' — E* (C) by

f(@) = det(vir(T));

briefly f = det(vi), i,k =1,...,n.

We then call f a functional determinant.

If B/ = E™ (C™) then f is a function of n variables, since & = (z1, T2, ..., Zy).
If all v, are continuous or differentiable at some p € F’, so is f; for by (1), f
is a finite sum of functions of the form

(=1) Vi, Vi - - - Vi,

and each of these is continuous or differentiable if the v;;, are (see Problems 7
and 8 in §3).

Note 2. Hence the Jacobian map Jy is continuous or differentiable at p' if
all the partially derived functions Dy f; (i,k <n) are.

If, in addition, J;(p) # 0, then Jy # 0 on some globe about p. (Apply
Problem 7 in Chapter 4, §2, to |J¢|.)

In classical notation, one writes

8(f17--~>fn) 8(y17>yn)

Aarsern) O O@r, )

for Jp(Z). Here (y1,...,yn) = f(z1,...,20).

The remarks made in §4 apply to this “variable” notation too. The chain
rule easily yields the following corollary.
Corollary 1. If f: E" — E™ and g: E™ — E"™ (or f,g: C" — C™) are
differentiable at o and § = f(p), respectively, and if

h=gof,
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then

(i) In(P) = Jg(q) - Jr(P) = det(zir),

where

zir. = Dphi(p), i, k=1,...,m;

or, setting
(w1, un) = 9g(y1, .-, yn) and
(W1 n) = f(21, -, 20) (“variables”),
we have
1o} L Up o(ut,...,un) 01, ,Yn
(ii) (’ula , U ) _ (Ul U ) . (yl Y, ) :det(zzk),
Oz, .. xn)  OY1ye-osyn) O(x1,...,20)
where
o
Zlk_azka 27]@:17 s

Proof. By Note 2 in §4,

Thus by rule (a) above,
det[l'(p)] = det[g(7)] - det[f’(D)].
ie.,
In(P) = J4(@) - J5(D)-

Also, if [/ (P)] = (zix), Definition 2 yields z;, = Dih;(p).
This proves (i), hence (ii) also. O

In practice, Jacobians mostly occur when a change of variables is made.
For instance, in £2, we may pass from Cartesian coordinates (z,y) to another
system (u,v) such that

z = fi(u,v) and y = fo(u,v).
We then set f = (f1, f2) and obtain f: E? — E?2,
Jr =det(Dyfi), k,i=1,2.

Example (passage to polar coordinates).
Let = f1(r,0) =rcos@ and y = fa(r,0) = rsin6.
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Then using the “variable” notation, we obtain Jy(r,#) as

or or
6(1‘7 y) or 00

a(r,0) |0y 9y
or 00

=rcos’ 0+ rsin®6 =r.

cosf) —rsinf '

sinf  rcos6

Thus here J¢(r,0) = r for all 7,0 € E'; J; is independent of 6.

We now concentrate on one-to-one (invertible) functions.

Theorem 1. For a linear map ¢: E™ — E™ (or ¢: C™ — C™), the following
are equivalent:

(i) ¢ is one-to-one;
(i) the column vectors U1, ...,U, of the matriz [§] are independent;
(iii) ¢ is onto E™ (C™);
(iv) det[g] # 0.
Proof. Assume (i) and let

n
E Ckﬁk =0.
k=1

To deduce (ii), we must show that all ¢; vanish.
Now, by Note 3 in §2, 7 = ¢(€}1); so by linearity,

Z Ckﬁk = 6

k=1
implies

n
(b (Z Ckgk) =0.

k=1
As ¢ is one-to-one, it can vanish at 0 only. Thus

Z Ckgk = 6

k=1
Hence by Theorem 2 in Chapter 3, §§1-3, ¢, =0, k =1,...,n, and (ii) follows.

Next, assume (ii); so, by rule (c¢) above, {¢1,...,7,} is a basis.
Thus each i € E™ (C™) has the form

7=t =Y anoen) = o Y e ) = o(2),
k=1 k=1 k=1
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where
n

Z= ar€y (uniquely).
k

Hence (ii) implies both (iii) and (i). (Why?)
Now assume (iii). Then each § € E™ (C™) has the form § = ¢(&), where

by Theorem 2 in Chapter 3, §§1-3. Hence again
n n
¥ = Z$k¢(5k) = Zl‘kﬁk;
k=1 k=1

so the Uy span all of E™ (C™). By rule (c) above, this implies (ii), hence (i),
too. Thus (i), (ii), and (iii) are equivalent.
Also, by rules (a) and (b), we have

det[g] - det[¢p™"] = det[p o ¢~ =1
if ¢ is one-to-one (for ¢pop~1 is the identity map). Hence det[p] # 0 if (i) holds.

For the converse, suppose ¢ is not one-to-one. Then by (ii), the ¥y are not
independent. Thus one of them is a linear combination of the others, say,

NE

171 = akﬁk.

Sl
Il

2
But by linear algebra (Problem 13(iii)), det[¢] does not change if ¥y is re-

placed by
n
171 — Z akﬁk = 6
k=2

Thus det[¢] = 0 (one column turning to 0). This completes the proof. [

Note 3. Maps that are both onto and one-to-one are called bijective. Such
is ¢ in Theorem 1. This means that the equation

oT) =y
has a unique solution
T=0¢"N7)

for each §. Componentwise, by Theorem 1, the equations

n
E TrVik = Yi, Z'::l,...,n,
k=1
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have a unique solution for the xy, iff det(vi) # 0.
Corollary 2. If ¢ € L(E',E) is bijective, with E' and E complete, then
o' e L(E, E').
Proof for E = E™ (C™).! The notation ¢ € L(E’, E) means that ¢: E' — E
is linear and continuous.

As ¢ is bijective, $71: E — E’ is linear (Problem 12).

If E=E™(C"), it is continuous, too (Theorem 2 in §2).

Thus ¢! € L(E,E'). O

Note. The case E = E™(C™) suffices for an undergraduate course. (The
beginner is advised to omit the “starred” §8.) Corollary 2 and Theorem 2
below, however, are valid in the general case. So is Theorem 1 in §7.

Theorem 2. Let E, E' and ¢ be as in Corollary 2. Set
_ 1
lo~" I = -
e

Then any map § € L(E',E) with |0 — ¢|| < € is one-lto-one, and 67 is
uniformly continuous.
Proof. By Corollary 2, =1 € L(E, E’), so ||¢71|| is defined and > 0 (for ¢~1
is not the zero map, being one-to-one).

Thus we may set

1 1
£ = ) ‘¢_1 ‘ =
e 19 1=2
Clearly ¥ = ¢~ (%) if ¥ = ¢(F). Also,
1
1/ < 2|7
o7 @)l < 1yl
by Note 5 in §2. Hence
9] = elo™ (7)],
ie.,
(2) lo(@)] = €| 7|

forallZ € ' and j € E.
Now suppose ¢ € L(E', E) and ||§ — ¢|| =0 < e.
Obviously, 8 = ¢ — (¢ — 6), and by Note 5 in §2,

(¢ = 0)(@)] < ll¢ — 0l |Z] = o] Z|.

1 See *§8 for the general case.
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Thus for every ¥ € F’,
0(Z)] = [o(F)| — |(¢ — 0)(Z)]
(3) > |¢(Z)| — o] Z|

> (e — o)z
by (2). Therefore, given § # 7 in E’ and setting & = 5 — 7 # 0, we obtain
(4) 0(p) — 0(")| = 16(F — )| = [6(Z)] = (¢ — 0)|Z] > 0
(since o < ¢).

We see that ¢’ # 7 implies 6(p) # 0(F); so 0 is one-to-one, indeed.

Also, setting (%) = 7 and ¥ = 071(Z) in (3), we get
21> (e —o)l0~H(2)];

that is,
(5) 671 (2)] < (e — o) 7]

for all Z in the range of § (domain of §71).
Thus =1 is linearly bounded (by Theorem 1 in §2), hence uniformly con-
tinuous, as claimed. [

Corollary 3. If E' = E = E™ (C"™) in Theorem 2 above, then for given ¢ and
d > 0, there always is §' > 0 such that

0 — || < & implies |0~ — ¢~ < 6.
In other words, the transformation ¢ — ¢~ is continuous on L(E), E =
E™(C™).
Proof. First, since F' = E = E™(C"), 0 is bijective by Theorem 1(iii), so
=1 e L(E).
As before, set |0 — ¢|| =0 <e.
By Note 5 in §2, formula (5) above implies that

1
I~ < :
E—0

Also,
plo(@—¢)ob =7t —p7!
(see Problem 11).
Hence by Corollary 4 in §2, recalling that ||¢~1|| = 1/¢, we get

—1 -1 -1 ! z
o™ =67 < o7 o = ol 1671 < =5

—0asoc—0. O
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=2.

%®

Problems on Bijective Linear Maps and Jacobians

(i) Can a functional determinant f = det(v;) (see Note 1) be contin-
uous or differentiable even if the functions v;; are not?

(if) Must a Jacobian map J¢ be continuous or differentiable if f is?
Give proofs or counterexamples.

Prove rule (b) on determinants. More generally, show that if f(Z) = &
on an open set A C E™ (C™), then J; =1 on A.

. Let f: E" - E" (or C" = C"), f=(f1,---,[n)-

Suppose each fi. depends on xj only, i.e.,
Je(@) = fu(¥) if zx = yi,

regardless of the other coordinates x;,y;. Prove that J; = szl Dy fr.
[Hint: Show that Dy f; = 0 if ¢ # k.|

. In Corollary 1, show that

In(B) = [[ Defr(B) - Ty(@)
k=1

if f also has the property specified in Problem 3. Then do all in “vari-
ables,” with yr = yx(xy) instead of f.

. Let E' = E" in Note 1. Prove that if all the v;;, are differentiable at p,

then f/(p) is the sum of n determinants, each arising from det(v;;), by
replacing the terms of one column by their derivatives.
[Hint: Use Problem 6 in Chapter 5, §1.]

. Do Problem 5 for partials of f, with E' = E™ (C™), and for directionals

Dz f, in any normed space E’. (First, prove formulas analogous to
Problem 6 in Chapter 5, §1; use Note 3 in §1.) Finally, do it for the
differential, df (p; - ).

. In Note 1 of §4, express the matrices in terms of partials (see Theorem 4

in §3). Invent a “variable” notation for such matrices, imitating Jaco-
bians (Corollary 3).

(i) Show that

oz,9,2) = —r?sina

a(r,0,a)
if

r =r1cosb,

y =rsinf sina, and A

c=reosa FIGURE 27
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(This transformation is passage to polars in E3; see Figure 27,
where r = OP, <XOA =0, and <AOP = a.)

(i) What if x = rcosf, y = rsinf, and z = z remains unchanged
(passage to cylindric coordinates)?

(iii) Same for = €" cosf, y = " sinf, and z = z.

. Is f = (f1, f2): E? — E? one-to-one or bijective, and is J; # 0, if

(i) fi(z,y) = e"cosy and fa(z,y) = " siny;
(i) fi(z,y) =2® —y* and fo(z,y) = 2zy?
Define f: E3 — E3 (or C® — C3) by

[(@) = 1+Zz:1xk

3
A= {z > ap# 4}
k=1
and f =0 on —A. Prove the following.
(i) f is one-to-one on A (find f~1).

1
i) J§(¥) = ————.
(i) Jy(Z) Gy o)

(iii) Describe —A geometrically.

—

xT

on

Given any sets A, Band maps f,g: A — E',h: E' — FE,and k: B — A,
prove that

(i) (fg)ok=fok+gok, and

(ii) ho(f£g)=ho f+hogif his linear.
Use these distributive laws to verify that

9 00— ¢)of =gt 0

in Corollary 3.
[Hint: First verify the associativity of mapping composition.]
Prove that if ¢: £/ — F is linear and one-to-one, so is ¢~ ': E” — E’,
where E” = ¢[F'].
Let 1717 .o
into

., U be the column vectors in det[¢]. Prove that det[¢] turns

(i) c- det[g] if one of the ¥}, is multiplied by a scalar ¢;

(ii) —det[¢], if any two of the Uy, are interchanged (consider A in for-
mula (1)).
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Furthermore, show that
(iii) det[¢] does not change if some T}, is replaced by Ty + ¢¥; (i # k);

(iv) det[¢] = 0 if some T}, is 0, or if two of the @ are the same.

87. Inverse and Implicit Functions. Open and Closed Maps
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I. “If f € CD! at §, then f resembles a linear map (namely df) at p.
Pursuing this basic idea, we first make precise our notion of “f € CD' at p.”

Definition 1.

A map f: E' — E is continuously differentiable, or of class CD?! (written
f € CD*Y), at p iff the following statement is true:

Given any € > 0, there is § > 0 such that f is differentiable on the
globe G = G;(0), with

Idf(T; ) — df(F; )| <& forall # € G.1

By Problem 10 in §5, this definition agrees with Definition 1 of §5, but is no
longer limited to the case £ = E™ (C™). See also Problems 1 and 2 below.

We now obtain the following result.
Theorem 1. Let E' and E be complete. If f: E' — FE is of class_C’D1 at p
and if df (P - ) is bijective (§6), then f is one-to-one on some globe G = G(9).
Thus f “locally” resembles df (p; -) in this respect.
Proof. Set ¢ = df(p; -) and

1
lo~" = =
g

(cf. Theorem 2 of §6).
By Definition 1, fix § > 0 so that for ¥ € G = G(4).

1
7 (@5 ) - ol < 5e.
Then by Note 5 in §2,
(1) (V7 €G) (Vi € B) 1df(E: @) - o()| < el

Now fix any 7,5 € G, ¥ # §, and set @ = 7 — § # 0. Again, by Note 5 in
§2,
_ Py . _ Lo
@l =le~ (¢@)] < o™ (@) = ZI¢(@)};

1'We can always make G closed by reducing 6.
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SO
(2) 0 <ela| <[p(@)-

By convexity, G 2 I = L[5,7], so (1) holds for & € I, ¥ = §+ti,0 <t < 1.
Noting this, set
h(t) = f(§ +td) — to(d), te E.

Then for 0 <t <1,

(Verify!) Thus by (1) and (2),

sup |h/(t)] = sup |df (5 + tu; @) — ¢(a)]
0<t<1 0<t<1

1
< 5l < 5 lo(@)l.

|
2
(Explain!) Now, by Corollary 1 in Chapter 5, §4,

A1) = B(O)| < (L=0) sup [K()| < 5l(a)].

As h(0) = f(§) and
h(1) = f(5 + 1) = ¢(@) = f(7) — ¢(a),

we obtain (even if ¥ = §)
3) IF(7) = £(3) — ¢(@)| < Slo(@)] (7,5 €G, i =7-3).
But by the triangle law,

lp(@)| = |£(7) = FE)| < 1 (7) = f(5) — p(@)].
Thus
() F) = F(E)] 2 glota)] > Selil = gl ~ 51

by (2).
Hence f(¥) # f(3) whenever ¥ # & in G; so f is one-to-one on G, as
claimed. [

Corollary 1. Under the assumptions of Theorem 1, the maps f and f~1 (the
inverse of f restricted to G) are uniformly continuous on G and f[G|, respec-
tively.
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Proof. By (3),
F) ~ £(5) < 6] + 31600
< [2¢(i)]
< 2|l |l
=2[¢) |7 -3 (7,5€G).
This implies uniform continuity for f. (Why?)
Next, let g = f~! on H = f[G].

If #,7 € H, let ¥ = g(%) and § = g(7); so 7,5 € G, with & = f(¥) and
¥ = f(5). Hence by (4),

L o 1 - L,
|17 =g 2 5elg(@) — 9(&),
proving all for g, too. O

Again, f resembles ¢ which is uniformly continuous, along with ¢ 1.

II. We introduce the following definition.
Definition 2.

A map f: (S,p) = (T,p') is closed (open) on D C S iff, for any X C D
the set f[X] is closed (open) in T whenever X is so in S.

Note that continuous maps have such a property for inverse images (Prob-
lem 15 in Chapter 4, §2).

Corollary 2. Under the assumptions of Theorem 1, f is closed on G, and so
the set f[G] is closed in E.

Similarly for the map f=* on f[G].
Proof for £/ = E = E" (C™) (for the general case, see Problem 6). Given
any closed X C G, we must show that f[X] is closed in E.

Now, as G is closed and bounded, it is compact (Theorem 4 of Chapter 4, §6).

So also is X (Theorem 1 in Chapter 4, §6), and so is f[X] (Theorem 1 of
Chapter 4, §8).

By Theorem 2 in Chapter 4, §6, f[X] is closed, as required. O

For the rest of this section, we shall set E' = E = E™ (C™).

Theorem 2. If E' = E = E™(C™) in Theorem 1, with other assumptions
unchanged, then f is open on the globe G = G(d), with § sufficiently small.?

We first prove the following lemma.

2 Thus formula (1) still holds for € = 1/||¢~ 1|, ¢ = df (P; ).
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Lemma. f[G] contains a globe Ggz(a) where § = f(P).
Proof. Indeed, let
o= 156
=78,

where 0 and ¢ are as in the proof of Theorem 1. (We continue the notation
and formulas of that proof.)

Fix any ¢ € Gg(a); so
IR 1
€—ql <a= 1_166'
Set h = |f — & on E’. As f is uniformly continuous on G, so is h.
Now, G is compact in E™ (C™); so Theorem 2(ii) in Chapter 4, §8, yields a
point ¥ € G such that

(6) h(7) = min h[G].

We claim that 7 is in G (the interior of G).
Otherwise, |7 — p| = d; for by (4),

1 1 . . L _
200 = §€5= §€|T =P < [f(7) = f(D)]
(7) <) =&+ e = F )]
= h(7) + h(p).
But
h(p) =l —fP) =16 —ql <
and so (7) yields
h(p) < a < h(F),
contrary to the minimality of h(7) (see (6)). Thus |7 — p| cannot equal 6.
We obtain |7 — p] < §, so ¥ € Gz(6) = G and f(F) € f[G]. We shall now
show that ¢ = f(7).
To this end, we set ¢ = ¢ — f(7) and prove that ¥ = 0. Let
i = ¢~ (1),
where

as before. Then

With 7 as above, fix some

§=r+tu (0<t<1)
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with ¢ so small that § € G also. Then by formula (3),
- - L, 1.
7(8) ~ 1) — o) < 5o
also,

|f(F) = &+ o(ti)]| = (1 = 1)[F] = (1 — ) (7)

by our choice of ¥, 4 and h. Hence by the triangle law,

(Verify!)
As 0 < t < 1, this implies h(7) = 0 (otherwise, k() < h(7), violating (6)).
Thus, indeed,

ie.,
¢=f(r) e fIG] for7eq.

But ¢ was an arbitrary point of Gz(«). Hence
Gg(a) € fIG],
proving the lemma. [

Proof of Theorem 2. The lemma shows that f(p) is in the interior of f[G]
if g, f, df(p; - ), and ¢ are as in Theorem 1.
But Definition 1 implies that here f € CD* on all of G (see Problem 1).

Also, df (Z; - ) is bijective for any £ € G by our choice of G and Theorems 1
and 2 in §6.

Thus f maps all £ € G onto interior points of f[G]; i.e., f maps any open
set X C G onto an open f[X], as required. [

Note 1. A map
f:(Sp) = (T, p")

is both open and closed (“clopen”) iff £~ is continuous—see Problem 15(iv)(v)
in Chapter 4, §2, interchanging f and f~*.

Thus ¢ = df(p; -) in Theorem 1 is “clopen” on all of F’.

Again, f locally resembles df (p; - ).

III. The Inverse Function Theorem. We now further pursue these ideas.
Theorem 3 (inverse functions). Under the assumptions of Theorem 2, let g
be the inverse of fo (f restricted to G = G(0)).

Then g € CDY on f|G] and dg(ij; -) is the inverse of df(%; -) whenever
F=g(§), 7 €G.
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Briefly: “The differential of the inverse is the inverse of the differential.”
Proof. Fix any ¥ € f[G] and & = g(¥); so ¥ = f(Z) and & € G. Let
U=df(; ).

As noted above, U is bijective for every £ € G by Theorems 1 and 2 in §6;
so we may set V = U~!. We must show that V = dg(7; - ).

To do this, give ¥ an arbitrary (variable) increment Ay, so small that 7+ Ay
stays in f[G] (an open set by Theorem 2).

As g and fg are one-to-one, Ay uniquely determines

AF = g(§ + AY) — g(7) = ¢,
and vice versa:
Aj = f(@ +1) - f(@).
Here Ay and ¢ are the mutually corresponding increments of § = f(&) and
# = g(i7). By continuity, ¥ — 0 iff i’ — 0.3

As U =df(z; -),
lim —|f(z + ) — f(F) — UE)| =0,
t—0 |t|
or
R
(8) lim —[F(t)| =0,
t—0 |t|
where
9) F)=f@+t)—f(£)-U().

AsV =U""', we have

So from (9),

that is,

(10)  Rlali+ A7) - o) - VA7) = T iEe

Now, formula (4), with 7 = &, § =& +{, and @ = I, shows that

3 This change of variables is admissible as the map & <— Ay is one-to-one (Corollary 2
in Chapter 4, §2).
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i.e., |A7| > Le|t'|. Hence by (8),
VED) _ VEE)] _ 2

IAF] T Let] e

1 - 2 1 N o o
v(mF(t))' < IV IOl 0asT 50

Since # — 0 as A7 — 0 (change of variables!), the expression (10) tends to
0as A7 — 0.
By definition, then, g is differentiable at i, with dg(7; -) =V = U"L.
Moreover, Corollary 3 in §6, applies here. Thus
(Vo' >0) (36" >0) | U-W|<§=|U"t-W1<d.
Taking here U~! = dg(i) and W~ = dg(# + A¥), we see that g € C D" near
y. This completes the proof. [

Note 2. If E/ = E = E™(C™), the bijectivity of ¢ = df(p; -) is equiva-
lent to

det[g] = det[f' ()] # 0

(Theorem 1 of §6).

In this case, the fact that f is one-to-one on G = G(J) means, componentwise
(see Note 3 in §6), that the system of n equations

fil@) = flz,. . an) =y, i=1,...,n,
has a unique solution for the n unknowns z;, as long as
W1, yn) =7 € fIG].
Theorem 3 shows that this solution has the form
e =9x(¥), k=1,...,n,

where the g, are of class CD! on f[G] provided the f; are of class C' D' near
and det [f'(p)] # 0. Here

det[f'(p)] = J¢(P),
as in §6.

Thus again f “locally” resembles a linear map, ¢ = df (7; - ).

IV. The Implicit Function Theorem. Generalizing, we now ask, what

about solving n equations in n + m unknowns xi,...,Tn,Y1,...,Ym? Say, we
want to solve
(11) fk(x17"'7zn7y17"'7ym):07 k/.:]‘727""n7

for the first n unknowns (or variables) zj, thus expressing them as

zk::Hk(ylw"vym)a kzla"'7n7
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with H,: E™ — E' or Hy,: C™ — C.
Let us set © = (x1,...,2n), ¥ = (Y1, .-, Ym), and
(Z,7) = (@1, Tn, Y1, - Yom)
so that (Z,¢) € E"t™ (C™t™).
Thus the system of equations (11) simplifies to
R(Z,9)=0, k=1,...,n,
or
f(&,9) =0,
where f = (f1,..., fn) is a map of E"T™ (C™t™) into E™ (C™); f is a function
of n + m wvariables, but it has n components fi; i.e.,
f(&,9) = f(z1,... ,Zn, Y1, , Ym)
is a vector in E™ (C™).
Theorem 4 (implicit functions). Let B/ = E"™™ (C"™™), E = E™ (C™), and
let f: E' — E be of class CD' near
(#,0) = (p1;- -, Pns @1, - 4m), P E€E"(CM), ¢ € E™(C™).
Let [¢] be the n x n matriz
(D f®@.4), Jk=1,....n
If det[¢] # 0 and if f(§,7) =0, then there are open sets
P CE"(C™) and Q C E™(C™),
with p € P and ¢ € Q, for which there is a unique map
H:Q—P
with .
F(HY),§) =0
for all i € Q; furthermore, H € CD* on Q.
Thus Z = H(¥) is a solution of (11) in vector form.
Proof. With the above notation, set
F(Z,9) = (f(Z.9).9), F:E —E.
Then =
F(p,q) = (f(0,4),q) = (0,9),
since f(p,q) = 0.

As f € CD* near (7, ), so is F' (verify componentwise via Problem 9(ii) in
§3 and Definition 1 of §5).
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By Theorem 4, §3, det[F’(p, )] = det[¢] # 0 (explain!).
Thus Theorem 1 above shows that F' is one-to-one on some globe G' about
(2, q)-
Clearly G contains an open interval about (p,q). We denote it by P x Q
where p € P, § € Q; P is open in E™ (C™) and @ is open in E™ (C™).4
By Theorem 3, Fpyxg (F restricted to P x ) has an inverse
g: A+— P xQ,

onto

where A = F[P x Q] is open in E’ (Theorem 2), and g € CD* on A. Let

the map v = (g1,...,9,) comprise the first n components of g (exactly as f
comprises the first n components of F').
Then

—

9(%,9) = (u(T,7),9)

exactly as F(%,7) = (f(Z,7),%). Also, u: A — P is of class CD! on A, as g
is (explain!).
Now set

here ¥ € @, while
(0,7) € A= F[PxQ,

for F preserves i (the last m coordinates). Also set

by our choice of « and g (inverse to F'). Thus

FHG),7) =0, §eq,

<

as desired.
Moreover, as H(y) = u((_)a7 7), we have

0 0 -
H(]) = —u(0. 7)., 7 i < m.
%, (%) ayiU((LyL geQ,i<m

As u € CD?Y, all du/dy; are continuous (Definition 1 in §5); hence so are the
OH/dy;. Thus by Theorem 3 in §3, H € CD" on Q.

4 This can be made more precise using the theory of product spaces (Chapter 4, *§11).
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Finally, H is unique for the given P, Q; for

Thus f(Z,7) = 0 implies & = H(%); so H(7) is the only solution for #. [

Note 3. H is said to be implicitly defined by the equation f(Z,¥) = 0. In
this sense we say that H (i) is an implicit function, given by f(&,7) = 0.

Similarly, under suitable assumptions, f(Z,7) = 0 defines ¢ as a function
of Z.

Note 4. While H is unique for a given Y
neighborhood P x Q of (P, ), another im-
plicit function may result if PxQ or (7, )
is changed.

For example, let

flzy) =2 +y* 25

(a polynomial; hence f € CD! on all of
E?). Geometrically, 22 + y? — 25 = 0 de-
scribes a circle.

Solving for z, we get x = /25 — y2. Thus we have two functions:

FIGURE 28

Hi(y) = +/25 — y?

and
Hy(y) = —/25 — 2.

If P x @ is in the upper part of the circle, the resulting function is H;. Other-
wise, it is Hy. See Figure 28.

V. Implicit Differentiation. Theorem 4 only states the existence (and
uniqueness) of a solution, but does not show how to find it, in general.

The knowledge itself that H € C D' exists, however, enables us to use its
derivative or partials and compute it by implicit differentiation, known from
calculus.®

5 For more on implicit differentiation, see §10.
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Examples.
(a) Let f(x,y) = 2% +y? — 25 = 0, as above.
This time treating y as an implicit function of z,y = H(z), and writing
y' for H'(x), we differentiate both sides of 2% + y* — 25 = 0 with respect
to z, using the chain rule for the term y? = [H(z)]2.
This yields 2z + 2yy’ = 0, whence ¢y = —z/y.
Actually (see Note 4), two functions are involved: y = +v/25 — x2; but
both satisfy 22 + y? — 25 = 0; so the result 3y’ = —z/y applies to both.
Of course, this method is possible only if the derivative 3’ is known to
exist. This is why Theorem 4 is important.
(b) Let
flz,y,2) =2+ +22-1=0, z,y,2z€E.
Again f satisfies Theorem 4 for suitable z, y, and z.
Setting z = H(z,y), differentiate the equation f(z,y,z) = 0 partially

with respect to z and y. From the resulting two equations, obtain %
and g_Z'

Problems on Inverse and Implicit
Functions, Open and Closed Maps

1. Discuss: In Definition 1, G can equivalently be replaced by G = G(6)
(an open globe).

2. Prove that if the set D is open (closed) in (S, p), then the map f: S — T
is open (closed, respectively) on D iff fp (f restricted to D) has this
property as a map of D into f[D].

[Hint: Use Theorem 4 in Chapter 3, §12.]

3. Complete the missing details in the proofs of Theorems 1-4.

3’ Verify footnotes 2 and 3.

4. Show that a map f: E/ — E may fail to be one-to-one on all of E’ even
if f satisfies Theorem 1 near every p' € E’. Nonetheless, show that this
cannot occur if B/ = F = E'.

[Hints: For the first part, take E/ = C, f(z+1iy) = e®(cosy+isiny). For the second,
use Theorem 1 in Chapter 5, §2.]

4’. (i) For maps f: E' — E', prove that the existence of a bijective
df (p; -) is equivalent to f’(p) # 0.

(ii) Let
f(x) = x+ 2?sin % f(0) =0.

Show that f/(0) # 0, and f € CD! near any p # 0; yet f is not
one-to-one near 0. What is wrong?
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. Show that a map f: E"(C") — E"(C"), f € CD!, may be bijective

even if det[f’(7)] = 0 at some 7, but then f~! cannot be differentiable
at ¢ = f(p).

[Hint: For the first clause, take f(z) = 2%, p = 0; for the second, note that if f—1
is differentiable at ¢, then Note 2 in §4 implies that det[df(7; - )] - det[df ~'(q; - )] =
1 #0, since fo f~! is the identity map.]

. Prove Corollary 2 for the general case of complete E' and E.

[Outline: Given a closed X C G, take any convergent sequence {7, } C f[X]. By
Problem 8 in Chapter 4, §8, f~1(7,,) = @n is a Cauchy sequence in X (why?). By
the completeness of E', (3% € X) &5, — & (Theorem 4 of Chapter 3, §16). Infer
that limy/,, = f(&) € f[X], so f[X] is closed.]

. Prove that “the composite of two open (closed) maps is open (closed).”

State the theorem precisely. Prove it also for the uniform Lipschitz
property.

. Prove in detail that f: (S, p) — (T,p') is open on D C S iff f maps the

interior of D into that of f[D]; that is, f[D°] C (f[D])°.

. Verify by examples that f may be:

(i) closed but not open;

(ii) open but not closed.
[Hints: (i) Consider f = constant. (ii) Define f: E? — E' by f(x,y) = = and let

1
_ 2|, L .
Df{(l,y)GE ’yf o 1>0},

use Theorem 4(iii) in Chapter 3, §16 and continuity to show that D is closed in
E?, but f[D] = (0,+00) is not closed in E'. However, f is open on all of E? by
Problem 8. (Verify!)]
Continuing Problem 9(ii), define f: E® — E' (or C™ — C) by f(¥) =
xy, for a fixed k < n (the “kth projection map”). Show that f is open,
but not closed, on E™ (C™).

(i) In Example (a), take (p,q) = (5,0) or (—5,0). Are the conditions

of Theorem 4 satisfied? Do the conclusions hold?

(ii) Verify Example (b).

(i) Treating z as a function of z and y, given implicitly by
f:E* = E',

discuss the choices of P and @ that satisfy Theorem 4. Find %
and g_z_
y
(ii) Do the same for f(z,y,z) =e"¥* —1=0.

. Given f: E"(C") — E™(C™), n > m, prove that if f € CD! on a

globe G, f cannot be one-to-one.

[Hint for f: E? — E': If, say, D1 f # 0 on G, set F(z,y) = (f(z,v),v).]

flo,y,2) =23+ 222 —yz2 =0,
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14.

15.

16.

17.

18.

Suppose that f satisfies Theorem 1 for every p’ in an open set A C E’,
and is one-to-one on A (cf. Problem 4). Let g = f;* (restrict f to A
and take its inverse). Show that f and g are open and of class CD! on
A and f[A], respectively.

Given ¥ € E and a scalar ¢ # 0, define Ty : E — E (“translation by 77)
and M.: E — E (“dilation by ¢”), by setting
T3(Z) =% + 7 and M (%) = cZ.
Prove the following.
(i) Ty and T7 L(= T_3) are bijective, continuous, and “clopen” on E;
so also are M, and M; ' (= Mj.).
(ii) Similarly for the Lipschitz property on E.
(111) IfG= Gq’(&) C F, then Tg[G} = Gq’+g(6)7 and MC[G] = ch(|05|)
(iv) If f: B — FE is linear, and ¢ = f(p) for some p € E’, then
Tyof=foTlyand Mc.o f = foM. where T} and M, are the
corresponding maps on E’. If, further, f is continuous at g, it is
continuous on all of E’.
[Hint for (iv): Fix any £ € E’. Set ¢ = f(¥ —p), g =Tz o foTéif. Verify

that g = f, Téif(f) = p, and g is continuous at ]

Show that if f: £ — E is linear and if f[G*] is open in E for some
G* = G(6) C E’, then

(i) f is open on all of E';

(i1) fis onto E.

[Hints: (i) By Problem 8, it suffices to show that the set f[G] is open, for any globe
G (why?). First take G = G(9). Then use Problems 7 and 15(i)—(iv), with suitable
¥ and c.

(il) To prove E = f[E'], fix any § € E. As f = G5(9) is open, it contains a globe
G' = Gj(r). For small ¢, cj € G’ C f[E']. Hence § € f[E'] (Problem 10 in §2).]

Continuing Problem 16, show that if f is also one-to-one on G*, then

f:E +— E,
onto

fELEE), f7L e L(E,E"), fis clopen on E’, and f~!isso on E.
[Hints: To prove that f is one-to-one on E’, let f(Z) = f(z’) = ¢ for some Z,3’ € E'.
Show that
(3c,e>0) cf € Ggle) C fIG5(9)] and f(cZ+p) = f(c@'+P) € f[G5(6)] = fIG"].
Deduce that ¢Z + 7 = ¢’ + p and & = #'. Then use Problem 15(v) in Chapter 4,
§2, and Note 1.]

A map
f:(S,p) <= (T,p)

onto
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is said to be bicontinuous, or a homeomorphism, (from S onto T') iff
both f and f~! are continuous. Assuming this, prove the following.

(i) xp = pin S iff f(z,) = f(p) in T;

(ii) A is closed (open, compact, perfect) in S iff f[A] is so in T}

(i) B=Ain S iff f[B] = f[A] in T}

(iv) B = A%in S iff f[B] = (f[A])° in T;

(v) Aisdensein B (i.e., AC BC ACS)in (S, p) iff f[A] is dense in

fIB] € (T p).

[Hint: Use Theorem 1 of Chapter 4, §2, and Theorem 4 in Chapter 3, §16, for closed
sets; see also Note 1.]

19. Given A, B C E, ¥ € E and a scalar c, set
A+ ={7F+0|FecA}landcA={cZ |T € A}

Assuming c¢ # 0, prove that
(i) A is closed (open, compact, perfect) in E iff cA + ¥/ is;
(ii) B=Aiff cB+ ¥ = cA+7;
(iii) B=A"iff cB+ ¥ = (cA+7)%
(iv) A is dense in B iff cA + ¥ is dense in ¢B + 7.
[Hint: Apply Problem 18 to the maps Tz and M, of Problem 15, noting that A4+¢ =
T3[A] and cA = M.[A]]
20. Prove Theorem 2, for a reduced §, assuming that only one of E' and E
is E™ (C™), and the other is just complete.
[Hint: If, say, E = E™ (C™), then f[G] is compact (being closed and bounded), and so
is G = f~Y[f[G]]. (Why?) Thus the Lemma works out as before, i.c., f[G] D Gg(a).
Now use the continuity of f to obtain a globe G’ = Gy(6') C G such that

flG'] € Gg(a). Let g = f&l, further restricted to Gz (). Apply Problem 15(v) in
Chapter 4, §2, to g, with § = Gz(a), T = E'|]

*88. Baire Categories. More on Linear Maps

We pause to outline the theory of so-called sets of Category I or Category II,
as introduced by Baire. It is one of the most powerful tools in higher analysis.
Below, (S, p) is a metric space.
Definition 1.
A set A C (S, p) is said to be nowhere dense (in S) iff its closure A has
no interior points (i.e., contains no globes): (A4)° = (.
Equivalently, the set A is nowhere dense iff every open set G* # 0 in
S contains a globe G disjoint from A. (Why?)

*§8. Baire Categories. More on Linear Maps 71

Definition 2.
A set A C (S, p) is meagre, or of Category 1 (in S), iff

A= [j Anu
n=1

for some sequence of nowhere dense sets A,,.
Otherwise, A is said to be nonmeagre or of Category II.
A is residual iff —A is meagre, but A is not.

Examples.

(a) 0 is nowhere dense.

(b) Any finite set in a normed space F is nowhere dense.
(c) The set N of all naturals in E! is nowhere dense.
)

(d) So also is Cantor’s set P (Problem 17 in Chapter 3, §14); indeed, P is
closed (P = P) and has no interior points (verify!), so (P)? = P° = ().

(e) The set R of all rationals in E! is meagre; for it is countable (see Chap-
ter 1, §9), hence a countable union of nowhere dense singletons {r,},
rn € R. But R is not nowhere dense; it is even dense in E', since R = E'
(see Definition 2, in Chapter 3, §14). Thus a meagre set need not be
nowhere dense. (But all nowhere dense sets are meagre—why?)

Examples (¢) and (d) show that a nowhere dense set may be infinite (even
uncountable). Yet, sometimes nowhere dense sets are treated as “small” or
“negligible,” in comparison with other sets. Most important is the following
theorem.

Theorem 1 (Baire). In a complete metric space (S, p), every open set G* # ()
is nonmeagre. Hence the entire space S is residual.

Proof. Seeking a contradiction, suppose G* is meagre, i.e.,

for some nowhere dense sets A,. Now, as A; is nowhere dense, G* contains a
closed globe

G1=G,.(0,) C —A,.

Again, as A, is nowhere dense, (G contains a globe

_ 1
Gy = Gm((sg) C -4, with0<dy < 551
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By induction, we obtain a contracting sequence of closed globes

1
G =Gy, (6,), with 0.< 3, < 61 — 0.

As S is complete, so are the G,, (Theorem 5 in Chapter 3, §17). Thus, by
Cantor’s theorem (Theorem 5 of Chapter 4, §6), there is

pE G,.
n=1
As G* D G, we have p € G*. But, as G,, C —A,,, we also have (Vn) p & A,;
hence

rg |JA =6
n=1

(the desired contradiction!). O

We shall need a lemma based on Problems 15 and 19 in §7. (Review them!)
Lemma. Let f € L(E',E), E' complete. Let G = Gg(1) be the unit globe in

E'. If fIG] (closure of f[G] in E) contains a globe Gy = Go(r) C E, then
Go C f[G].

Note. Recall that we “arrow” only vectors from E’ (e.g., 6), but not those
from F (e.g., 0).
Proof of lemma. Let A = f[G] NGy C Gy. We claim that A is dense in
Go; ie., Gy € A. Indeed, by assumption, any ¢ € G is in f[G]. Thus by
Theorem 3 in Chapter 3, §16, any G, meets f[G] NGy = A if ¢ € Gy. Hence

(VgeGo) q€A,
ie., Gy C A, as claimed.
Now fix any go € Go = Go(r) and areal ¢ (0 < ¢ < 1). As A is dense in Gy,
AN Gy (er) £ 0;
solet g1 € ANGy(cr) C fIG]. Then
lgn — qo| < er, qo € Gy (cr).

As ¢ € f[G], we can fix some p; € G = Gy(1), with f(p,) = q1. Also, by
Problems 19(iv) and 15(iii) in §7, cA 4 ¢1 is dense in ¢Go + ¢1 = G, (cr). But
qo € G (cr). Thus

an(CQT) N (CA + (11) 7& (D;

so let g2 € Ggo (¢*r) N (cA+ q1), 50 qo € Gy, (c?r), ete.
Inductively, we fix for each n > 1 some g,, € Gy, (c"r), with

qn € CnilA + qn-1,
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ie.,
Un — Gn_1 € " LA,
As A C f[Gy(1)], linearity yields
Gn —dn—1 € f["Go(1)] = f[Go(c" )], n>1

Thus for each n > 1, there is p,, € Go(c"™1), (i.e., |F,| < ¢"7!) such that
f(B,) = an — qn-1. Now, as |p,| <c*tand 0 < c< 1,

oo
> 1B, < 4oo;
1

so by the completeness of E’, Y p,, converges in E’ (Theorem 1 in Chapter 4,
§13). Let =Y o | P); then

1@ = (Yo = i 1(So)
k=1 k=1

= lim Y f(7,) for f € L(E'E).
k=1

But f(py) = qx — qx—1 (k > 1), and f(p) = q1; s0

D@ =a+ Y (g —ar-1) = gn.
k=2

k=1

Thus
o SN _ 1
F@) = nlggo;f(pk) = lim g, = g

Moreover, |p,| < ¢*~1 (k> 1). Thus

oo

oo
o . _ 1
Bl < okl <) o=
1—c
k=1

k=1

ie.,

e G6<1ic)'

werfos(r )

! Note that gn — qo, since gn € G, (c"r) implies |gn — go| < ¢"r — 0,as 0 < ¢ < 1.

But g = f(p); so
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As qo € Go(r) was arbitrary, we have

Gor) € £[Go(+=)]:

1—c¢

or by linearity,
Go(r(1 =) C flGo(1)] = fG].
This holds for any ¢ € (0,1). Hence
1612 U Golr(1 =) = Go(r).  (Verify!)
0<e<1
Thus all is proved. O

We can now establish an important result due to S. Banach.

Theorem 2 (Banach). Let f € L(E’, E), with E' complete. Then f[E'] is
meagre in E or f[E'] = E, according to whether f[Gg(1)] is or is not nowhere
dense.?

Proof. If f[Gy(1)] is nowhere dense in E, so also is f[Go(n)], n > 0. (Verify
by Problems 15 and 19 in §7.) But then

181 = 1| U G| = U 1165w
n=1 n=1

is a countable union of nowhere dense sets, hence meagre, by definition.

Now suppose f[G5(1)] is not nowhere dense; so f[Gy(1)] contains some
G4(r) € E. We may assume q € f[Gg(1)] (if not, replace ¢ by a close point
from f[G5(1)]). Then q = f(p) for some ' € G(1). The latter implies

| =5l =15 = p(7,0) < 1;
S0
G_5(1) € G5(2).
Also, as f[G5(1)] 2 G4(r), translation by —q = f(—p) yields

TGz + f(=P) 2 Gy(r) — g = Go(r),

ie.,

Go(r) € fIG-p(1)] € flG5(2)]-
Hence f[G5(1)] 2 Go(37) (why?); so, by the Lemma

1) F1G5(1] 2 Go5r) in B.

2 Of course, if F is meagre, so is f[E’] in both cases.
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This implies f[G5(2n)] 2 Go(nr), and so

fIE2 | Go(nr) = E,

n=1
i.e., f[E'] = E, as required. Thus the theorem is proved. O

Theorem 3 (Open map principle). Let f € L(E', E), with E' and E complete.
Then the map f is open on E' iff f[E'] = E, i.e., iff f is onto E.

Proof. If f[E'] = E, then by Theorem 1, f[E’] is nonmeagre in E, as is E
itself. Thus by Theorem 2, f[Gg(1)] is not nowhere dense, and (1) follows as
before. Hence by Problems 15(iii) and 19 in §7, f[G5] 2 some G4 whenever
q = f(p). (Why?) Therefore, Gy C A C E’ implies

G € flGyl < f1A];
i.e., [ maps any interior point p € A into such a point of f[A]. By Problem 8
in §7, f is open on E’.

Conversely, if so, then f[E’'] is an open set # () in E, a complete space; so by
Theorems 1 and 2, f[E’] is nonmeagre and equals E. (See also Problem 16(ii)
in§7.) O

Note 1. Theorem 3 holds even if f is not one-to-one.

Note 2. If in Theorem 3, however, f is bijective, it is open on E’, and
so f71 € L(E,E") by Note 1 in §7. (This is the promised general proof of
Corollary 2 in §6.)

Theorem 4 (Banach-Steinhaus uniform boundedness principle). Let E' be
complete. Let N be a family of maps f € L(E', E) such that

(2) (Yx e E') Bke EY) (VfeN) |f(@)] <k

(“N is bounded at each T.”)
Then N is “norm-bounded,” i.e.,

GKeE) (VfeN) |fll<K,
with || || as in §2.
Proof. It suffices to show that A is “uniformly” bounded on some globe,
(3) (Fece B 3G =Gp(r) VfeN)(VZieG) |f@)<ec
For then |# — p| < r implies
2¢> |f(Z) = f(P)] = |f (@ = P)l,

or (setting & — p'=ry) |y| < 1 implies

(VFEN) 1@< (why?);
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SO
(VS EN) ISl = swp @) < 2
l71<1 r
Thus, seeking a contradiction, suppose (3) fails and assume its negation:
(1) (VeeB) (VG =Gp(r) Bf € N) BF € G = G5() |f(@)] >c.
Then for ¢ = 1, we can fix some f; € AN and Gz, (r1) such that 0 < ry < 1 and
lf1(Z1)] > 1.
By the continuity of the norm | |, we can choose r1 so small that
(V@ € Gz, () [F(@)]>1.
Again by (4), we fix fo € N and &2 € Gz, (r1) such that |f2] > 2 on some globe
Gz, (r2) C Gz, (1),

with 0 < ro < 1/2. Inductively, we thus form a contracting sequence of closed
globes

Gin (Tn)v

and a sequence {f,} C N, such that

1
0<r, <—,
n

(V) |ful > 1 on G, () C E.

As E' is complete, so are the closed globes Gz, (r,) C E’. Also, 0 < r,, <
1/n — 0. Thus by Cantor’s theorem (Theorem 5 of Chapter 4, §6), there is

g —_—
To € ﬂ ng(’l'n).
n=1

As ¥ is in each Gz, (ry), we have
(Vn)  [fu(Zo)l > n;
so N is not bounded at T¢, contrary to (2). This contradiction completes the

proof. [

Note 3. Complete normed spaces are also called Banach spaces.

Problems on Baire Categories and Linear Maps

1. Verify the equivalence of the various formulations in Definition 1. Dis-
cuss: A is nowhere dense iff it is not dense in any open set # ().

2. Verify Examples (a) to (e). Show that Cantor’s set P is uncountable.
[Hint: Each p € P corresponds to a “ternary fraction,” p = >->° | x5, /3", also written

0.21,22,...,%n,..., where ,, = 0 or z,, = 2 according to whether p is to the left,
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10.

or to the right, of the nearest “removed” open interval of length 1/3™. Imitate the
proof of Theorem 3 in Chapter 1, §9, for uncountability. See also Chapter 1, §9,
Problem 2(ii).]

. Complete the missing details in the proof of Theorems 1 to 4.

. Prove the following.

(i) If B C A and A is nowhere dense or meagre, so is B.

(ii) If B C A and B is nonmeagre, so is A.

[Hint: Assume A is meagre and use (i)).]

(iii) Any finite union of nowhere dense sets is nowhere dense. Disprove
it for infinite unions.

(iv) Any countable union of meagre sets is meagre.

. Prove that in a discrete space (5, p), only 0 is meagre.

[Hint: Use Problem 8 in Chapter 3, §17, Example 7 in Chapter 3, §12, and our
present Theorem 1.]

. Use Theorem 1 to give a new proof for the existence of irrationals in E'.

[Hint: The rationals R are a meagre set, while E! is not.]

. What is wrong about this “proof” that every closed set F' # ) in a

complete space (S, p) is residual: “By Theorem 5 of Chapter 3, §17, F
is complete as a subspace. Thus by Theorem 1, F' is residual.” Give
counterexamples!

. We call K a Gs-set and write K € Gs iff K = ﬂle G, for some open

sets Gp,.3

(i) Prove that if K is a Gs-set, and if K is dense in a complete metric
space (S, p), i.e., K =S, then K is residual in S.
[Hint: Let Fy, = —Gn. Verify that (Vn) G, is dense in S, and F;, is nowhere
dense. Deduce that —K = — (G, = |J F, is meagre. Use Theorem 1.]

(ii) Infer that R (the rationals) is not a Gs-set in E' (cf. Example (c)).

. Show that, in a complete metric space (5, p), a meagre set A cannot

have interior points.
[Hint: Otherwise, A would obtain a globe G. Use Theorem 1 and Problem 4(ii).]

(i) A singleton {p} C (S, p) is nowhere dense if S clusters at p; oth-
erwise, it is nonmeagre in S (being a globe, and not a union of
nowhere dense sets).

(ii) If A C S clusters at each p € A, any countable set B C A is
meagre in S.

3 Such is any closed set A=A C (S, p) (see Problem 20 in Chapter 3, §16).
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11.

12.

13.

14.
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(i) Show that if @ # A € G5 (see Problem 8) in a complete space (S, p),
and A clusters at each p € A, then A is uncountable.

(ii) Prove that any nonempty perfect set (Chapter 3, §14) in a complete
space is uncountable.

(ili) How about R (the rationals) in E' and in R as a subspace of E'?
What is wrong?

[Hints: (i) The subspace (4,p) is complete (why?); so A is nonmeagre in A, by
Problem 8. Use Problem 10(ii). (ii) Use Footnote 3.]

If G is open in (S, p), then G — G is nowhere dense in S.

[Hint: G — G = G N (=G) is closed; so
G-G)0=G-G)°"=Gn-G)°=0

by Problem 15 in Chapter 3, §12 and Problem 15 in Chapter 3, §16.]

(“Simplified” uniform boundedness theorem.) Let f,: (S,p) — (T, p')
be continuous for n = 1,2, ..., with S complete. If { f,,(z)} is a bounded
sequence in T for each z € S, then {f,} is uniformly bounded on some

open G # (:
(YpeT) (3k) (Vn) (Yz € G) p'(p, fu(z)) < k.
[Outline: Fix p € T and (Vn) set
Fo={z€S[(Ym)n=p(p fm(z))}

Use the continuity of f,, and of p’ to show that F}, is closed in S, and S = Uy~ Fn.
By Theorem 1, S is nonmeagre; so at least one Fy is not nowhere dense—call it F,
so (F)? = FO # (. Set G = F° and show that G is as required.]

Let f,: (S,p) — (T,p') be continuous for n = 1,2,... Show that if
fn — f (pointwise) on S, then f is continuous on S — @, with @ meagre
in S.

[Outline: (Vk, m) let

Apm = G{zGS

By the continuity of p’, fn and fm, Ak, is open in S. (Why?) So by Problem 12,
Use—1 (Akm — Agm) is meagre for k =1,2,....
Also, as fn — fon S, Nro_; Agm = 0. (Verify!) Thus

, 1
P (@), fm(@)) > 1}

8 ) Tom € U G — Ak,
m=1 m=1

(Why?) Hence the set Q = Up—; Npv—1 Akm is meagre in S.
Moreover, S — Q = N2, Use_;(—Akm)? by Problem 16 in Chapter 3, §16.
Deduce that if p € S — Q, then

(Ve >0) (3mg) (3Gp) (Vn,m > mo) (Vz € Go) o (fm (@), fn(2)) <e.
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Keeping m fixed, let n — oo to get
(Ve >0) (Fmo) 3Gp) (Ym 2mo) (Vo € Gp) p'(fm(2), f(2)) <e.

Now modify the proof of Theorem 2 of Chapter 4, §12, to show that this implies the
continuity of f at each p € S — Q]

§9. Local Extrema. Maxima and Minima

We say that f: E' — E' has a local mazimum (minimum) at § € E' iff f(7)
is the largest (least) value of f on some globe G about p’; more precisely, iff
(Ve G) Af=f(F) - f(7) <0 (>0).

We speak of an improper extremum if we only have Af < 0 (> 0) on G. In
any case, all depends on the sign of Af.

From Problem 6 in §1, recall the following necessary condition.
Theorem 1. If f: E' — E* has a local extremum at p then Dz f(p) = 0 for
al @ #0 in E'.

In the case E' = E™ (C™), this means that d* f(p; -) =0 on E'.

(Recall that d' f(7;t) = Sop_, Di.f(#)tx. It vanishes if the Dy f(p7) do.)

Note 1. This condition is only necessary, not sufficient. For example, if
f(x,y) = zy, then d* f(0; -) = 0; yet f has no extremum at 0. (Verify!)

Sufficient conditions were given in Theorem 2 of §5, for £/ = E'. We now
take up B/ = E2.
Theorem 2. Let f: E? — E*' be of class CD? on a globe G = Gy(3). Suppose
dlf(ﬁ; ) =0 on E2. Set A = Duf(ﬁ)7 B = Dlgf(ﬁ), and C = Dggf(ﬁ)

Then the following statements are true.

(i) If AC > B2, f has a mazimum or minimum at p, according to whether

A<0orA>D0.
(ii) If AC < B2, f has no extremum at p.

The case AC' = B is unresolved.
Proof. Let 7 € Gand @ =& —§ #0.
As d' f(p; -) = 0, Theorem 2 in §5, yields
- _ 1 o
Af = f(@) = f(p) = Bx = 5d*f(5;1),

with 5 € L(7,%) C G (see Corollary 1 of §5). As f € CD?, we have Diof =
Doy f on G (Theorem 1 in §5). Thus by formula (4) in §5,

(1) Af = g [(5:1) = L[Duf(8)d + 2Draf (S)urus + Doa ()]
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Now, as the partials involved are continuous, we can choose G = Gy(J) so
small that the sign of expression (1) will not change if § is replaced by p. Then
the crucial sign of Af on G coincides with that of

(2) D = Au} 4 2Bujug + Cul

(with A, B, and C as stated in the theorem).
From (2) we obtain, by elementary algebra,

(3) AD = (Auy + Bug)? + (AC — B*)u3,
(3" CD = (Cuy + Bug)? + (AC — B?)u3.

Clearly, if AC > B2, the right-side expression in (3) is > 0; so AD > 0,
i.e., D has the same sign as A.

Hence if A < 0, we also have Af < 0 on G, and f has a maximum at p. If
A >0, then Af >0, and f has a minimum at p.

Now let AC < B?. We claim that no matter how small G = Gz(9), Af
changes sign as & varies in GG, and so f has no extremum at p.

Indeed, we have & = p+ @, @ = (u1,u2) # 0. If upg = 0, (3) shows that D
and Af have the same sign as A (A #0).

But if uz # 0 and u3 = —Bugy/A (assuming A # 0), then D and Af have
the sign opposite to that of A; and ¥ is still in G if us is small enough (how
small?).

Omne proceeds similarly if C' # 0 (interchange A and C, and use (3').

Finally, if A = C' = 0, then by (2), D = 2Bujuz and B # 0 (since AC < B?).
Again D and Af change sign as ujus does; so f has no extremum at p. Thus
all is proved. [

Briefly, the proof utilizes the fact that the trinomial (2) is sign-changing iff
its discriminant B — AC is positive, i.e., | g g | < 0.

Note 2. Functions f: C — E! (of one complex variable) are likewise cov-
ered by Theorem 2 if one treats them as functions on E? (of two real variables).

Functions of n variables. Here we must rely on the algebraic theory of so-
called symmetric quadratic forms, i.e., polynomials P: E™ — E' of the form

n n

P(ﬁ) = ZZaijuiuj7
j=1i=1
where @ = (ui, ... ,u,) € E" and a;; = aj; € EL.

We take for granted a theorem due to J. J. Sylvester (see S. Perlis, Theory
of Matrices, 1952, p. 197), which may be stated as follows.
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Let P: E™ — E' be a symmetric quadratic form,

n n

P(ﬁ) = Z Z QiU Uy -

j=1i=1

(i) P>0onall of E™"— {6} iff the following n determinants Ay are positive:

a1 a2 ... Qig
agr az2 ... G2

(4) A = , k=1,2,... n.
ag1 k2 Ak

(i) We have P <0 on E™ — {0} iff (~1)*Ap >0 for k=1,2,... ,n.

Now we can extend Theorem 2 to the case f: E® — E'. (This will also
cover f: C" — E!, treated as f: E?*" — E'.) The proof resembles that of
Theorem 2.

Theorem 3. Let f: E™ — E' be of class CD? on some G = G3(5). Suppose
df(p; ) = 0 on E™. Define the Ay as in (4), with a;; = Dy f(p), 1,4,k < n.
Then the following statements hold.

(i) f has a local minimum at p if A >0 fork=1,2,... ,n.
(ii) f has a local mazimum at § if (~1)*Ax >0 fork=1,... ,n.
(iii) f has no extremum at P if the expression

P(i) =3

j=11

n n
QiU U
=1
is > 0 for some @ € E™ and < 0 for others (i.e., P changes sign on E™).

Proof. Let again Z € G, 4 =& —p # 0, and use Taylor’s theorem to obtain

(6)  AF= @) - ) = R = PG =

j=11i

n n
Dij f(8)uiuy,

=1
with § € L(Z,p).

As f € CD?, the partials D;; f are continuous on G. Thus we can make G so
small that the sign of the last double sum does not change if § is replaced by p.
Hence the sign of Af on G is the same as that of P(7) = Y7, D3I, aijusu;,
with the a;; as stated in the theorem.

The quadratic form P is symmetric since a;; = aj; by Theorem 1 in §5.
Thus by Sylvester’s theorem stated above, one easily obtains our assertions (i)
and (ii). Indeed, they are immediate from clauses (i) and (ii) of that theorem.
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Now, for (iii), suppose P(#) > 0 > P(¥), i.e.,
n n n n

AjjUU; > 0> E E A0V for some ’17:,’[7 e E" — {0}
1i=1 j=11i=1

J

If here @ and ¥ are replaced by t@ and t¥ (t # 0), then w;u; and v;v; turn
into t2u;u; and t?v;v;, respectively. Hence

P(ti) = t2P(@7) > 0 > t2P(¥) = P(t7).
Now, for any t € (0,4/|@|), the point & = p + ti lies on the @-directed line
through 7, inside G = G5(8). (Why?) Similarly for the point &’ = § + t'.
Hence for such # and &', Taylor’s theorem again yields formulas analogous

]

to (5) for some § € L(p, &) and 5 € L(p,Z") lying on the same two lines. Tt
again follows that for small 4,

F@) = £0) > 0> (@) - f(D),

just as P(@) > 0> P(7).
Thus Af changes sign on Gz(6), and (iii) is proved. [

Note 3. Still unresolved are cases in which P(%) vanishes for some @ # 0,
without changing its sign; e.g., P(@) = (u1 + uz +u3)? =0 for @ = (1,1, -2).
Then the answer depends on higher-order terms of the Taylor formula. In par-
ticular, if d* f(; -) = d2f(p; -) = 0 on E™, then Af = Ry = %d3f(ﬁ; 3), ete.

Note 4. The largest or least value of f on a set A (sometimes called the
absolute maximum or minimum) may occur at some noninterior (e.g., bound-
ary) point 7 € A, and then fails to be among the local extrema (where, by
definition, a globe Gy C A is presupposed). Thus to find absolute extrema, one
must also explore the behaviour of f at noninterior points of A.

By Theorem 1, local extrema can occur only at so-called critical points P,
i.e., those at which all directional derivatives vanish (or fail to exist, in which
case Dg f(p) = 0 by convention).

In practice, to find such points in E™ (C™), one equates the partials Dy f
(k < n) to 0. Then one uses Theorems 2 and 3 or other considerations to
determine whether an extremum really exists.

Examples.
(A) Find the largest value of
f(x,y) =sinz + siny — sin(z + y)

on the set A C E? bounded by the lines 2 = 0, y = 0 and = +y = 27.
We have

D f(z,y) = cosx — cos(x + y) and Dy f(z,y) = cosy — cos(z + y).
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Inside the triangle A, both partials vanish only at the point (%ﬂ, %ﬂ) at

which f = g\/g On the boundary of A (i.e., on the lines z =0, y =0
and z+y = 27), f = 0. Thus even without using Theorem 2, it is evident
that f attains its largest value,

2 27 3
V=23
f( 373 ) 2 V3,
at this unique critical point.
Find the largest and the least value of
fx,y,2) = a®x® + b%y® + 222 — (az® + by? + c2?)?,

on the condition that x> +y?> + 22 =1 and a > b > ¢ > 0.
As 22 =1 —2? — 2, we can eliminate z from f(z,v,2) and replace f

by F: E? - E.:

F(z,y) = (a® = )a? + (0> = )y + & —[(a = )a® + (b — o)y + .
(Explain!) For F, we seek the extrema on the disc G = Gy(1) C E?,
where x? 4+ y% < 1 (so as not to violate the condition 22 + y? + 22 = 1).

Equating to 0 the two partials
DiF(z,y) = 2a(a — ){(a+c) — 2[(a— ) + (b — )y + ]} =0,
DyF(x,y) =2y(b— o) {(b+¢) —2[(a—)z® + (b—)y* +]*} =0
and solving this system of equations, we find these critical points in-
side G-
(1) 2=y=0(F=0);

(Verify!)

Now, for the boundary of G, i.e., the circle 22 + 2 = 1, repeat this
process: substitute y? = 1 — 22 in the formula for F(z,y), thus reducing
it to

h(z) = (a® — b*)2® + b* + [(a — D)2® + b]?, h: E' = E,
on the interval [—1,1] C E'. In (—1,1) the derivative
B (z) = 2(a — b)z(1 — 22?)
vanishes only when
(4) =0 (h=0), and
(5) x =272 (h = L(a—b)?).
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Finally, at the endpoints of [—1, 1], we have
(6) x==£1 (h=0).
Comparing the resulting function values in all six cases, we conclude
that the least of them is 0, while the largest is %(a — ¢)2. These are the

desired least and largest values of f, subject to the conditions stated.
They are attained, respectively, at the points

(0,0,%1), (0,41,0), (£1,0,0), and (£277,0, 427 7).

Again, the use of Theorems 2 and 3 was redundant.! However, we
suggest as an exercise that the reader test the critical points of F' by
using Theorem 2.

Caution. Theorems 1 to 3 apply to functions of independent variables only.
In Example (B), z, y, z were made interdependent by the imposed equation
2 yt=1

(which geometrically limits all to the surface of G(1) in E®), so that one of
them, z, could be eliminated. Only then can Theorems 1 to 3 be used.

Problems on Maxima and Minima

1. Verify Note 1.
1’. Complete the missing details in the proof of Theorems 2 and 3.

2. Verify Examples (A) and (B). Supplement Example (A) by applying
Theorem 2.
3. Test f for extrema in E? if f(z,y) is

2 2
i) —+ = 0 0);
() 5, + 5, >0,4>0);
22 2
i) —— = 0 0);
(i) % 2q(> . q>0);
(iii) y? + a%;
(iv) y* + 23
4. (i) Find the maximum volume of an interval A C E3 (see Chapter 3,
§7) whose edge lengths z, y, z have a prescribed sum: z+y+z = a.

(i) Do the same in E* and in E™; show that A is a cube.

! Indeed, by Theorem 2(ii) in Chapter 4, §8, absolute extrema must exist here, as all is
limited to the compact sphere, 2 + y? + 22 = 1.
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(iii) Hence deduce that

n

Zﬁﬂk (xr > 0),

1

1

Vx1T2 - T < o

i.e., the geometric mean of n nonnegative numbers is < their arith-
metic mean.

5. Find the minimum value for the sum f(z,y,2,t) =z +y+ z + ¢ of four
positive numbers on the condition that zyzt = ¢* (constant).

[Answer: £ =y =z =1 = ¢; fmax = 4c.]

6. Among all triangles inscribed in a circle of radius R, find the one of
maximum area.

[Hint: Connect the vertices with the center. Let z,y, z be the angles at the center.
Show that the area of the triangle = %R2 (sinz+siny+sin z), with z = 27— (z +y).]

7. Among all intervals A C E? inscribed in the ellipsoid

22 g2 2
2tptas!
find the one of largest volume.

: 22 2b  2c
[Answer: the edge lengths are 75 \/§]

8. Let P; = (as.b;), i = 1,2,3, be 3 points in £? forming a triangle in
which one angle (say, £Py) is > 27/3.
Find a point P = (x,y) for which the sum of the distances,

3
PP+ PP+ PPy =Z\/($*ai)2+(y*bz‘)2v
i=1
is the least possible.
[Outline: Let f(z,y) = 5, V(@ — a:)2 + (y — b3)2
Show that f has no partial derivatives at Py, Pa, or P3 (and so Py, P», and P3 are

critical points at which an extremum may occur), while at other points P, partials
do exist but never vanish simultaneously, so that there are no other critical points.

Indeed, prove that D; f(P) = 0 = Dy f(P) would imply that

3 3
Zcos&i =0= Zsin@i,
i=1 1

where 0; is the angle between PP; and the z-axis; hence
sin(fy — 02) = sin(f2 — 03) = sin(f3 — 01) (why?),

and so 01 — 02 = 03 — 03 = 03 — 01 = 27/3, contrary to £LP; > 2w /3. (Why?)
From geometric considerations, conclude that f has an absolute minimum at P;.
(This shows that one cannot disregard points at which f has no partials.))
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9.

10.

11.

12.
13.
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Continuing Problem 8, show that if none of £ P;, P, and £P5 is >
27/3, then f attains its least value at some P (inside the triangle) such
that KP1PP2 = KPQPPg = KPgPPl = 27T/3
[Hint: Verify that D1f =0 = Dy f at P.
Use the law of cosines to show that Py Py > PPy+ % PP, and P;P3s > PP3+ %PPl.
Adding, obtain Py P3 + P1 P> > PPy + PPy + PPs, i.e., f(P1) > f(P). Similarly,
f(P2) > f(P) and f(Ps) > f(P).
Combining with Problem 8, obtain the result.]

In a circle of radius R inscribe a polygon with n + 1 sides of maximum
area.

[Outline: Let x1,x2,... ,Zn41 be the central angles subtended by the sides of the

polygon. Then its area A is
n+1

1
~R? sin xg,

with @41 =27 — > p_; #5. (Why?) Thus all reduces to maximizing
n n
flz1,...,zn) = Z sinxy, + sin<27r - Z xk>,
k=1 k=1
on the condition that 0 < xj and Y p_; xj < 2w, (Why?)
These inequalities define a bounded set D C E™ (called a simplez). Equating all
partials of f to 0, show that the only critical point interior to D is & = (z1,... ,2n),

with 2, = 2% k < n (implying that z, 41 = too). For that &, we get

2m_ 2m_
n+17? n+17’

f(@) = (n+1)sin[2r/(n+ 1)].

This value must be compared with the “boundary” values of f, on the “faces” of the
simplex D (see Note 4).

Do this by induction. For n = 2, Problem 6 shows that f(Z) is indeed the largest
when all 2, equal % Now let Dy, be the “face” of D, where z,, = 0. On that face,
treat f as a function of only n — 1 variables, x1,... ,2p—1.

By the inductive hypothesis, the largest value of f on D, is nsin(27/n). Similarly
for the other “faces.” As msin(2w/n) < (n + 1)sin27/(n + 1), the induction is
complete.

Thus, the area A is the largest when the polygon is regular, for which

]

1 2
A= SR(n+1)sin n:l
Among all triangles of a prescribed perimeter 2p, find the one of maxi-
mum area.
[Hint: Maximize p(p — z)(p — y)(p — 2) on the condition that z +y + z = 2p.]

Among all triangles of area A, find the one of smallest perimeter.

Find the shortest distance from a given point p' € E™ to a given plane
@ - & = ¢ (Chapter 3, §§4-6). Answer:
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[Hint: First do it in E3, writing (z,v, 2) for Z.]

§10. More on Implicit Differentiation. Conditional Extrema

I. Implicit differentiation was sketched in §7. Under suitable assumptions
(Theorem 4 in §7), one can differentiate a given system of equations,

(1) gk(xh...

treating the x; as implicit functions of the y; without seeking an eaplicit solu-
tion of the form

7xmy17---7ym):07 k=1,2,...,n,

2 Ym)-

This yields a new system of equations from which the partials D;H; =
can be found directly.

T; = Hj(yl, ce
Oz;
Ay

We now supplement Theorem 4 in §7 (review it!) by showing that this new
system is linear in the partials involved and that its determinant is # 0. Thus
in general, it is simpler to solve than (1).

As in Part IV of §7, we set

(5717) = (1’17 ey Ty Y1, 7ym) and g = (917 o 7gn)7
replacing the f of §7 by ¢g. Then equations (1) simplify to
(2) 9(%,79) =0,

where g: E"t™ — E™ (or g: C"T™ — C™),

Theorem 1 (implicit differentiation). Adopt all assumptions of Theorem 4 in
§7, replacing f by g and setting H = (Hy, ..., Hy,),
D]gk(ﬁ>§):a]k> ]§n+m> kgn

Then for each i =1,... ,m, we have n linear equations,
n
(3) > apDiH;(§) = —anyin, k<n,
j=1

with
dCt((ij) £ 0,
that uniquely determine the partials D; H;(q) for j =1,2,... ,n.

Proof. As usual, extend the map H: (Q — P of Theorem 4 in §7 to H: E™ —
E™ (or C™ — C™) by setting H =0 on —Q.
Also, define o: E™ — E"t™ (C™ — C™T™) by

(k< n),

Ym), g € E™(CT).
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Then o is differentiable at ¢ € @, as are its n + m components. (Why?)
Since & = H(¥) is a solution of (2), equations (1) and (2) become identities
when Z is replaced by H(¥). Also, o(¢) = (H(q),q) = (P, q) since H(7) = p.
Moreover,

9(0() = g(H (7)) =0 for j € Q;

ie., goozﬁ on Q.

Now, by assumption, g € CD"' at (p,q); so the chain rule (Theorem 2 in
§4) applies, with f, p, ¢, n, and m replaced by o, ¢, (p,q), m, and n + m,
respectively.

Ash=goo =0 on Q, an open set, the partials of h vanish on Q. So by
Theorem 2 of §4, writing o; for the jth component of o,

n+m
(5) 0= Djg(p,q) Dio;(q), i<m.
j=1
By (4), 0; = H; if j <n, and 0;(y) = y; if j = n +14. Thus D;o; = D,;Hj;,
Jj < n; but for j > n, we have D;o; = 1if j = n+14, and D;o; = 0 otherwise.
Hence by (5),

n
j=1
As g =(g1,...,9n), each of these vector equations splits into n scalar ones:

6) 0= Digu(,q) - DiH;(q) + Dnrigr(F, ), i<m, k<n.
j=1
With D;gr(p, §) = aji, this yields (3), where det(a;;) = det(D;gx (7, 7)) # 0,
by hypothesis (see Theorem 4 in §7).
Thus all is proved. [
Note 1. By continuity (Note 1 in §6), we have det(D;gx(Z, %)) # 0 for all

—»

(Z,9) in a sufficiently small neighborhood of (¢, ¢). Thus Theorem 1 holds also
with (P, ¢) replaced by such (¥,¥). In practice, one does not have to memorize
(3), but one obtains it by implicitly differentiating equations (1).

II. We shall now apply Theorem 1 to the theory of conditional extrema.
Definition 1.
We say that f: E"*™ — E! has alocal conditional maximum (minimum)

at p € E"™, with constraints

92(017,%):6
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(g : Em*™ — E™) iff in some neighborhood G of p’ we have
Af=f(@) ~ F(F) <0 (20, respectively)
for all # € G for which g(&) = 0.

In §9 (Example (B) and Problems), we found such conditional extrema by

—

using the constraint equations g = 0 to eliminate some variables and thus
reduce all to finding the unconditional extrema of a function of fewer (inde-
pendent) variables.

Often, however, such elimination is cumbersome since it involves solving a
system (1) of possibly nonlinear equations. It is here that implicit differentia-
tion (based on Theorem 1) is useful.

Lagrange invented a method (known as that of multipliers) for finding the
critical points at which such extrema may exist; to wit, we have the following:
Given f: E"t™ — B, set

(7) F=[+Y cg
k=1

where the constants ¢i are to be determined and gy are as above.

Then find the partials D;F (j < n+ m) and solve the system of 2n +m
equations

(8) D;F(Z)=0, j<n+m, and gi(Z¥)=0, k<n,
for the 2n +m “unknowns” z; (j < n+m) and ¢ (k < n), the ¢ originating
from (7).

Any ¥ satisfying (8), with the ¢; so determined is a critical point (still to
be tested). The method is based on Theorem 2 below, where we again write
(7,q) for p and (Z,¥) for & (we call it “double notation”).

Theorem 2 (Lagrange multipliers). Suppose f: E™t™ — E' is differen-
tiable at

(ﬁ>‘7) = (le <3 Pnyql, .- 7Qm)
and has a local extremum at (P, q) subject to the constraints
g:(g17""gn):6’

with g as in Theorem 1, g: E"™™ — E™. Then

(9) ZCijgk_(p_"qﬂ)sz]f(ﬁ7q_')’ .7:17277n+m31
k=1

for certain multipliers cy, (determined by the first n equations in (9)).

! That is, D; F(5,q) = 0, with F as in (7).
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Proof. These n equations admit a unique solution for the cj, as they are
linear, and

det(D;gx(7,q)) #0 (4, k <n)

by hypothesis. With the ¢ so determined, (9) holds for j < n. It remains to
prove (9) forn < j <n+m.
Now, since f has a conditional extremum at (7, §) as stated, we have

(10) @ 9)—f@,q) <0 (or 20)

for all (Z,7) € P x Q with g(Z, %) = 0, provided we make the neighborhood
P x @ small enough.

Define H and o as in the previous proof (see (4)); so & = H(Y) is equivalent
to g(Z,7) = 0 for (Z,7) € P x Q.

Then, for all such (#,¥), with & = H(¥), we surely have ¢(Z,¥y) = 0 and
also

f@.9) = FH), §) = (o).
Set h=foo, h: E™ — E'. Then (10) reduces to
hy) —h(q) <0 (or >0) forallyeQ.

This means that h has an unconditional extremum at ¢, an interior point of
Q. Thus, by Theorem 1 in §9,

D;ih(q) =0, i=1,...,m.

Hence, applying the chain rule (Theorem 2 of §4) to h = f o o, we get, much
as in the previous proof,

n+m
0="" D;f(7,q)Dio;(7)
(11) J’;l
Z Hy(@) + Duysf (5,), i <m.

(Verify!)
Next, as ¢ by hypothesis satisfies Theorem 1, we get equations (3) or equiv-
alently (6). Multiplying (6) by ¢, adding and combining with (11), we obtain

> [, +ZCkDJgk(p q)|D:iH;(q)

j=1 k=1

n
+ Dnif(B.0) + Y ckDngigr(7,0) =0, i <m.
k=1
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(Verify!) But the square-bracketed expression is 0; for we chose the ¢ so as to
satisfy (9) for j < n. Thus all simplifies to

n
> e Dntign(F, ) =
k=1

7Dn+lf(ﬁai)7 i=1,2,,..,m.

Hence (9) holds for n < j < n + m, too, and all is proved. O

Remarks. Lagrange’s method has the advantage that all variables (the z
and y;) are treated equally, without singling out the dependent ones. Thus in
applications, one uses only F, i.e., f and g (not H).

One can also write & = (21,... , Tntm) for (Z,9) = (X1, , Tn, Y1, -+ s Ym)
(the “double” notation was good for the proof only).

On the other hand, one still must solve equations (8).

Theorem 2 yields only a necessary condition (9) for extrema with constraints.
There also are various sufficient conditions, but mostly one uses geometric and
other considerations instead (as we did in §9). Therefore, we limit ourselves to
one proposition (using “single” notation this time).

Theorem 3 (sufficient conditions). Let

F=[+Y cg,

with f: E"t™ — Bl g: E"™™ — E" and ¢ as in Theorem 2.

Then f has a mazimum (minimum) at p = (p1,- .. s Pntm) (with constraints
g=(g1,--. ,gn) = 0) whenever F does. (A fortiori, this is the case if F has
an unconditional extremum at p.)

Proof. Suppose F' has a maximum at p, with constraints g = 0. Then

0> F(&) - F(§) = [(&) = f(F) + Y ck [9x(T) — gx(P)]
k=1

—

for those # near p’ (including & = p) for which g(#) = 0.
But for such Z, gr (%) = gr(p) = 0, ¢k [9x(Z) — gx(P)] = 0, and so

0> F(Z) = F(p) = f(Z) = (D).

Hence f has a maximum at p, with constraints as stated.
Similarly, AF = Af in case F' has a conditional minimum at p. O

Example 1.

Find the local extrema of

[y, zt) =z +y+z+t
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on the condition that
g(xaya Z, t) = 'Tth - (14 = Oa

with ¢ > 0 and z,y,2,t > 0. (Note that inequalities do not count as
“constraints” in the sense of Theorems 2 and 3.) Here one can simply
eliminate t = a*/(xyz), but it is still easier to use Lagrange’s method.

Set F(x,y,2,t) = x +y+ 2+t + cryzt. (We drop a* since it will
anyway disappear in differentiation.) Equations (8) then read

0=1+cyzt =1+ cxzt =1+ cayt =1+ caxyz, axyzt—a*=0.

Solving for x, z,t and ¢, we get ¢ = —a ™3

,x=y=2z=1t=a.

Thus F(z,y,2,t) = 2 +y+ 2+t —ayzt/a, and the only critical point
is p = (a,a,a,a). (Verify!)

By Theorem 3, one can now explore the sign of F(Z) — F(p), where
7 = (z,y,2,t). For ¥ near p, it agrees with the sign of d®>F(j; ). (See
proof of Theorem 2 in §9.) We shall do it below, using yet another device,
to be explained now.

Elimination of dependent differentials. If all partials of F' vanish at
(e.g., if p satisfies (9)), then d'F(p; -) = 0 on E"T™ (briefly dF = 0).

Conversely, if d' f(; -) = 0 on a globe Gy, for some function f on n inde-
pendent variables, then

Dkf(ﬁ):0> k:1>27“'7n>

since d! f(7; - ) (a polynomial!) vanishes at infinitely many points if its coeffi-
cients Dy f(p) vanish. (The latter fails, however, if the variables are interde-
pendent.)

Thus, instead of working with the partials, one can equate to 0 the differen-
tial dF or df. Using the “variable” notation and the invariance of df (Note 4
in §4), one then writes dx, dy, ... for the “differentials” of dependent and inde-
pendent variables alike, and tries to eliminate the differentials of the dependent
variables. We now redo Example 1 using this method.

Example 2.

With f and ¢g as in Example 1, we treat ¢ as the dependent variable,
i.e., an implicit function of z,y, 2,

t = a*/(zyz) = H(z,y, 2),
and differentiate the identity zyzt — a* = 0 to obtain

0 =yztde + xztdy + zyt dz + xyz dt;
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SO
de d dz
(12) dt:—t(—+—y+—).
x Y z

Substituting this value of dt in df = dz+dy+dz+dt = 0 (the equation
for critical points), we eliminate dt and find:

t t t
(17—)dx+ (17—)dy+ (k—)dz;o.
T Y z
As x,y, z are independent variables, this identity implies that the co-
efficients of dx, dy, and dz must vanish, as pointed out above. Thus

lfzzlfzzlfzzo.
T Y z
Hence x =y = z =t = a. (Why?) Thus again, the only critical point is
P = (a,a,a,a).
Now, returning to Lagrange’s method, we use formula (5) in §5 to
compute

2
(13) d’F = —Z(dxdy + dx dz + dz dt + dx dt + dy dz + dy dt).
a

(Verify!)

We shall show that this expression is sign-constant (if zyzt = a), near
the critical point p. Indeed, setting z =y = z = t = a in (12), we get
dt = —(dz + dy + dz), and (13) turns into

2
[dfC dy + dxdz + dydz — (dz + dy + dz)Q]

Ca
1

= —[da® + dy® + d2* + (dx + dy + dz)*] = d*F.
a

This expression is > 0 (for dz, dy, and dz are not all 0). Thus f has
a local conditional minimum at p’ = (a, a,a, a).

Caution; here we cannot infer that f(p) is the least value of f under
the imposed conditions: z,y,z > 0 and xyzt = a’.

The simplification due to the Cauchy invariant rule (Note 4 in §4)
makes the use of the “variable” notation attractive, though caution is

mandatory.

Note 2. When using Theorem 2, it suffices to ascertain that some n equa-
tions from (9) admit a solution for the c¢g; for then, renumbering the equations,
one can achieve that these become the first n equations, as was assumed. This
means that the n x (n + m) matrix (D;gx (P, ¢)) must be of rank n, i.e., con-
tains an n x n-submatriz (obtained by deleting some columns), with a nonzero
determinant.
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In the Problems we often use r, s,t,... for Lagrange multipliers.

Further Problems on Maxima and Minima

1. Fill in all details in Examples 1 and 2 and the proofs of all theorems in
this section.

2. Redo Example (B) in §9 by Lagrange’s method.
[Hint: Set F(z,y,2) = f(z,y,2) — r(a® + 4> + 2%), g(z,y,2) = 2® +y* + 22 — 1
Compare the values of f at all critical points.?]

3. An ellipsoid

b2
is cut by a plane uz + vy + wz = 0. Find the semiaxes of the section-
ellipse, i.e., the extrema of

PP =1f(z,y,2)P =2 +y" +2°

under the constraints g = (g1, g2) = 0, where

2?2 22
gl(z7y7z):uas—i-vy—l—wzandgg(z,y?z)* +b—2+——1
Assume that a > b > ¢ > 0 and that not all u,v,w = 0.
[Outline: By Note 2, explore the rank of the matrix

(14) (z/a2 y/b? 2/62>4
u v z
(Why this particular matrix?)
Seeking a contradiction, suppose all its 2 X 2 determinants vanish at all points of
the section-ellipse. Then the upper and lower entries in (14) are proportional (why?);
so z2/a? + y?/b? + 22 /c? = 0 (a contradiction!).

Next, set
2 2 2 z? P 22
F(z,y,2) =2 +y~ +=z +r(a—2+b—2+c—2) + 2s(uz + vy + wz).
Equate dF to 0:
rT rZ
(15) r+ — +su=0, y+—+sv—0 z+ — +sw=0.
a b2 c2

Multiplying by x,y, z, respectively, adding, and combining with g = 6, obtain r =
—p?; so, by (15), for a,b, c # p,

—sua? —svb? —swc?
z=

a2_p2 YT 22

T =
Find s,z,y, z, then compare the p-values at critical points.]

2 This suffices here, since the equation g = 0 defines a compact set S; see §9.
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4. Find the least and the largest values of the quadratic form

n
F@) =Y anwize  (aix = ax:)
ik=1
on the condition that g(%) = |F|> =1 =0 (f,g: E® — E).
[Outline: Let F(&) = f(&) —t(z? + 23 + ... + 22). Equating dF to 0, obtain
(a11 —t)xl +ai2z2+...+aipxn =0,
(16) az1 z1 + (ag2 —t)x2 + ...+ azpn =0,

an1 T1 + an2x2 + ... + (@nn —t) zn = 0.

Using Theorem 1(iv) in §6, derive the so-called characteristic equation of f,

aip —t a1z ain
amn a1 azx —t ... a2n —0
- b
anl a2n ... app —t

of degree n in t. If t is one of its n roots (known to be real®), then equations (16)
admit a nonzero solution for & = (z1,...,zy); by replacing & by #/|Z| if necessary,
Z satisfies also the constraint equation g(Z) = |Z|?> — 1 = 0. (Explain!) Thus each
root ¢ of (17) yields a critical point Z+ = (z1,... ,Zn).

Now, to find f(Z+), multiply the kth equation in (16) by zk, k = 1,...,n, and
add to get

0= Z QiR TiTh 7t21k = f(Z¢) — t.
i,k=1

Hence f(&;) =t.

Thus the values of f at the critical points Z¢ are simply the roots of (17). The

1Z| =

largest (smallest) root is also the largest (least) value of f on S = {Z € E™ | 1}.
(Explain!)]

5. Use the method of Problem 4 to find the semiaxes of

(i) the quadric curve in E?2, centered at 67 given by Zik:l Wik Ti T =
1; and

(ii) the quadric surface Zf ke GikZiTEp = 1 in E3, centered at 0.

Assume a;, = a;.
[Hint: Explore the extrema of f(#) = |#|? on the condition that

T) = Zam]?l.l‘k —1= 0.]
i

ES

6. Using Lagrange’s method, redo Problems 4, 5, 6, 7, 11, 12, and 13 of §9.
7. In E?, find the shortest distance from 0 to the parabola y? = 2(z + a).

3 See S. Perlis, Theory of Matrices, Reading, Mass., 1952, Theorem 9-25.
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In E3, find the shortest distance from 0 to the intersection line of two
planes given by the formulas @ - ¥ = a and v - £ = b with @ and U
different from 0. (Rewrite all in coordinate form!)

. In E”, find the largest value of |@- Z| if |Z| = 1. Use Lagrange’s method.
*10.

(Hadamard’s theorem.) If A = det(z) (¢, k < n), then

n
Al < T 1,
i=1

where @; = (i1, Tizy -+ -, Tin)-
[Hints: Set a; = |%;|. Treat A as a function of n? variables. Using Lagrange’s
method, prove that, under the n constraints \:'c‘z|2 — a? = 0, A cannot have an

extremum unless A2 = det(y;1), with y;x = 0 (if i # k) and y;; = a%.]

Chapter 7
Volume and Measure

Our intuitive idea of “volume” is rather vague. We just tend to assume that
“bodies” in space (i.e., in %) somehow have numerically expressed “volumes,”
but it remains unclear which sets in £2 are “bodies” and how volume is defined.

We also intuitively assume that volumes behave “additively.” That is, if a
body is split into disjoint parts, then the volume of the whole equals the sum of
the volumes of the parts. Similarly for “areas” in E2. In elementary calculus,
that is often just taken for granted.

The famous mathematician Henri Lebesgue (1875-1941) extended the idea
of “volume” to a large, strictly defined family of sets in E™, called Lebesgue-
measurable sets, thus giving rise to what is called measure theory. Its basic idea
remains that of additivity, precisely formulated and proved. Modern theory has
still more generalized these ideas. In this text, we have so far defined “volumes”
for intervals in £™ only. Thus it is natural to take intervals as our starting point.
This will also lead to the important idea of a semiring of sets and its extension:
a ring of sets.

§1. More on Intervals in E™. Semirings of Sets

I. As a prologue, we turn to intervals in £ (Chapter 3, §7).
Theorem 1. If A and B are intervals in E™, then
(i) AN B is an interval (O counts as an interval);
(ii) A — B is the union of finitely many disjoint intervals (but need not be an

interval itself).

Proof. The easy proof for E' is left to the reader.
An interval in E? is the cross-product of two line intervals.
Let
A=XxYand B=X'xY’,

where X, Y, X', and Y are intervals in E'. Then (see Figure 29)
ANB=(XxY)N(X' xY)=(XNX)x(YNnY')
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and
A-B=[(X-X)xY|U[(XnX)x (¥ -Y"));

see Problem 8 in Chapter 1, §51-3. X B
As the theorem holds in E!, T

XNX and Y NY'

are intervals in F!, while

ANB Yyny’ i

X-Y andY —Y’ v 2y
X-X" Xnx' ik
X
FIGURE 29

are finite unions of disjoint line intervals.
(In Figure 29 they are just intervals, but
in general they are not.)

It easily follows that A N B is an interval in E?, while A — B splits into
finitely many such intervals. (Verify!) Thus the theorem holds in E?2.

|
|

Finally, for E™, use induction. An interval in E™ is the cross-product of an
interval in E"~! by a line interval. Thus if the theorem holds in E"~!, the
same argument shows that it holds in E™, too. (Verify!)

This completes the inductive proof. [

Actually, Theorem 1 applies to many other families of sets (not necessarily
intervals or sets in E™). We now give such families a name.
Definition 1.
A family C of arbitrary sets is called a semiring iff
(i) 0 € C (0 is a member), and

(ii) for any sets A and B from C, we have AN B € C, while A — B is the
union of finitely many disjoint sets from C.

Briefly: C is a semiring iff it satisfies Theorem 1.

Note that here C is not just a set, but a whole family of sets. Recall (Chap-
ter 1, §§1-3) that a set family (family of sets) is a set M whose members are
other sets. If A is a member of M, we call A an M-set and write A € M (not
ACM).

Sometimes we use index notation:
M={X;]|iel},

briefly

where the X; are M-sets distinguished from each other by the subscripts @
varying over some index set I.
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A set family M = {X;} and its union
Ux
i
are said to be disjoint iff

X; N X; = 0 whenever ¢ # j.

Notation:
U X; (disjoint).

In our case, A € C means that A is a C-set (a member of the semiring C).
The formula
(VA,BeC) AnBecC

means that the intersection of two C-sets in a C-set itself.
Henceforth, we will often speak of semirings C in general. In particular, this
will apply to the case C = {intervals}. Always keep this case in mind!

Note 1. By Theorem 1, the intervals in E™ form a semiring. So also do
the half-open and the half-closed intervals separately (same proof!), but not
the open (or closed) ones. (Why?)

Caution. The union and difference of two C-sets need not be a C-set. To
remedy this, we now enlarge C.

Definition 2.
We say that a set A (from C or not) is C-simple and write
AecC,
iff A is a finite union of disjoint C-sets (such as A — B in Theorem 1).
Thus C. is the family of all C-simple sets.

Every C-set is also a C.-set, i.e., a C- ]
simple one. (Why?) Briefly:

cccl. j

If C is the set of all intervals, a C-simple
set may look as in Figure 30. FIGURE 30

Theorem 2. IfC is a semiring, and if A and B are C-simple, so also are
ANB, A— B, and AU B.
In symbols,

(VA,BeC) AnBeC., A—-BeC., and AUBE€C.
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We give a proof outline and suggest the proof as an exercise. Before at-
tempting it, the reader should thoroughly review the laws and problems of
Chapter 1, §§1-3.

(1) To prove AN B € C., let

A= U A; (disjoint) and B = U By, (disjoint),
i=1 k=1

with A;, By € C. Verify that

AnB = | J | J(A4i N By) (disjoint),
k=1i=1

and so AN B € C..
(2) Next prove that A— B e C.if AeC, and B eC.

Indeed, if
A= U A; (disjoint),
i=1
then
A-B=|JA - B=|J(Ai - B) (disjoint).
i=1 i=1

Verify and use Definition 2.

(3) Prove that
(VA,BeCl) A-Becl;

we suggest the following argument.
Let

B=|JB: BrecC
k=1
Then

n

A—B:A—OBk: ()(A- By
k=1 k=1

by duality laws. But A — By, is C-simple by step (2). Hence so is

DX

A-B=()(A-By

k

1

by step (1) plus induction.
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(4) To prove AU B € C., verify that
AUB=AU(B-A4),
where B — A € C, by (3).
Note 2. By induction, Theorem 2 extends to any finite number of C!-sets.

It is a kind of “closure law.”

We thus briefly say that C is closed under finite unions, intersections, and
set differences. Any (nonempty) set family with these properties is called a set
ring (see also §3).

Thus Theorem 2 states that if C is a semiring, then C. is a ring.

Caution. An infinite union of C-simple sets need not be C-simple. Yet we
may consider such unions, as we do next.

In Corollary 1 below, C. may be replaced by any set ring M.

Corollary 1. If {A,} is a finite or infinite sequence of sets from a semiring

C (or from a ring M such as C), then there is a disjoint sequence of C-simple
sets (or M-sets) B, C A,, such that

UAn:UBn.

Proof. Let By = A; and for n =1,2,...,

n
Bpi1=Anp — U A, ApeC.
k=1
By Theorem 2, the B, are C-simple (as are A,41 and (J;_; Ax). Show that
they are disjoint (assume the opposite and find a contradiction) and verify that
UA, =UBn: If z € |JA,, take the least n for which € A,,. Then n > 1

and
n—1

r €A, — UAk:Bm
k=1

orn=1landxz € A, =B,. O

Note 3. In Corollary 1, B,, € C, i.e., B, = ' Cy,; for some disjoint sets
Chi € C. Thus

U =UUcw
n n i=1
is also a countable disjoint union of C-sets.
II. Recall that the volume of intervals is additive (Problem 9 in Chapter 3,

§7). That is, if A € C is split into finitely many disjoint subintervals, then vA
(the volume of A) equals the sum of the volumes of the parts.
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‘We shall need the following lemma. Hence
m m P m
Lemma 1. Let X1, Xo,..., X, € C (intervals in E™). If the X; are mutually vX; = v(X; NY) = { o(X; N Y }
disjoint, then ; / ;; / ; ;
) U X; CY € C implies Zin <Y and But by (i),
i=1 i=1 U
m P m P ZU(X@ n Yk) S ’UYk. (Wl’1y7)7
ii) U X, C U Yr (with Yy, € C) implies Z’UXZ‘ < Zva. =1
i=1 k=1 i=1 k=1 S0 »
Proof. (i) By Theorem 2, the set Z vX; < ZUYIw
i=1 =1
Y — U X; as required.
i=1 If, however, the Y are not disjoint, Corollary 1 yields
is C-simple; so _ L
m q UYk = UBk (disjoint),
-Uxi=U¢ with
i=1 j=1 my
5 _ e _ ‘
for some disjoint intervals C;. Hence Yi 2 B JQI Ciy (disjoint),  Ci; € C
v =Jx:ulJC; (all disjoint). By (i),
my
Thus by additivity, Z vCij < VY.
m q m Jj=1
vY:Zin-i—ZijzZin, As
i=1 j=1 i=1 m p P P my
as claimed. L_J L_J kL_Jl By = L_J L_J (disjoint),

(ii) By set theory (Problem 9 in Chapter 1, §§1-3),
all reduces to the previous disjoint case. [J

p
< U Vi Corollary 2. Let A € C. (C = intervals in E™). If
k=1
m p
implies A= X; (disjoint) = U (disjoint)

P i=1 =

Xi:XiﬂLpJYk:U(XiﬂYk). N

k=1 k=1 with X;,Y, € C, then

||
Mﬁ

m
If it happens that the Yj are mutually disjoint also, so certainly are the Z
smaller intervals X; N Yy; so by additivity, i=1

~
Il
_

i (X; N Y3). (Use part (ii) of the lemma twice.)
1 Thus we can (and do) unambiguously define vA to be either of these sums.
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Problems on Intervals and Semirings

1. Complete the proof of Theorem 1 and Note 1.
1’. Prove Theorem 2 in detail.

2. Fill in the details in the proof of Corollary 1.
2’. Prove Corollary 2.

3. Show that, in the definition of a semiring, the condition () € C is equiv-

alent to C # 0.
[Hint: Consider 9 =A - A=J%, A; (A, A; €C) to get 0 = A; €C]]
4. Given a set S, show that the following are semirings or rings.

(a) C ={all subsets of S };
(b) C = {all finite subsets of S},

() C={0}
(d) € = {0 and all singletons in S }.
Disprove it for C = {() and all two-point sets in S}, S = {1,2,3,...}.
In (a)—(c), show that C, = C. Disprove it for (d).
5. Show that the cubes in E™ (n > 1) do not form a semiring.

6. Using Corollary 2 and the definition thereafter, show that volume is
additive for C-simple sets. That is,

m m
if A=) A (disjoint) then vA = vA; (A,A; €C)).
i=1 i=1
7. Prove the lemma for C-simple sets.
[Hint: Use Problem 6 and argue as before.]

8. Prove that if C is a semiring, then C, (C-simple sets) = Cs, the family of
all finite unions of C-sets (disjoint or not).
[Hint: Use Theorem 2.]

82. C,-Sets. Countable Additivity. Permutable Series

We now want to further extend the definition of volume by considering count-
able unions of intervals, called C,-sets (C being the semiring of all intervals
in E™).

We also ask, if A is split into countably many such sets, does additivity still
hold? This is called countable additivity or o-additivity (the o is used whenever
countable unions are involved).

We need two lemmas in addition to that of §1.
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Lemma 1. If B is a nonempty interval in E™, then given € > 0, there is an
open interval C and a closed one A such that

ACBCC

and
vC —e < vB < vA +e.

Proof. Let the endpoints of B be
a=(ai,...,a,) and b= (by,...,bp).

For each natural number 4, consider the open interval C;, with endpoints

1 1
<a17T7a27f,...
7

1 1 1 1
7an,7f) and <b1+f7b2+f7...7bn+f>.
7 7 7 ] 7

Then B C C; and

Making ¢ — oo, we get

lim vC; = H(bk —ay) =vB.

i—00
k=1

(Why?) Hence by the sequential limit definition, given ¢ > 0, there is a natural
1 such that
vC; —vB < ¢,

or
vC; — e < vB.

As C; is open and D B, it is the desired interval C.
Similarly, one finds the closed interval A C B. (Verify!) O

Lemma 2. Any open set G C E™ is a countable union of open cubes Ay and
also a disjoint countable union of half-open intervals.
(See also Problem 2 below.)
Proof. If G =0, take all Ay = 0.
If G # 0, every point p € G has a cubic neighborhood
Op g Gu

centered at p (Problem 3 in Chapter 3, §12). By slightly shrinking this C,,
one can make its endpoints rational, with p still in it (but not necessarily its
center), and make C), open, half-open, or closed, as desired. (Explain!)



106 Chapter 7. Volume and Measure

Choose such a cube C), for every p € G; so

cgc o

peG

But by construction, G contains all Cp, so that

G=JG.

peG

Moreover, because the coordinates of the endpoints of all C), are rational,
the set of ordered pairs of endpoints of the C), is countable, and thus, while the
set of all p € G is uncountable, the set of distinct C), is countable. Thus one
can put the family of all Cj, in a sequence and rename it {Ax}:

G= D Ag.
k=1

If, further, the Ay are half-open, we can use Corollary 1 and Note 3, both
from §1, to make the union disjoint (half-open intervals form a semiring!). 0O

Now let C, be the family of all possible countable unions of intervals in E™,
such as G in Lemma 2 (we use C, for all finite unions). Thus A € C, means

that A is a C,-set, i.e.,
oo}
i=1

for some sequence of intervals {A;}. Such are all open sets in E”, but there
also are many other C,-sets.

We can always make the sequence {A;} infinite (add null sets or repeat a
term!).

By Corollary 1 and Note 3 of §1, we can decompose any C,-set A into count-
ably many disjoint intervals. This can be done in many ways. However, we
have the following result.

Theorem 1. If

A= U A; (disjoint) = U By, (disjoint)
i=1 k=1

for some intervals A;, B in E™, then

i vA; = i vBy.!
i=1 k=1

I Recall that a positive series always has a (possibly infinite) sum.
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Thus we can (and do) unambiguously define either of these sums to be the
volume vA of the C,-set A.

Proof. We shall use the Heine-Borel theorem (Problem 10 in Chapter 4, §6;
review it!).

Seeking a contradiction, let (say)

oo o0
Z vA; > Z vBy,
i=1 k=1

so, in particular,

o0
Z vBy < 4o0.
k=1

o0 m

E vA; = lim E vA;,
m—r o0

i=1 i=1

there is an integer m for which

m o0
Z vA; > Z vBy.
i=1 k=1

As

We fix that m and set

m

2 = ZUAZ» - ika > 0.
k=1

i=1
Dropping “empties” (if any), we assume A; # () and By, # 0.
Then Lemma 1 yields open intervals Yy 2 By, with

3
UBk>UYk—2—k, k=1,2,...,

and closed ones X; C A;, with

€
X, + — > vA;
m

S0
2e = Z’UA,; — Zka < Z(UXi + i) — Z(va — %)
i=1 k=1 i=1 m k=1 2
= Zin - Z'UYk + 2¢.
i=1 k=1
Thus
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(Explain in detaill)
Now, as

X;CA CA= GBk G

each of the closed intervals X; is covered by the open sets Y.
By the Heine-Borel theorem, (i, X; is already covered by a finite number

of the Yy, say,
m p
YxclUn
The X; are disjoint, for even the larger sets A; are. Thus by Lemma 1(ii) in §1,

< iUYk,

contrary to (1). This contradiction completes the proof. O

P

R

k=1

Corollary 1. If

o0
U (disjoint)

for some intervals By, then
[eo]
vA = Z vBy,.
k=1

Indeed, this is simply the definition of vA contained in Theorem 1.

Note 1. In particular, Corollary 1 holds if A is an interval itself. We express
this by saying that the volume of intervals is o-additive or countably additive.
This also shows that our previous definition of volume (for intervals) agrees
with the definition contained in Theorem 1 (for C,-sets).

Note 2. As all open sets are C,-sets (Lemma 2), volume is now defined for
any open set A C E™ (in particular, for A = E™).

Corollary 2. If A;, By are intervals in E™, with

[j A; C Ej By,
i=1 k=1

then provided the A; are mutually disjoint,

(2) Z vA; < Z vB,.

=1
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The proof is as in Theorem 1 (but the By, need not be disjoint here).

"2 of the volume). If

Corollary 3 (“o-subadditivity

AC fj By,
k=1

where A € C, and the By are intervals in E™, then

vA < i vBy,.
k=1

Proof. Set

A= U A; (disjoint), A; € C,

i=1
and use Corollary 2. [
Corollary 4 (“monotonicity”?). If A, B € C,, with
ACB,

then
vA < vB.

(“Larger sets have larger volumes.”)
This is simply Corollary 3, with (J, By = B.
Corollary 5. The volume of all of E™ is oo (we write 0o for +00).
Proof. We have A C E™ for any interval A.
Thus, by Corollary 4, vA < vE™.
As vA can be chosen arbitrarily large, vE™ must be infinite. [
Corollary 6. For any countable set A C E", vA = 0. In particular, vl = 0.

Proof. First let A = {a} be a singleton. Then we may treat A as a degenerate
interval [a,a]. As all its edge lengths are 0, we have vA = 0.
Next, if A ={ay,as,...} is a countable set, then

A= Jark;
k

SO

vA = Z v{ar} =0
k
by Corollary 1.

2 This notion is treated in more detail in §5.
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Finally, 0 is the degenerate open interval (a,a); so v = 0. O

Note 3. Actually, all these propositions hold also if all sets involved are
Co-sets, not just intervals (split each C,-set into disjoint intervals!).

Permutable Series. Since o-additivity involves countable sums, it appears
useful to generalize the notion of a series.

We say that a series of constants,

E a'ﬂ 9

is permutable iff it has a definite (possibly infinite) sum obeying the general
commutative law:

Given any one—one map
onto

u: N N

(N = the naturals), we have
dan=)
n n

where u, = u(n).

(Such are all positive and all absolutely convergent series in a complete space
E; see Chapter 4, §13.) If the series is permutable, the sum does not depend
on the choice of the map u.

Thus, given any u: N & g (where J is a countable index set) and a set
{a;|i€J}CE

(where E is E* or a normed space), we can define

0o
D= au
n=1

icJ

if >, Qu, is permutable.
In particular, if
J=NxN

(a countable set, by Theorem 1 in Chapter 1, §9), we call
>
ieJ

a double series, denoted by symbols like

Zakn (k,n € N).
n,k
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Note that

> ail

icJ

is always defined (being a positive series).

If
Z la;| < oo,

icJ

we say that ), ;a; converges absolutely.

For a positive series, we obtain the following result.
Theorem 2.
(i) All positive series in E* are permutable.
(ii) For positive double series in E*, we have

. 5 o () -5 (S0

n,k=1 n=1

Proof. (i) Let

o0 m
s = Zan and s, = Zan (an >0).
n=1 n=1

Then clearly
Sm+1 = Sm + Am+1 > Sm;

e, {sm}T, and so

s= lim s,, =supsn,
m—r o0 m

by Theorem 3 in Chapter 3, §15.
Hence s certainly does not exceed the lub of all possible sums of the form

>
iel
where I is a finite subset of N (the partial sums s,, are among them). Thus
(4) s < sup Z a;,
icl
over all finite sets I C N.

On the other hand, every such Zie 1 @i is exceeded by, or equals, some s,,.
Hence in (4), the reverse inequality holds, too, and so

s = supZai.

i€l
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But sup Zie] a; clearly does mot depend on any arrangement of the a;.
Therefore, the series > a, is permutable, and assertion (i) is proved.

Assertion (ii) follows similarly by considering sums of the form . ; a;,
where [ is a finite subset of N x N, and showing that the lub of such sums
equals each of the three expressions in (3). We leave it to the reader. O

A similar formula holds for absolutely convergent series (see Problems).

Problems on C,-Sets, o-Additivity, and Permutable Series
1. Fill in the missing details in the proofs of this section.

1’. Prove Note 3.
2. Show that every open set A # @) in E™ is a countable union of disjoint

half-open cubes.

[Outline: For each natural m, show that E™ is split into such cubes of edge length
27" by the hyperplanes
Ip = —— i=0,41,42,...; k=1,2,...,n,
2’nl
and that the family C,, of such cubes is countable.

For m > 1, let Cpp1,Cma2,... be the sequence of those cubes from Cp, (if any)
that lie in A but not in any cube Cy; with s < m.

As A is open, x € A iff x € some Cy,;.]

3. Prove that any open set A C E' is a countable union of disjoint (possibly
infinite) open intervals.

[Hint: By Lemma 2, A = {J,,(an,bn). If, say, (a1,b1) overlaps with some (am,bm),
replace both by their union. Continue inductively.]

4. Prove that C, is closed under finite intersections and countable unions.
(i) Find A, B € C, such that A — B ¢ C,.
(ii) Show that C, is not a semiring.
[Hint: Try A = E', B = R (the rationals).]

Note. In the following problems, J is countably infinite, a; € E (E complete).

6. Prove that
Z la;| < o0
ieJ

iff for every € > 0, there is a finite set

FcJ (F#0)
such that
Z |a1| <€
iel

for every finite I C J — F.
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8’

onto

[Outline: By Theorem 2, fix u: N <— J with

oo

D lail = lau,|-

ieJ n=1

By Cauchy’s criterion,

oo
Z |au, | < oo

n=1
iff
n
(Ve>0) 3q) (vn>m>q) D lau,|<e.
k=m

Let F = {u1,... ,uq}. If I is as above,

Bn>m>q) {um,...,un} 2 1;

SO
n

Slail €3 law | <]

i€l k=m

Z la;| < oo,

ied
then for every € > 0, there is a finite F C J (F # ()) such that
da=)
ieJ €K

for each finite K D F (K C J).
[Hint: Proceed as in Problem 6, with I = K — F and g so large that

. Prove that if

<e€

Zai — Zai < EE and Zai < 15]
i€ i€k 2 i€F 2
. Show that if -
J= U I,, (disjoint),
n=1
then -
Z la;| = an, where b,, = Z la;|.
ieJ n=1 iel,
(Use Problem 8 below.)
Show that

> lail =sup ) _lai

i€J i€EF
over all finite sets F C J (F # ().
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[Hint: Argue as in Theorem 2.]

. Show that if ¢ # I C J, then

Dolail <D aal-

i€l iceJ
[Hint: Use Problem 8" and Corollary 2 of Chapter 2, §§8-9.]

Continuing Problem 8, prove that if

oo
Z|ai| = an < 00,
n=1

icJ
then
o0
E a; = E ¢, with ¢, = E a;.
icJ n=1 i€lp

[Outline: By Problem 9,
(Vn) D lad < oo;

i€ly

Cn = E a;

i€ln

SO

and
oo
> en
n=1

converge absolutely.

Fix € and F as in Problem 7. Choose the largest ¢ € N with
FNl,#0
(why does it exist?), and fix any n > ¢q. By Problem 7, (Vk < n)

(Vk <n) (3 finite Fy, | J D F, D FN1,)

(V finite Hy, | I, D Hy, D Fy,)

n
E a; — Ck
=1

i€ Hy, k

(Explain!) Let

n
K = | H;
k=1
SO
n
e Y <e
k=1 icJ
and K D F. By Problem 7,
Z a; — Zai <e.
ieJ

€K

< 1
—€.
2
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Deduce
< 2e.

n
Se-Ya
k=1

ieJ
Let n — oo; then € — 0.]

11. (Double series.) Prove that if one of the expressions

S Janl. i(j) > (3

n,k=1 n=1 k=1 “n=1

is finite, so are the other two, and
St = z(z ) - z(z )
n,k n k k n

with all series involved absolutely convergent.
[Hint: Use Problems 8 and 10, with J = N x N,

In={(n,k) € J|k=1,2,...} for each n;
so

oo oo
by, = Z |ank| and ¢, = Z Ank-
k=1 k=1

Thus obtain

S ok = 3 Fon

n,k n

Similarly,

Z ank = Z Z an,k']
n,k kE n

§3. More on Set Families!

Lebesgue extended his theory far beyond C,-sets. For a deeper insight, we shall
consider set families in more detail, starting with set rings. First, we rephrase

and supplement our former definition of that notion, given in §1.
Definition 1.
A family M of subsets of a set S is a ring or set ring (in S) iff
(i) 0 € M, i.e., the empty set is a member; and
(if) M is closed under finite unions and differences:

(VX,YeEM) XUYEMand X —-Y € M.

L For a limited approach (see the preface), this topic may be omitted.
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(For intersections, see Theorem 1 below.)

If M is also closed under countable unions, we call it a o-ring (in S).
Then

o0

U X, € M

i=1
whenever

X,eMfori=1,2,....

If S itself is a member of a ring (o-ring) M, we call M a set field
(o-field), or a set algebra (o-algebra), in S.

Note that S is only a member of M, S € M, not to be confused with
M itself.

The family of all subsets of S (the so-called power set of S) is denoted by
25 or P(S).
Examples.
(a) In any set S, 25 is a o-field. (Why?)

(b) The family {0}, consisting of @ alone, is a o-ring; {0}, S} is a o-field in S.
(Why?)

(¢) The family of all finite (countable) subsets of S is a ring (o-ring) in S.
(d) For any semiring C, C. is a ring (Theorem 2 in §1). Not so for C,
(Problem 5 in §2).
Theorem 1. Any set ring is closed under finite intersections.
A o-ring is closed under countable intersections.

Proof. Let M be a o-ring (the proof for rings is similar).
Given a sequence {4,} C M, we must show that (), A, € M.

Let
U=]JAn

By Definition 1,
UeMandU — A, € M,

as M is closed under these operations. Hence
Jw - 4,) e M
n

and
U—|JU - A4,) e M,

n
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or, by duality,
U - (U - A)] € M,

ie.,

ﬂAneM, m

Corollary 1. Any set ring (field, o-ring, o-field) is also a semiring.
Indeed, by Theorem 1 and Definition 1, if M is a ring, then ) € M and

VA, BeM) AnBeMand A—Be M.

Here we may treat A — B as (A — B) U@, a union of two disjoint M-sets. Thus
M has all properties of a semiring.

Similarly for o-rings, fields, etc.

In §1 we saw that any semiring C can be enlarged to become a ring, C.. More
generally, we obtain the following result.

Theorem 2. For any set family M in a space S (M C 2%), there is a unique
“smallest” set ring R such that

R2OM
(“smallest” in the sense that

RCR
for any other ring R' with R' 2 M ).

The R of Theorem 2 is called the ring generated by M. Similarly for o-rings,
fields, and o-fields in S.

Proof. We give the proof for o-fields; it is similar in the other cases.

There surely are o-fields in S that contain M; e.g., take 2°. Let {R;} be
the family of all possible o-fields in S such that R; O M. Let

R =R
We shall show that this R is the required “smallest” o-field containing M.
Indeed, by assumption,
MC(Ri=R.
We now verify the o-field properties for R.

(1) We have that
(Vi) 0eR;and SeR,;
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(for R; is a o-field, by assumption). Hence
he(Ri=R.

Similarly, S € R. Thus
0,SeR.

(2) Suppose
X, Y eR=(R

Then X,Y are in every R;, and so is X — Y. Hence X — Y is in
(Ri=R.
i

Thus R is closed under differences.
(3) Take any sequence

{A} CR =R
Then all A, are in each R;. |J,, Ay is in each R;; so

JA4ner.

Thus R is closed under countable unions.
We see that R is indeed a o-field in S, with M C R. As R is the intersection
of all R; (i.e., all o-fields 2 M), we have

(Vi) RCRi

so R is the smallest of such o-fields.
It is unique; for if R’ is another such o-field, then

RCR' CR
(as both R and R’ are “smallest”); so
R=R. O

Note 1. This proof also shows that the intersection of any family {R;} of
o-fields is a o-field. Similarly for o-rings, fields, and rings.

Corollary 2. The ring R generated by a semiring C coincides with
Cs = {all finite unions of C-sets}

and with
C. = {disjoint finite unions of C-sets}.
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Proof. By Theorem 2 in §1, C. is a ring 2 C; and
CLCC,CR
(for R is closed under finite unions, being a ring 2 C).
Moreover, as R is the smallest ring O C, we have
RCC,CC,CR.
Hence
R =C. =Cs,
as claimed. O
It is much harder to characterize the o-ring generated by a semiring. The
following characterization proves useful in theory and as an exercise.?

Theorem 3. The o-ring R generated by a semiring C coincides with the small-
est set family D such that

(i) D2C;
(ii) D is closed under countable disjoint unions;
(iii) J — X € D whenever X € D, J €C, and X C J.
Proof. We give a proof outline, leaving the details to the reader.

(1) The existence of a smallest such D follows as in Theorem 2. Verify!
(2) Writing briefly AB for AN B and A’ for —A, prove that

(A-B)C=A-(AC'"UBC).
(3) For each I € D, set
D={Ae€D|Al €D, A-1I¢€D}.

Then prove that if I € C, the set family D; has the properties (i)—(iii) specified
in the theorem. (Use the set identity (2) for property (iii).)
Hence by the minimality of D, D C Dy. Therefore,

(VAeD) (VIeC) Al€eDand A—-I€D.
(4) Using this, show that D; satisfies (i)—(iii) for any I € D.

Deduce
D C Dy;

so D is closed under finite intersections and differences.
Combining with property (ii), show that D is a o-ring (see Problem 12
below).

2Tt may be deferred until Chapter 8, §8, though.
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By its minimality, D is the smallest o-ring O C (for any other such o-ring
clearly satisfies (i)—(iii)).
Thus D = R, as claimed. O
Definition 2.
Given a set family M, we define (following Hausdorff)
(a) M, = {all countable unions of M-sets} (cf. C, in §2);
(b) M = {all countable intersections of M-sets}.

We use Mg and M, for similar notions, with “countable” replaced by

“finite.”
Clearly,
My 2 Mg 2O2M
and
Ms 2 Mg 2 M.
Why?

Note 2. Observe that M is closed under finite (countable) unions iff
M= Ms (M = Ma)~
Verify! Interpret M = My (M = M,) similarly.
In conclusion, we generalize Theorem 1 in §1.

Definition 3.
The product

M3 N
of two set families M and A is the family of all sets of the form
A x B,
with A € M and B e N.
(The dot in x is to stress that M x N is not really a Cartesian product.)
Theorem 4. If M and N are semirings, so is M x N.

The proof runs along the same lines as that of Theorem 1 in §1, via the set
identities
(XxYV)N(X' xY)=(XNnX)x (YNY)

and
(X xY)—(X'xY)=[(X-X)xYJU[(XNnX)x (Y -Y").
The details are left to the reader.

Note 3. As every ring is a semiring (Corollary 1), the product of two rings
(fields, o-rings, o-fields) is a semiring. However, see Problem 6 below.
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Problems on Set Families
1. Verify Examples (a), (b), and (c).
1’. Prove Theorem 1 for rings.

2. Show that in Definition 1 “0 € M” may be replaced by “M # 0.”
[Hint: 0 = A— A

=-3. Prove that M is a field (o-field) iff M # @, M is closed under finite
(countable) unions, and
(VAeM) —AeM.
[Hint: A— B=—(—-AUB); S=-0]
4. Prove Theorem 2 for set fields.
*4’. Does Note 1 apply to semirings?
5. Prove Note 2.
5’. Prove Theorem 3 in detail.

6. Prove Theorem 4 and show that the product M x N of two rings need
not be a ring.
[Hint: Let S=E!' and M =N = 25, Take A, B as in Theorem 1 of §1. Verify that
A-BgMxN]
=T7. Let R, R’ be the rings (o-rings, fields, o-fields) generated by M and N,
respectively. Prove the following.

(i) I M C N, then RCR.
(i) If M C N C R, then R = R'.

(iif) If
M = {open intervals in E"}
and
N = {all open sets in E"},
then R =R/

[Hint: Use Lemma 2 in §2 for (iii). Use the minimality of R and R'.]
8. Is any of the following a semiring, ring, o-ring, field, or o-field? Why?
(a) All infinite intervals in E*.
(b) All open sets in a metric space (S, p).
(c) All closed sets in (S, p).
(d) All “clopen” sets in (.5, p).
(e) {X €29 | —X finite}.
f) {X € 2% | —X countable}.
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=-9. Prove that for any sequence {4,} in a ring R, there is
(a) an ezpanding sequence {B,} C R such that

(Vn) B,2A4,

U B, = U A,; and
(b) a contracting sequence C,, C A,,, with
() Cn=[)An

(The latter holds in semirings, t0o0.)
[Hint: Set By, = U7 Ak, Cn = N7 Ag.]
=-10. The symmetric difference, A /A B, of two sets is defined
AAB=(A-B)U(B-A).

and

Inductively, we also set

1
AN A=A
k=1

and

n+1 n
A Ay = (A Ak> A Apit.
k=1 k=1

Show that symmetric differences
(i) are commutative,
(ii) are associative, and
(iii) satisfy the distributive law:
(AAB)NC=(ANC)A(BNC).
[Hint for (ii): Set A’ = —A, A— B = ANB’. Expand (AA B) AC into an expression
symmetric with respect to A, B, and C.]
11. Prove that M is a ring iff
(i) B eM,;
(i) VA, Be M) AAB € M and AN B € M (see Problem 10);
equivalently,
(i) AABeMand AUB e M.

[Hint: Verify that
AUB=(AAB)A (AN B)

and
A-B=(AUB)AB,
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while
ANB=(AUB)A(AAB)]

12. Show that a set family M # ) is a o-ring iff one of the following condi-
tions holds.

(a) M is closed under countable unions and proper differences (X —Y
with X D Y);

(b) M is closed under countable disjoint unions, proper differences,
and finite intersections; or

(c) M is closed under countable unions and symmetric differences (see
Problem 10).

[Hints: (a) X =Y = (X UY) —Y, a proper difference.
() X =Y =X — (X NY) reduces any difference to a proper one; then

XUY =(X-Y)U(Y —X)Uu(XnY)

shows that M is closed under all finite unions; so M is a ring. Now use Corollary 1
in §1 for countable unions.

(c) Use Problem 11.]

13. From Problem 10, treating /A as addition and N as multiplication, show
that any set ring M is an algebraic ring with unity, i.e., satisfies the six
field axioms (Chapter 2, §§1-4), except V(b) (existence of multiplicative
inverses).

14. A set family H is said to be hereditary iff
VXeH) (VY CX) YeH.

Prove the following.

(a) For every family M C 29 there is a “smallest” hereditary ring
H DO M (H is said to be generated by M). Similarly for o-rings,
fields, and o-fields.

(b) The hereditary o-ring generated by M consists of those sets which
can be covered by countably many M-sets.

15. Prove that the field (o-field) in S, generated by a ring (o-ring) R, con-
sists exactly of all R-sets and their complements in S.

16. Show that the ring R generated by a set family C # () consists of all sets
of the form

(see Problem 10), where each A € Cy4 (finite intersection of C-sets).
[Outline: By Problem 11, R must contain the family (call it M) of all such A}_; Ay.
(Why?) It remains to show that M is a ring D C.
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Write A+ B for A/A B and AB for AN B; so each M-set is a “sum” of finitely
many “products”
A1Ag - Ap.

By algebra, the “sum” and “product” of two such “polynomials” is such a polynomial
itself. Thus
VX, YEM) XAYand XNY € M.

Now use Problem 11.]

17. Use Problem 16 to obtain a new proof of Theorem 2 in §1 and Corollary 2
in the present section.
[Hints: For semirings, C = C4. (Why?) Thus in Problem 16, A € C.
Also,
(VA,BEC) AAB=(A—B)U(B-A)
where A — B and B — A are finite disjoint unions of C-sets. (Why?)
Deduce that A A B € C. and, by induction,
Z Ay € C;;
k=1
so R CCLCR. (Why?)]
18. Given a set A and a set family M, let
AnM
be the family of all sets AN X, with X € M; similarly,
NUYUM=A)={all sets Y U (X — A), with Y e N/, X € M}, etc.
Show that if M generates the ring R, then A M M generates the ring
R ' =ARR.

Similarly for o-rings, fields, o-fields.

[Hint for rings: Prove the following.
(i) AAR is a ring.
(i) M C R U (R~ A), with R’ as above.
(iii) RYU (R = A) is a ring (call it N).
(iv) By (ii)), RCN,s0 ANRCANN CR.
(V) APRDO R (for ANR D ANM).
Hence R = ANR.]

84. Set Functions. Additivity. Continuity

I. The letter “v” in vA may be treated as a certain function symbol that assigns
a numerical value (called “volume”) to the set A. So far we have defined such
“volumes” for all intervals, then for C-simple sets, and even for C,-sets in E".
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Mathematically this means that the volume function v has been defined first
on C (the intervals), then on C., (C-simple sets), and finally on C,-.

Thus we have a function v which assigns values (“volumes”) not just to
single points, as ordinary “point functions” do, but to whole sets, each set
being treated as one thing.

In other words, the domain of the function v is not just a set of points, but
a set family (C, C., or Cy).

The “volumes” assigned to such sets are the function values (for C and Cl-sets
they are real numbers; for C,-sets they may reach +00). This is symbolized by

v:C— E'

or
v: Cyp — E*;
more precisely,
v: Cy — [0, 00],

since volume is nonnegative.

It is natural to call v a set function (as opposed to ordinary point functions).
As we shall see, there are many other set functions. The function values need
not be real; they may be complex numbers or vectors. This agrees with our

general definition of a function as a certain set of ordered pairs (Definition 3
in Chapter 1, §§4-7); e.g.,

Y A B C ---
“\wA vB oC --- )"
Here the domain consists of certain sets A, B,C,.... This leads us to the
following definition.

Definition 1.

A set function is a mapping
st M—=E

whose domain is a set family M.

The range space E is assumed to be E', E*, C (the complex field), E™,
or another normed space. Thus s may be real, extended real, complex,
or vector valued.

To each set X € M, the function s assigns a unique function value
denoted s(X) or sX (which is an element of the range space E).

We say that s is finite on a set family N C M iff
VX eN) |sX|< o

briefly, |s] < oo on N. (This is automatic if s is complex or vector valued.)
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We call s semifinite if at least one of +o00 is excluded as function value,
e.g.,if s > 0 on M;i.e.,
s: M — [0, 0].
(The symbol oo stands for +oo throughout.)

Definition 2.
A set function
s:M—FE

is called additive (or finitely additive) on N' C M iff for any finite disjoint
union | J,, A, we have

ZSAk = S(UAk),
k k
provided |J,, Ax and all the A; are N-sets.

If this also holds for countable disjoint unions, s is called o-additive
(or countably additive or completely additive) on N

If N = M here, we simply say that s is additive (o-additive, respec-
tively).

Note 1. As |J Ay is independent of the order of the Ay, o-additivity pre-
supposes and implies that the series

Z SAk

is permutable (§2) for any disjoint sequence
{Ar} CN.

(The partial sums do exist, by our conventions (2*) in Chapter 4, §4.)
The set functions in the examples below are additive; v is even o-additive
(Corollary 1 in §2).
Examples (b)—(d) show that set functions may arise from ordinary “point
functions.”
Examples.
(a) The volume function v: C — E' on C (= intervals in E"), discussed
above, is called the Lebesgue premeasure (in E™).
(b) Let M = {all finite intervals I C E'}.
Given f: E' — E, set

(VIeM) sI=V

the total variation of f on the closure of I (Chapter 5, §7).
Then s: M — [0, o0] is additive by Theorem 1 of Chapter 5, §7.
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(c) Let M and f be as in Example (b).
Suppose f has an antiderivative (Chapter 5, §5) on E'. For each
interval X with endpoints a,b € E! (a <), set

sX:/abf.

This yields a set function s: M — E (real, complex, or vector valued),
additive by Corollary 6 in Chapter 5, §5.

(d) Let C = {all finite intervals in E'}.

Suppose
a:B'— B!

has finite one-sided limits
a(p+) and a(p—)
at each p € E. The Lebesgue—Stieltjes (LS) function
Sq:C— E1
(important for Lebesgue—Stieltjes integration) is defined as follows.
Set so0 = 0. For nonvoid intervals, including [a, a] = {a}, set
sala,b] = a(b+) — a(a—),
sal(a,b] = a(b+) — ala+),
sala,b) = a(b—) — a(a—), and
sa(a,b) = a(b—) — ala+).
For the properties of s, see Problem 7ff., below.

(e) Let mX be the mass concentrated in the part X of the physical space S.
Then m is a nonnegative set function defined on

25 = {all subsets X C S} (§3).

If instead mX were the electric load of X, then m would be sign
changing.

II. The rest of this section is redundant for a “limited approach.”
Lemmas. Let s: M — E be additive on N C M. Let

A,BeN, ACB.

Then we have the following.
(1) If |sA] < oo and B— A €N, then

s(B — A) = sB — sA (“subtractivity”).
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(2) If @ € N, then s = 0 provided |sX| < oo for at least one X € N.
(3) If N is a semiring, then sA = too implies |sB| = co. Hence
[sB| < 0o = [sA] < oo.
If further s is semifinite then
sA =400 = sB =+
(same sign).
Proof.
(1) As B D A, we have
B = (B — A)U A (disjoint);
so by additivity,
sB=3s(B—A)+ sA.
If |sA| < oo, we may transpose to get
sB —sA=s(B—-A),
as claimed.
(2) Hence
h=s(X-X)=sX—-sX=0
if X, 0 €N, and [sX| < oco.
(3) If NV is a semiring, then

B-A= U Ay, (disjoint)
k=1

for some N -sets Ay; so
n
B=AU U Ay, (disjoint).
k=1
By additivity,
n
sB =sA+ Z SAE;
k=1
so by our conventions,
|sA] = 0o = |sB| = .

If, further, s is semifinite, one of +oo is excluded. Thus sA and sB, if
infinite, must have the same sign. This completes the proof. O
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In §81 and 2, we showed how to extend the notion of volume from intervals
to a larger set family, preserving additivity. We now generalize this idea.

Theorem 1. If
s:C—>FE

is additive on C, an arbitrary semiring, there is a unique set function
5:Cs — E,
additive on Cg, with § =s on C, i.e.,

sX =sX for X €C.

We call 5 the additive extension of s to Cs = C. (Corollary 2 in §3).

Proof. If s > 0 (s: C — [0,00]), proceed as in Lemma 1 and Corollary 2, all
of §1.

The general proof (which may be omitted or deferred) is as follows.

Each X € C] has the form

X =|J X; (disjoint), X, €C.
i=1

Thus if § is to be additive, the only way to define it is to set

m
sX = Z SXZ‘.
i=1

This already makes 5 unique, provided we show that

m

ZSX{,

i=1

does not depend on the particular decomposition

X = OX’L'
i=1

(otherwise, all is ambiguous).
Then take any other decomposition

C-=

X = Yy (disjoint), Yy €C.
k=1
Additivity implies
(Vik) sXi=) s(X;NYy)and sYp = > s(X; NYk).

k=1 =1
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(Verify!) Hence

m n

D sXi=) s(XinYy) =Y sV

i=1 ik k=1

Thus, indeed, it does not matter which particular decomposition we choose,
and our definition of § is unambiguous.
If X € C, we may choose (say)

1
X=JXi X1=X;
i=1
SO
X =sX; =sX;
i.e., § = s on C, as required.
Finally, for the additivity of s, let
A= U By, (disjoint), A, By, € C..
k=1
Here we may set
ni;
By = U C}m (disjoint), C]” eC.
i=1
Then

A= U Cri (disjoint);
ki

so by our definition of 3,
m N m
A=Y s =3 (S0 ) = Do st
ki k=1 Ni=1 k=1

as required. O

Continuity. We write X,, /' X to mean that

xX=Jx,
n=1
and {X,}1, i.e.,
Xnan+17 n:1,2,....
Similarly, X, \, X iff
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and {X, }, ie.,
Xp D Xni1, n=1,2,....

In both cases, we set
X = lim X,.
n— 00
This suggests the following definition.
Definition 3.
A set function s: M — FE is said to be
(i) left continuous (on M) iff

sX = lim sX,

n—oo
whenever X,, X and X, X,, € M;
(ii) right continuous iff

sX = lim sX,

n—oo

whenever X,, \, X, with X, X,, € M and [sX;| < o0.

Thus in case (i),

o0
lim sX, =s U Xn
n—oo

n=1

if all X,, and ;2 , X, are M-sets.
In case (i),

oo
lim sX, =s ﬂ X,
n—oo

n=1

if all X,, and (,;2, X,, are in M, and |sX1| < oc.

Note 2. The last restriction applies to right continuity only. (We choose
simply to exclude from consideration sequences { X, }|, with [sX;| = oo; see
Problem 4.)

Theorem 2. If s: C — E is o-additive and semifinite on C, a semiring, then
s is both left and right continuous (briefly, continuous).

Proof. We sketch the proof for rings; for semirings, see Problem 1.
Left continuity. Let X,, /X with X,,, X € C and

X = U X,
n=1
If sX,, = £oo for some n, then (Lemma 3)

sX = sX,, = oo for m > n,
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since X O X,, O X,,; so
lim sX,, = oo = sX,
as claimed.
Thus assume all sX,, finite; so sf) = 0, by Lemma 2.
Set Xo = (). As is easily seen,

X = G X, = [j (X, — Xn—1) (disjoint),

n=1 n=1
and
(Vn) X, — Xn—1 €C (aring).

Also,

s

(YVm>n) X, =||)(X,— X,_1) (disjoint).

(Verify!) Thus by additivity,

and by the assumed o-additivity,

sX =s [j (Xn — Xn-1) i $(Xn — Xn-1)
n=1

n=1
m
=, D oK = Koma) = lig sXom,
n—
as claimed.
Right continuity. Let X, \ X with X, X, € C,
o0
X = ﬂ X,
n=1
and
[sX1| < 0.

As X C X,, C Xy, Lemma 3 yields that
(Vn) |sX,| <oo

and |sX| < oo.
As

X = ﬁ Xy,
k=1

84. Set Functions. Additivity. Continuity

we have
o0

(Vn) X,=XU (J (Xp-1— Xx) (disjoint).
k=n-+1

(Verify!) Thus by o-additivity,

o0
(Vn) sX,=sX+ Z s(Xp—1 — Xg),
k=n+1
with [sX] < oo, |sX,| < co (see above).

Hence the sum
oo

> s(Xpo1 — Xi) = sX, — sX
k=n+1

is finite. Therefore, it tends to 0 as n — oo (being the “remainder term” of a

convergent series). Thus n — oo yields

lim sX, =sX +lim »  s(Xp1 — Xi) = sX,

n— o0
k=n+1

as claimed. O

Problems on Set Functions

1. Prove Theorem 2 in detail for semirings.
[Hint: We know that

Mn
Xp = Xn-1 = | Yo (disjoint)
i=1

for some Y,,; € C, so
mn

g(Xn - Xﬂ,*l) = Zsynia

i=1

with § as in Theorem 1.]

2. Let s be additive on M, a ring. Prove that s is also o-additive provided

s is either
(i) left continuous, or

(ii) finite on M and right-continuous at §; i.e.,

lim sX, =0

n—oo

when X,, \( 0 (X,, € M).

[Hint: Let
A= UA” (disjoint), A, An € M.
n
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Set

n
Xn=J Ak, Yo =4—-Xn.
k=1

Verify that Xn, Y, € M, Xn 7 A, Yy \(0.

In case (i),
oo
sA =limsX, = Z sAg.
k=1
(Why?)
For (ii), use the Yy.]
Let

M = {all intervals in the rational field R C E'}.

Let
sX=b—a
if a, b are the endpoints of X € M (a,b € R, a <b). Prove that
(i) M is a semiring;
(ii) s is continuous;
(iii) s is additive but not o-additive; thus Problem 2 fails for semirings.

[Hint: R is countable. Thus each X € M is a countable union of singletons {z} =
[, z]; hence sX = 0 if s were o-additive.]

Let N = {naturals}. Let
M = {all finite subsets of N and their complements in N}.
If X € M, let sX = 0if X is finite, and sX = oo otherwise. Show that
(i) M is a set field;
(ii) s is right continuous and additive, but not o-additive.
Thus Problem 2(ii) fails if s is not finite.

Let
C = {finite and infinite intervals in F'}.

If a,b are the endpoints of an interval X (a,b € E*, a < b), set
{ b—a, a<b,
sX =
0, a=hb.
Show that s is o-additive on C, a semiring.

Let
Xn = (n7 OO);

s0 sX, =00 —n=o00 and X,, \ 0. (Verify!) Yet
lim s X,, = co # s{.
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Does this contradict Theorem 27

5. Fill in the missing proof details in Theorem 1.

6. Let s be additive on M. Prove the following.

(i) If M is a ring or semiring, so is
N={X e M||sX| < oo}
it N #£0.

(ii) If M is generated by a set family C, with |s|] < co on C, then
|s| < oo on M.
[Hint: Use Problem 16 in §3.]

=T7. (Lebesgue-Stieltjes set functions.) Let o and s, be as in Example (d).

Prove the following.
(i) 8o >0 on Ciff at on E! (see Theorem 2 in Chapter 4, §5).
(i) sa{p} = sa[p,p] = 0 iff @ is continuous at p.
(iii) sq is additive.
[Hint: I

-

A= A; (disjoint),

i=1

the intervals A;_1, A; must be adjacent. For two such intervals, consider all
cases like
(a,b] U (b,¢), [a,b) U [b, ], ete.

Then use induction on n.|

(iv) If v is right continuous at a and b, then
sala,b] = a(b) — a(b).
If « is continuous at a and b, then
Sala, b] = sala,b] = sala,b) = sq(a,b).

(v) If at on E!, then s, satisfies Lemma 1 and Corollary 2 in §1
(same proof), as well as Lemma 1, Theorem 1, Corollaries 1-4,
and Note 3 in §2 (everything except Corollaries 5 and 6).

[Hint: Use (i) and (iii). For Lemma 1 in §2, take first a half-open B = (a, b]; use
the definition of a right-side limit along with Theorems 1 and 2 in Chapter 4,
§5, to prove

(Ve>0) (Fe>b) 0<alc—)—alb+) <e

then set C' = (a,c). Similarly for B = [a,b), etc. and for the closed interval
ACB]

(vi) If a(x) = x then s, = v, the volume (or length) function in E!.
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8. Construct LS set functions (Example (d)), with a1 (see Problem 7(v)),
so that
(1) 5al0,1] # sal1,2];
(ii) sa Bt =1 (after extending s, to C,-sets in E');
(ii") soE' = c for a fixed ¢ € (0, 00);
(iii) so{0} =1 and s4[0,1] > 5,(0,1].

Describe s, if a(z) = [z] (the integral part of x).
[Hint: See Figure 16 in Chapter 4, §1.]

9. For an arbitrary a: E* — E', define 0,: C — E' by
oala,b] = oq(a,b] = os[a,b) = 0a(a,b) = a(b) — ala)

(the original Stieltjes method). Prove that o, is additive but not o-
additive unless « is continuous (for Theorem 2 fails).

§5. Nonnegative Set Functions. Premeasures. Quter Measures

We now concentrate on nonnegative set functions
m: M —[0,00]

(we mostly denote them by m or w). Such functions have the advantage that

i mX,,
n=1

exists and is permutable (Theorem 2 in §2) for any sets X,, € M, since mX,, >

0. Several important notions apply to such functions (only). They “mimic”
§51 and 2.

Definition 1.
A set function
m: M — [0, ]
is said to be
(i) monotone (on M) iff
mX <mY

whenever

XCY and X,Y € M;
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(ii) (finitely) subadditive (on M) iff for any finite union

U Yk7
k=1

we have

m

(1) mX < ZmYk
k=1

whenever X,Y; € M and

n
XC U Y. (disjoint or not);
k=1

(iil) o-subadditive (on M) iff (1) holds for countable unions, too.
Recall that {Y}} is called a covering of X iff
xXclJv%.
k

We call it an M-covering of X if all Yj, are M-sets. We now obtain the following
corollary.

Corollary 1. Subadditivity implies monotonicity.
Take n =1 in formula (1).

Corollary 2. Ifm :C — [0,00] is additive (o-additive) on C, a semiring, then
m is also subadditive (o-subadditive, respectively), hence monotone, on C.

The proof is a mere repetition of the argument used in Lemma 1 in §1.
Taking n = 1 in formula (ii) there, we obtain finite subadditivity.

For o-subadditivity, one only has to use countable unions instead of finite
ones.

Note 1. The converse fails: subadditivity does not imply additivity.
Note 2. Of course, Corollary 2 applies to rings, too (see Corollary 1 in §3).
Definition 2.
A premeasures is a set function
p: C — [0, 00]
such that
0 €C and uh =0.

(C may, but need not, be a semiring.)
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A premeasure space is a triple
(S,C, w),
where C is a family of subsets of S (briefly, C C 2%) and
p: C — [0, 00]

is a premeasure. In this case, C-sets are also called basic sets.
If
A g U B'IL7
n

with B,, € C, the sequence {B,} is called a basic covering of A, and
> b,

is a basic covering value of A; {B,} may be finite or infinite.

Examples.

(a) The volume function v on C (= intervals in E™) is a premeasure, as v > 0
and v0 = 0. (E™,C,v) is the Lebesque premeasure space.

(b) The LS set function s, is a premeasure if at (see Problem 7 in §4). We
call it the a-induced Lebesgue-Stieltjes (LS) premeasure in E*.
We now develop a method for constructing o-subadditive premeasures. (This
is a first step toward achieving o-additivity; see §4.)
Definition 3.

For any premeasure space (S, C, u), we define the p-induced outer measure
m* on 2° (= all subsets of S) by setting, for each A C S,

(2) mrA = inf{z uB,,

ie., m*A (called the outer measure of A) is the glb of all basic covering
values of A.

Ac(JB.. B, eC},

If p=v, m* is called the Lebesque outer measure in E™.

Note 3. If A has no basic coverings, we set m* A = co. More generally, we
make the convention that inf ) = +oo.

Note 4. By the properties of the glb, we have
(VACS) 0<m"A.
If A € C, then {A} is a basic covering; so
m*A < pA.
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In particular, m*() = ul) = 0.
Theorem 1.1 The set function m* so defined is o-subadditive on 25.

Proof. Given
AclJAncs,

we must show that

m*A < Z m*A,.

This is trivial if m*A,, = oo for some n. Thus assume
(Vn) m*A, <

and fix € > 0.
By Note 3, each A,, has a basic covering
{Bnr}, k=1,2,...
(otherwise, m*A,, = o0). By properties of the glb, we can choose the By
so that -
(Vn) Zank <m*A, + o
k

(Explain from (2)). The sets By (for all n and all k) form a countable basic
covering of all A,, hence of A. Thus by Definition 3,

m*A < Z(Z Nszk) < Z(m*An + 2%) < Xn:m*An +e.
n k n

As € is arbitrary, we can let € — 0 to obtain the desired result. [
Note 5. In view of Theorem 1, we now generalize the notion of an outer
measure in S to mean any o-subadditive premeasure defined on all of 2.

By Note 4, m* < p on C, not m* = p in general. However, we obtain the
following result.

Theorem 2. With m* as in Definition 3, we have m* = u on C iff u is
o-subadditive on C. Hence, in this case, m* is an extension of p.

Proof. Suppose p is o-subadditive and fix any A € C. By Note 4,
m*A < pA.

We shall show that
BA <m*A,

L Theorems 1-3 are redundant for a “limited approach” (see the preface). Pass to Chap-
ter 8, §1.
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too, and hence uA = m*A.
Now, as A € C, A surely has basic coverings, e.g., {A}. Take any basic
covering:
AcC|JBn B.ecC
n

As p is o-subadditive,
pA < Z uBn.

Thus A does not exceed any basic covering values of A; so it cannot exceed
their glb, m*A. Hence p = m*, indeed.

Conversely, if 4 = m* on C, then the o-subadditivity of m* (Theorem 1)
implies that of 4 (on C). Thus all is proved. O

Note 6. If, in (2), we allow only finite basic coverings, then the u-induced
set function is called the p-induced outer content, c¢*. It is only finitely subad-
ditive, in general.

In particular, if g = v (Lebesgue premeasure), we speak of the Jordan outer
content in E™. (It is superseded by Lebesgue theory but still occurs in courses
on Riemann integration.)

We add two more definitions related to the notion of coverings.
Definition 4.

A set function s: M — E (M C 29) is called o-finite iff every X € M
can be covered by a sequence of M-sets X,,, with

[sX,| <oo (Vn).

Any set A C S which can be so covered is said to be o-finite with
respect to s (briefly, (s) o-finite).
If the whole space S can be so covered, we say that s is totally o-finite.
For example, the Lebesgue premeasure v on E" is totally o-finite.
Definition 5.

A set function s: M — E* is said to be reqular with respect to a set
family A (briefly, A-regular) iff for each A € M,

(3) sA=inf{sX | ACX, X e A};
that is, sA is the glb of all sX, with A C X and X € A.

These notions are important for our later work. At present, we prove only
one theorem involving Definitions 3 and 5.
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Theorem 3. For any premeasure space (S,C, u), the u-induced outer measure

m* is A-regular whenever

C, CAC25.
Thus in this case,

(4) (VACS) m*A=if{m*X |ACX, X c A}.

Proof. As m™* is monotone, m* A is surely a lower bound of
{m*X|ACX, XeA}
We must show that there is no greater lower bound.
This is trivial if m*A = oc.
Thus let m*A < oo; so A has basic coverings (Note 3). Now fix any € > 0.
By formula (2), there is a basic covering {B,,} C C such that

AgUBn

and
m'A+e > ZuBn > Zm*Bn >m* UB”'

*

is o-subadditive!)
Let

(m

X = UBn.
n

Then X is in C,, hence in A, and A C X. Also,
m*A+e>m"X.
Thus m*A + ¢ is not a lower bound of
{mM* X |ACX, X e A}
This proves (4). O

Problems on Premeasures and Related Topics

1. Fill in the missing details in the proofs, notes, and examples of this
section.

2. Describe m* on 2% induced by a premeasure u: C — E* such that each
of the following hold.

(a) €= {50}, uS = 1.
(b) C ={S,0, and all singletons}; uS = oo, pu{z} = 1.
(c¢) C asin (b), with S uncountable; ;S = 1, and pX = 0 otherwise.
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(d) C = {all proper subsets of S}; uX =1 when ) C X C S; ul) = 0.
3. Show that the premeasures
" —[0,00]

induce one and the same (Lebesgue) outer measure m* in E", with
v =v (Volume as in §2):

(a) ¢’ = {open intervals};
(b) C" = {half-open intervals};
(¢) C'= {Closed intervals};
(@) ¢
(e) C'= {opcn sets};
(f) ¢’ = {half-open cubes}.
[Hints: (a) Let m’ be the v’-induced outer measure; let C = {all intervals}. As

¢’ CC,m'A>m*A. (Why?) Also,

(Ve >0) 3{Bx}CC) AC|JBrand > vBy <m'A+e.
k

(Why?) By Lemma 1 in §2,
£
(3{Ck} C C/) By C Cy, and vBy, + Q_k > U/Ck.

Deduce that m*A > m/A, m* = m’. Similarly for (b) and (c). For (d), use
Corollary 1 and Note 3 in §1. For (e), use Lemma 2 in §2. For (f), use Problem 2
in §2.]

3’. Do Problem 3(a)—(c), with m* replaced by the Jordan outer content c*
(Note 6).

4. Do Problem 3, with v and m* replaced by the LS premeasure and outer
measure. (Use Problem 7 in §4.)

5. Show that a set A C E™ is bounded iff its outer Jordan content is finite.
6. Find a set A C E' such that
(i) its Lebesgue outer measure is 0 (m*A = 0), while its Jordan outer
content ¢*A = oo;
(ii) m*A =0, ¢c*A =1 (see Corollary 6 in §2).

7. Let
K1y p2: C— [07 OO}
be two premeasures in S and let mj and m3 be the outer measures
induced by them.
Prove that if m} = mj on C, then mj = m} on all of 2°.
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8. With the notation of Definition 3 and Note 6, prove the following.
(i) f AC BCS and m*B =0, then m*A = 0; similarly for ¢*.

[Hint: Use monotonicity.]

(ii) The set family
(X CS|cA=0}

is a hereditary set ring, i.e., a ring R such that
(YBER)(VACB) A€R.
(iii) The set family
{XCS|m*X =0}
is a hereditary o-ring.
(iv) So also is
‘H = {those X C S that have basic coverings};

thus H is the hereditary o-ring generated by C (see Problem 14
in §3).

9. Continuing Problem 8(iv), prove that if y is o-finite (Definition 4), so is
m* when restricted to H.

Show, moreover, that if C is a semiring, then each X € H has a basic
covering {Y,,}, with m*Y,, < co and with all Y,, disjoint.
[Hint: Show that

x<UU»

for some sets B, € C, with uB,; < co. Then use Note 4 in §5 and Corollary 1
of §1.]

10. Show that if

HCS

s:C—=E*
is o-finite and additive on C, a semiring, then the o-ring R generated
by C equals the o-ring R’ generated by
={X eC||sX| < oc}
(cf. Problem 6 in §4).
[Hint: By o-finiteness,
(VX €C) (3{An} CC|lsAn| < 00) X C|JAn;
SO

X={J&Xn4,), XxnAa,ec.

n

(Use Lemma 3 in §4.)
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11.

12.

="*13.

14.
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Thus (VX € C) X is a countable union of C’-sets; so C C R'. Deduce R C R'.
Proceed.]

With all as in Theorem 3, prove that if A has basic coverings, then
(3B € ./45)

[Hint: By formula (4),

ACBand m*A=m"B.

1
(VneN)(3X, € A|ACX,) m*A<mX, <m'A+ —.
n
(Explain!) Set

B= ﬂ Xn € As.
n=1
Proceed. For Aj, see Definition 2(b) in §3.]
Let (S,C, ) and m™ be as in Definition 3. Show that if C is a o-field in
S, then

(WVACS)(3BeC) ACBand m"A=puB.

[Hint: Use Problem 11 and Note 3.]

Show that if
s:C—F

is o-finite and o-additive on C, a semiring, then s has at most one o-
additive extension to the o-ring R generated by C.

(Note that s is automatically o-finite if it is finite, e.g., complex or
vector valued.)
[Outline: Let
s’ R—E

be two o-additive extensions of s. By Problem 10, R is also generated by
C'={X eC||sX]| < oo}

Now set
R*={XeR|sX=s"X}.

Show that R* satisfies properties (i)—(iii) of Theorem 3 in §3, with C replaced by C’;
so R = R*)]
Let m} (n=1,2,...) be outer measures in S such that
VX C8) (Vn) miX <my X
Set
u* = lim m;.

n— 00

Show that p* is an outer measure in S (see Note 5).
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15.

16.

An outer measure m* in a metric space (S,p) is said to have the
Carathéodory property (CP) iff

m (XUY)>m'X +m*Y
whenever p(X,Y) > 0, where
p(X,Y) =inf{p(z,y) |z € X,y e Y}.

For such m*, prove that
m* (U Xk) — Y,
k k

if {X;} €25 and
P(Xi Xi) >0 (i # ).

[Hint: For finite unions, use the CP, subadditivity, and induction. Deduce that

NE

oo
(Vn) m* X, <m* U X
k=1

k

1

Let n — co. Proceed.]

Let (S,C, u) and m* be as in Definition 3, with p a metric for S. Let u,
be the restriction of u to the family C,, of all X € C of diameter

1
dX < —.
n

Let m}, be the p,-induced outer measure in S.

Prove that
(i) {m}}?1 as in Problem 14;

(ii) the outer measure

* __1: *
p* = lim m;,

has the CP (see Problem 15), and
Wt >m* on 2°.

[Outline: Let p(X,Y) >e >0 (X,Y CS).
If for some n, X UY has no basic covering from C,,, then
pHXUY) > mp(XUY) =00 2> pu"X +p"Y,
and the CP follows. (Explain!)

Thus assume

(vn> é) (Vk) (3Bnk €Ca) XUY C | B
k=1
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17.

18.
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One can choose the B, so that
oo
Z uBpk <my(XUY)+e.
k=1

(Why?) As

1
dBnpp < — <e,
n

some By cover X only, others Y only. (Why?) Deduce that
1 oo
(va>2) miX+miY <3 pnBux <ma(XUY) +e.
€
k=1

Let ¢ — 0 and then n — oco.
Also, m* < mj} < p*. (Why?)]

Continuing Problem 16, suppose that
(Ve >0) (Vn,k) (VB €C) (IBni €Cp)

B C U B, and uB +¢ > ZuBnk.
k=1 k=1

Show that

m* = lim gy = p",
n—o0

so m* itself has the CP.
[Hints: It suffices to prove that m*A > p*A if m*A < co. (Why?)
Now, given € > 0, A has a covering

{B:}CC

such that
m*A+e> Z uB;.

(Why?) By assumption,
[eS] ) c oo )
(vn) B C |J Biy€Cn and puB; + — > > By
k=1 k=1
Deduce that

oo oo
) € )
m*A+6>E uBiZE (E uBka—?):E uB —e>myA—e.
i=1 “k=1 ik

Let € — 0; then n — 0.

Using Problem 17, show that the Lebesgue and Lebesgue—Stieltjes outer
measures have the CP.
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§6. Measure Spaces. More on Outer Measures!

I. In §5, we considered premeasure spaces, stressing mainly the idea of o-
subadditivity (Note 5 in §5). Now we shall emphasize o-additivity.

Definition 1.
A premeasure
m: M — [0, ]

is called a measure (in S) iff M is a o-ring (in S), and m is o-additive
on M.
If so, the system
(S, M,m)

is called a measure space; mX is called the measure of X € M; M-sets
are called m-measurable sets.
Note that m is nonnegative and m{) = 0, as m is a premeasure (Definition 2
in §5).
Corollary 1. Measures are o-additive, o-subadditive, monotone, and contin-
UOus.
Proof. Use Corollary 2 in §5 and Theorem 2 in §4, noting that M is a o-
ring. O

Corollary 2. In any measure space (S, M,m), the union and intersection of
any sequence of m-measurable sets is m-measurable itself. So also is X —Y if
XY e M.

This is obvious since M is a o-ring.
As measures and other premeasures are understood to be > 0, we often write

m: M — E*

for
m: M — [0, 00].
We also briefly say “measurable” for “m-measurable.”
Note that ) € M, but not always S € M.

Examples.

(a) The volume of intervals in E™ is a o-additive premeasure, but not a
measure since its domain (the intervals) is not a o-ring.

(b) Let M = 25. Define
(VX CS) mX=0.

I Sections 6-12 are not needed for a “limited approach.” (Pass to Chapter 8, §1.)
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Then m is trivially a measure (the zero-measure). Here each set X C S
is measurable, with mX = 0.

(c) Let again M = 25. Let mX be the number of elements in X, if finite,
and mX = oo otherwise.

Then m is a measure (“counting measure”). Verify!
(d) Let M =25, Fix some p € S. Let

{ 1 ifpeX,
mX = .
0 otherwise.

Then m is a measure (it describes a “unit mass” concentrated at p).
(e) A probability space is a measure space (S, M, m), with
SeMand mS =1

In probability theory, measurable sets are called events; mX is called the
probability of X, often denoted by pX or similar symbols.

In Examples (b), (c), and (d),
M =25 (all subsets of S).

More often, however,

M £ 25,

i.e., there are nonmeasurable sets X C S for which mX is not defined.

Of special interest are sets X € M, with mX = 0, and their subsets. We
call them m-null or null sets. One would like them to be measurable, but this
is not always the case for subsets of X.

This leads us to the following definition.
Definition 2.

A measure m : M — E* is called complete iff all null sets (subsets of sets
of measure zero) are measurable.

We now develop a general method for constructing complete measures.

II. From §5 (Note 5) recall that an outer measure in S is a o-subadditive
premeasure defined on all of 2% (even if it is not derived via Definition 3 in §5).2
In Examples (b), (c¢), and (d), m is both a measure and an outer measure.
(Why?)
An outer measure
m*: 2% — E*

2 Some authors consider outer measures on smaller domains; we shall not do so.
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need not be additive; but consider this fact:
Any set A C S splits S into two parts: A itself and —A.

It also splits any other set X into X N A and X — A; indeed,

X =(XNA)U(X — A) (disjoint).
We want to single out those sets A for which m* behaves “additively,” i.e.,
so that

m'X =m* (X NA) +m"(X — A).
This motivates our next definition.

Definition 3.

Given an outer measure m*: 25 — E* and a set A C S, we say that A is
m*-measurable iff all sets X C S are split “additively” by A; that is,

(1) VXCS) m'X=m*(XNA)+m"(X - A).
As is easily seen (see Problem 1), this is equivalent to
(2) VXCA) (VY C—-4) m"(XUY)=m"X +m"Y.

The family of all m*-measurable sets is usually denoted by M*. The
system (S, M*, m*) is called an outer measure space.

Note 1. Definition 3 applies to outer measures only. For measures, “m-
measurable” means simply “member of the domain of m” (Definition 1).

Note 2. In (1) and (2), we may equivalently replace the equality sign (=)
by (>). Indeed, X is covered by

{XNAX - A},

and X UY is covered by {X,Y}; so the reverse inequality (<) anyway holds,
by subadditivity.
Our main objective is to prove the following fundamental theorem.

Theorem 1. In any outer measure space
(S7 M*7 m* )7

the family M* of all m*-measurable sets is a o-field in S, and m*, when re-
stricted to M*, is a complete measure (denoted by m and called the m*-induced
measure; so m* =m on M*).

We split the proof into several steps (lemmas).
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Lemma 1. M* is closed under complementation:
VAeM*) —AeM™.
Indeed, the measurability criterion (2) is same for A and —A alike.

Lemma 2. ) and S are M*-sets. So are all sets of outer measure 0.

Proof. Let m*A = 0. To prove A € M*, use (2) and Note 2.
Thus take any X C A and Y C —A. Then by monotonicity,

mX <m*A=0

and
m'Y <m*(XUY).

Thus
mX+mY =0+m"Y <m*(XUY),

as required.
In particular, as m*@ = 0, ) is m*-measurable (§ € M*).
So is S (the complement of ) by Lemma 1. O

Lemma 3. M* is closed under finite unions:

(VA,Be M*) AUBe M".

Proof. This time we shall use formula (1). By Note 2, it suffices to show that
VX CS) mX>m"(XN(AUB))+m"(X —(AUB)).
Fix any X C S; as A € M*, we have
(3) m' X =m* (X NA) +m"(X - A).
Similarly, as B € M*, we have (replacing X by X — A in (1))
@ m (X —-A)=m"(X-A)NB)+m"(X — A-B)
=m"(XN-ANB)+m"(X - (AU B)),

since
X-A=XnNn-4

and
X-A-B=X-(AUB).

Combining (4) with (3), we get
(5) m' X =m"(XNA) +m*(XN-AnNB)+m*(X — (AU B)).
Now verify that
(XNAUXN-ANB) 2 XN(AUB).

§6. Measure Spaces. More on Outer Measures 151

As m is subadditive, this yields
m (X NA)+m"(XN-ANB)>m"(XN(AUB)).
Combining with (5), we get
m*X >m*(XN(AUB))+m*(X — (AU B)),
so that AU B € M*, indeed. O

Induction extends Lemma 3 to all finite unions of M*-sets.

Note that by Problem 3 in §3, M* is a set field, hence surely a ring. Thus
Corollary 1 in §1 applies to it. (We use it below.)

Lemma 4. Let
ngAkgS7 k:071727"'7

with all Ay pairwise disjoint.
Let A, € M* for k> 1. (Ag and the X}, need not be M*-sets.) Then

(6) m*([j Xk) = im*Xk.
k=0 k=0

Proof. We start with two sets, Ag and Ay; so
A e M*, AgnA; =0, Xg C Ag, and X; C A;.

As Agn Ay =0, we have Ay C —Aj; hence also Xg C —Aj.
Since A; € M*, we use formula (2), with

X:X1QA1 andY:XOQ—A,

to obtain
m* (XoUX1) =m"Xo+m"X;.

Thus (6) holds for two sets.
Induction now easily yields

R S (VS P (VP

k=0

by monotonicity of m*. Now let n — oo and pass to the limit to get

im*Xk < m*([] Xk>.
k=0 k=0

As |J Xy, is covered by the Xy, the o-subadditivity of m* yields the reverse
inequality as well. Thus (6) is proved. O
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Proof of Theorem 1. As we noted, M* is a field. To show that it is also
closed under countable unions (a o-field), let

U=JAr Arem.
k=1
We have to prove that U € M*; or by (2) and Note 2,
(7) (VX CU) (VY C-U) m"(XUY)>m*X +m"Y.

We may safely assume that the Ay are disjoint. (If not, replace them by disjoint
sets By, € M*, as in Corollary 1 of §1.)
To prove (7), fix any X CU and Y C —U, and let
Xp =X NA, C A,

Ay = U, and Xy =Y, satisfying all assumptions of Lemma 4. Thus by (6),
writing the first term separately, we have

(8) m* <YU U Xk) =m'Y + ) mXp.
k=1 k=1
But

Xy =
1 k

XNy =Xn|{JA4=XnU=X
1 k=1

s
s

k
(as X CU). Also, by o-subadditivity,
Zm*Xk >m* UXk =m*X.

Therefore, (8) implies (7); so M* is a o-field.
Moreover, m* is o-additive on M*, as follows from Lemma 4 by taking

Xk:AkEM*,A():@.

Thus m* acts as a measure on M*.

By Lemma 2, m* is complete; for if X is “null” (X C A and m*A = 0), then
m*X =0; so X € M*, as required.

Thus all is proved. [

We thus have a standard method for constructing measures: From a pre-
measure
u: C— E*

in S, we obtain the p-induced outer measure

m*: 2% — E* (§5);
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this, in turn, induces a complete measure
m: M* — E*.
But we need more: We want m to be an extension of u, i.e.,
m = ponC,

with ¢ € M* (meaning that all C-sets are m*-measurable). We now explore
this question.

Lemma 5. Let (S,C,p) and m* be as in Definition 3 of §5. Then for a set
A C S to be m*-measurable, it suffices that

(9) m'X >m* (XNA) +m"(x—A) foral X eC.

Proof. Assume (9). We must show that (9) holds for any X C S, even not a
C-set.

This is trivial if m*X = oo. Thus assume m*X < oo and fix any £ > 0.

By Note 3 in §5, X must have a basic covering {B, } C C so that

X C UBn
and
(10) m'X +e> ZuBn > Zm*Bn.

(Explain!)
Now, as X C |J B,,, we have

XNnAC|B.nA=JB.NA).

Similarly,
X-A=xn-Ac|JsB, - A).
Hence, as m* is o-subadditive and monotone, we get
Ly MmN X ) < (U(Bn N A)) +m* (U(B,,, - A))
" < [m*(BunA)+m* (B, — A)].

But by assumption, (9) holds for any C-set, hence for each B,,. Thus
m* (B, NA) +m* (B, — A) < m*B,,
and (11) yields
m (X NA) +m (X = A) <Y [m (B, NA) +m* (B, — A)] <Y m*By.
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Therefore, by (10),
m(XNA) +m"(X —A) <m*X +e.
Making ¢ — 0, we prove (10) for any X C S, so that A € M*, as required. O

Theorem 2. Let the premeasure
u:C— E*

be o-additive on C, a semiring in S. Let m* be the pu-induced outer measure,
and

m: M* — E*
be the m*-induced measure. Then
(i) CC M* and
(ii) p=m*=m onC.
Thus m is a o-additive extension of u (called its Lebesgue extension) to M*.
Proof. By Corollary 2 in §5, p is also o-subadditive on the semiring C. Thus
by Theorem 2 in §5, = m* on C.
To prove that C € M*, we fix A € C and show that A satisfies (9), so that
Aec M*.
Thus take any X € C. As C is a semiring, X N A € C and

X-A= U Ay (disjoint)
k=1

for some sets A, € C. Hence

m* (X N A) +m*(X — A) =m*(X N A)+m" | Ak
(12) L
<m*(XNA)+ Zm*Ak.
k=1
As
X=(XNA)UX - A) = (XnA) Ul A (disjoint),

the additivity of p and the equality g = m* on C yield
mX =m*(XNA) + Zm*Ak.
k=1

Hence by (12),
m*X >m* (X NA) +m"(X — A);

so by Lemma 5, A € M*, as required.
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Also, by definition, m = m* on M*, hence on C. Thus
uw=m"=monC,
as claimed. [
Note 3. In particular, Theorem 2 applies if
w: M — E*

is a measure (so that C = M is even a o-ring).
Thus any such u can be extended to a complete measure m (its Lebesgue
extension) on a o-field

M*2OM
via the p-induced outer measure (call it p* this time), with
w=m=pon M.
Moreover,
M* DM DM,
(see Note 2 in §3); so u* is M-regular and M*-regular (Theorem 3 of §5).

Note 4. A reapplication of this process to m does not change m (Prob-
lem 16).

Problems on Measures and Outer Measures

1. Show that formulas (1) and (2) are equivalent.
[Hints: (i) Assume (1) and let X C A, Y C —A.
As X in (1) is arbitrary, we may replace it by X UY. Simplifying, obtain (2) on
noting that X NA =X, XN-A=0,YNA=0,andYN—-A=Y.
(ii) Assume (2). Take any X and substitute X N A and X — A for X and Y in (2).]

2. Given an outer measure space (S, M*,m*) and A C S, set
AAM ={ANX|X e M}

(all sets of the form AN X with X € M*).
Prove that A M* is a o-field in A, and m* is o-additive on it.
[Hint: Use Lemma 4, with X, = AN A, € A M*]

3. Prove Lemmas 1 and 2, using formula (1).
3’. Prove Corollary 1.

4. Verify Examples (b), (¢), and (d). Why is m an outer measure as well?
[Hint: Use Corollary 2 in §5.]

5. Fill in all details (induction, etc.) in the proofs of this section.
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6. Verify that m* is an outer measure and describe M* under each of the
following conditions.

(a) m*A=1if0C ACS;m*)=0.
(b) m*A=1i0CACS; mS=2m*0=0.

(¢) m*A=0if A C S is countable; m*A = 1 otherwise (S is uncount-

able).
(d) S =N (naturals); m*A =1 if A is infinite; m*A = 17 if A has
n elements.

7. Prove the following.

(i) An outer measure m* is M*-regular (Definition 5 in §5) iff
(WVACS)(3IBeM*) ACBand m*A=mB.

B is called a measurable cover of A.
[Hint: If
m*A=inf{mX | AC X € M*},

then
1
(Vn) (3Xn e M*) ACX, and mX, <m"A+ —.
n

Set B =02, Xn.]
(ii) If m* is as in Definition 3 of §5, with C C M*, then m* is M*-
regular.

8. Show that if m™* is M*-regular (Problem 7), it is left continuous.
[Hints: Let {Ay }1; let B, be a measurable cover of Ay; set

oo
Cn= () Bx
k=n

Verify that {Cp}1, Bn 2 Cp 2 Ay, and mC,, = m* A,
By the left continuity of m (Theorem 2 in §4),

oo oo
limm*A, =limmC, =m U Cp >m* U Anp.
n=1 n=1
Prove the reverse inequality as well.]
9. Continuing Problems 6-8, verify the following.

(i) In 6(a), with S = N, m* is M*-regular, but not right continuous.
Hint: Take A, ={z € N |z > n}.

(ii) In 6(b), with S = N, m* is neither M*-regular nor left continuous.

(i) In 6(d), m* is not M*-regular; yet it is left continuous. (Thus
Problem 8 is not a necessary condition.)
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10. In Problem 2, let n* be the restriction of m* to 2. Prove the following.
(a) n* is an outer measure in A.
(b) AAM* C N* = {n*-measurable sets}.

() AAM* = N*if A € M*, or if m* is M*-regular (see Problem 7)
and finite.

(d) n* is N*-regular if m* is M*-regular.
11. Show that if m* is M*-regular and finite, then A C S is m*-
measurable iff
mS =m* A+ m*(—A).
[Hint: Assume the latter. By Problem 7,
(YXCS) 3BeM*, BDX) m'X =mbB;

S0
m*A=m*(ANB)+m*"(A - B).

Similarly for —A. Deduce that
m*(ANB)+m*(A— B)+m*(B—A) + m*(—A — B) =mS =mB + m(—B);

hence
m*X =mB >m*(BNA)+m*(B—A)>m*(X NA)+m*(X — A),

so A€ M*]

12. Using Problem 15 in §5, prove that if m* has the CP then each open set
G C S isin M*.
[Outline: Show that

VXCG VY C—-G) m*(XUY)>m*X +m"Y,
assuming m*X < oo. (Why?) Set

Do ={x € X | plx,-G) 21}

and
1 1
Dp=4{z€X | —— <plz,-G) < — %, k>1.
= {eex| gy see-a<i) k2
Prove that
oo
(i) X = Dk
k=0
and
(ii) (D, Diy2) > 0;

so by Problem 15 in §5,

oo oo oo
Z m*DQH =m" U Ds,, < m* U Dy, =m*X < oo.

n=0 n=0 n=0
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Similarly,
oo
Z m*Daopy1 <m*X < oco.
n=0
Hence
oo
Z m* Dy, < oo;
n=0
SO
oo
. * _
nhqmoo ; m* Dy = 0.
=n

(Why?) Thus

(oo}
(ve>0) 3n) > m'Dy<e.
k=n
Also,
oo n—1 oo
X=|JDr=JDvu | D
k=0 k=0 k=n

sO

n—1 o n—1
m*X <m* U Dk+Zm*Dk<m* U Dy, +e.
k=0 k=n k=0

Adding m*Y on both sides, get

n—1
(iii) m*X +m*Y <m* | J D +m*Y +e.
k=0

Moreover,
n—1
p< U Dk,Y> >0,
k=0

for Y C —G and
1

Dy, —G) > ——.
p(Dg,—G) > P
Hence by the CP,
n—1 n—1
m*Y + > m*Dj =m" (YU U Dk> <m*(Y U X).
k=0 k=0

(Why?) Combining with (iii), obtain
m*X +m*Y <m*(XUY)+e.

Now let e — 0.]

Show that if m: M — E* is a measure, there is P € M, with
mP = max{mX | X € M}.

[Hint: Let
k =sup{mX | X € M}

§6. Measure Spaces. More on Outer Measures 159

="*14.

=*15.

in E*. As k > 0, there is a sequence r, N k, rn < k. (If k = oo, set rp, = n; if

k<oo,rpn=Fk— l.) By lub properties,

n

(Vn) (3Xn €M) rm <mX, <k,

with {X,}1 (Problem 9 in §3). Set

Show that
mP = lim mX, =k.]
n— oo

Given a measure m: M — E*| let
M = {all sets of the form X U Z where X € M and Z is m-null}.

Prove that M is a o-ring O M.
[Hint: To prove that
VA, BEM) A—BeM,

suppose first A € M and B is “null,” i.e., BC U € M, mU = 0.

Show that

A-B=XUZ,

with X =A—-UeMand Z=ANU — B m-null (Z is shaded in Figure 31).

Next, if A,B € M, let A =X UZ,

B = X'U Z', where X,X’ € M and
Z, 7' are m-null. Hence

A

A-B=(XUZ)-B
=(X-B)U(Z-B)
=(X-B)yuz’,

where
Z7"=7Z-B
is m-null. Also, B = X' U Z’ implies
X—-B=(X-X)-2"eM,

FIGure 31
by the first part of the proof.

Deduce that
A-B=(X-B)UZ"eM

(after checking closure under unions).]

Continuing Problem 14, define m: M — E* by setting mA = mX
whenever A = X UZ, with X € M and Z m-null. (Show that TmA does
not depend on the particular representation of A as X U Z.)

Prove the following.

(i) 7 is a complete measure (called the completion of m), with m = m

on M.
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(ii) m is the least complete extension of m; that is, if n: N — E* is
another complete measure, with M C N and n = m on M, then
M C N and n =m on M.

(iii) m = m iff m is complete.
*16. Show that if m: M* — E* is induced by an M*-regular outer measure
u*, then m equals its Lebesgue extension m’ and completion 7 (see

Problem 15).

[Hint: By Definition 3 in §5, m induces an outer measure m*. By Theorem 3 in §5,
m*A=inf{mX |ACX e M*} =p*A
(for p* is M*-regular).
As m* = p*, we get m’ = m. Also, m = m, by Problem 15(iii).]

*17. Prove that if a measure pi: M — E* is o-finite (Definition 4 in §5), with
S € M, then its Lebesgue extension m: M* — E* equals its completion
7 (see Problem 15).
[Outline: Tt suffices to prove M* C M. (Why?)
To start with, let A € M*, mA < oo. By Problem 12 in §5,

(3BeM) ACBand m"A=mA=mB < oo;

S0
m(B — A) =mB—-mA=0.

Also,
(3HeM) B—ACH and uH =m(B — A) =0.

Thus B — A is p-null; so B — A € M. (Why?) Deduce that
A=B—(B—-A) cM.
Thus M contains any A € M* with mA < co. Use the o-finiteness of u to show

Ve M™) (3{An} CM") mA, <ooand X = UA” c M]

87. Topologies. Borel Sets. Borel Measures

I. Our theory of set families leads quite naturally to a generalization of metric
spaces. As we know, in any such space (S, p), there is a family G of open sets,
and a family F of all closed sets. In Chapter 3, §12, we derived the following
two properties.

(i) G is closed under any (even uncountable) unions and under finite inter-
sections (Chapter 3, §12, Theorem 2). Moreover,

fegand Seg.

§7. Topologies. Borel Sets. Borel Measures 161

(ii) F has these properties, with “unions” and “intersections” interchanged
(Chapter 3, §12, Theorem 3). Moreover, by definition,

Ae Fiff —Aeg.

Now, quite often, it is not so important to have distances (i.e., a metric)
defined in S, but rather to single out two set families, G and F, with proper-
ties (i) and (ii), in a suitable manner. For examples, see Problems 1 to 4 below.
Once G and F are given, one does not need a metric to define such notions as
continuity, limits, etc. (See Problems 2 and 3.) This leads us to the following
definition.

Definition 1.
A topology for a set S is any set family G C 25, with properties (i).
The pair (S,G) then is called a topological space. If confusion is un-
likely, we simply write S for (S, G).
G-sets are called open sets; their complements form the family F

(called cotopology) of all closed sets in S; F satisfies (ii) (the proof is
as in Theorem 3 of Chapter 3, §12).

Any metric space may be treated as a topological one (with G defined as in
Chapter 3, §12), but the converse is not true. Thus (S, G) is more general.

Note 1. By Problem 15 in Chapter 4, §2, a map

[:(S,p) = (T,p)

is continuous iff f~1[B] is open in S whenever B is open in T.

We adopt this as a definition, for topological spaces S, T.

Many other notions (neighborhoods, limits, etc.) carry over from metric
spaces by simply treating G, as “an open set containing p.” (See Problem 3.)

Note 2. By (i), G is surely closed under countable unions. Thus by Note 2
in §3,

g = go“
Also, G = G4 and
Fs=F=F,
but not
G=Gsor F=F,
in general.

G and F need not be rings or o-rings (closure fails for differences). But by
Theorem 2 in §3, G and F can be “embedded” in a smallest o-ring. We name
it in the following definition.
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Definition 2.

The o-ring B generated by a topology G in S is called the Borel field in
S. (It is a o-field, as S € G C B.)

Equivalently, B is the least o-ring O F. (Why?)

B-sets are called Borel sets in (S, G).

As B is closed under countable unions and intersections, we have not only
BD2Gand BD F,
but also

B ;) g&a B ;) fo’: B ;) g&a [i~0~7 (g6)a]a B ;) fo’év ete.

Note that
Gss = Gs, Foo = Fo, etc. (Why?)

II. Special notions apply to measures in metric and topological spaces.
Definition 3.
A measure m: M — E* in (S, G) is called topological iff G C M, i.e., all

open sets are measurable; m is a Borel measure iff M = B.

Note 3. If G C M (a o-ring), then also B C M since B is, by definition,
the least o-ring D G.

Thus m is topological iff B C M (hence surely F C M, Gs C M, F, C M,
ete.).

It also follows that any topological measure can be restricted to B to obtain
a Borel measure, called its Borel restriction.

Definition 4.

A measure m: M — E* in (S,G) is called regular iff it is regular with
respect to M N G, the measurable open sets; i.e.,

VAeM) mA=inf{mX|ACX e MnNG}.
If m is topological (G € M), this simplifies to
(1) mA =inf{mX | AC X € G},
i.e., m is G-regular (Definition 5 in §5).

Definition 5.

A measure m is strongly regular iff for any A € M and £ > 0, there is an
open set G € M and a closed set F' € M such that

(2) FCACQG, withm(A—F)<eand m(G—A) <¢;
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thus A can be “approximated” by open supersets and closed subsets, both
measurable. As is easily seen, this implies regularity.
A kind of converse is given by the following theorem.

Theorem 1. If a measure m: M — E* in (S,G) is reqular and o-finite (see
Definition 4 in §5), with S € M, then m is also strongly regular.

Proof. Fix e > 0 and let mA < oo.
By regularity,
mA=inf{mX | ACX e MNG};

so there is a set X € M NG (measurable and open), with
AC X and mX < mA +e¢.
Then
m(X —A) =mX —mA <,

and X is the open set G required in (2).
If, however, mA = oo, use o-finiteness to obtain

e n
k=1

for some sets X € M, mX}, < oo; so

A= JAnXy).
k

Put
Ap=ANX, e M.

(Why?) Then

A=A,
k

and
mAr <mXj < oo.

Now, by what was proved above, for each Aj there is an open measurable
Gy O Ag, with

€
m(Gk — Ak) < Q—k

Set

G= G G
k=1
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Then G € M NG and G O A. Moreover,
G-A=]JG,-JAr S| J(Gk — Ap).
k k k

(Verify!) Thus by o-subadditivity,
=\ €
m(G — A) g;m(Gk—Ak) <I;ﬁ =

as required.
To find also the closed set F', consider

—A=S5S-AeM.
As shown above, there is an open measurable set G’ D —A, with
e>m(G' — (=A4) =m(G'NA) =m(4A - (-G)).

Then
F=-G'CA

is the desired closed set, with m(A — F) <e. O

Theorem 2. If m: M — E* is a strongly reqular measure in (S,G), then for
any A € M, there are measurable sets H € F, and K € G5 such that

(3) HCACK and m(A—H)=0=m(K — A);
hence

mA =mH = mK.

Proof. Let A € M. By strong regularity, given ¢, = 1/n, one finds measur-
able sets
GpoeGand F, e F, n=1,2,...,

such that
F,CACG,
and
1 1
(4) m(A—F,) < —and m(G, —4) < —, n=12,....
n n
Let
H=|JF,and K = ()G
n=1 n=1
Then H, K e M, H € F,, K € G5, and
HCACK.
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Also, F,, CH and G, O K.

Hence
A-HCA-F,and K-ACG, — A4;
so by (4),
m(A—H) < 1%()andm(KfA)< l%O.
n n
Finally,

mA=m(A—H)+mH =mH,
and similarly mA = mK.

Thus all is proved. [

Problems on Topologies, Borel Sets, and Regular Measures

1. Show that G is a topology in S (in (a)—(c), describe B also), given

(a) G =2%

(b) G ={0,5}

(¢) G ={0 and all sets in S, containing a fixed point p}; or
)

(d) S = E*; G consists of all possible unions of sets of the form (a, b),
(a, 0], and [—o0,b), with a,b € E*.

2. (S, p) is called a pseudometric space (and p is a pseudometric) iff the
metric laws (i)—(iii) of Chapter 3, §11 hold, but (i’) is weakened to
plz,z) =0

(so that p(z,y) may be 0 even if z # y).
(a) Define “globes,” “interiors,” and “open sets” (i.e., G) as in Chap-
ter 3, §12; then show that G is a topology for S.
(b) Let S = E? and
p(‘fu g) = |$1 - y1|7
where T = (21, 22) and § = (y1,y2). Show that p is a pseudometric
but not a metric (the Hausdorff properly fails!).

3. Define “neighborhood,” “interior,” “cluster point,” “closure,” and
“function limit” for topological spaces. Specify some notions (e.g., “di-
ameter,” “uniform continuity”) that do not carry over (they involve
distances).

4. In a topological space (5, G), define
G°=¢6, G'=Gs, G°=Gso, ...
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and
FO=F, F' =Fy, F? = Fos. F* = Foso, ctc.

(Give an inductive definition.) Then prove by induction that

(a) G" C B, F* C B;

(b) grtCgn, Pt C Y

(c) VXCS) XeFriff —X e g™

d) VX, YeF") XNY e F*, XUY € F"; same for G";

(&) VXeg") VYeF )X -YeG"andY — X € F™.
[Hint: X —Y = XN -Y]

. For metric and pseudometric spaces (see Problem 2) prove that

F"C gt and g" C FH!

(cf. Problem 4).
[Hint for F C Gs: Let F € F. Set

an=J Gp(%);

PEF

SO

Hence

FC()Gn€Gs.

Also,

(Gn=F=F

n
by Theorem 3 in Chapter 3, §16. Hence deduce that

(VFeF) Fegs,

so F C Gs; hence G C F, by Problem 4(c). Now use induction.]
. If m is as in Definition 5, then prove the following.
(i) m is regular.
(i) VAe M) mA=sup{mX |AD X e MNF}.

(iii) The latter implies strong regularity if m < co and S € M.

. Let u: B — E* be a Borel measure in a metric space (S, p). Set
(VACS) n*fA=inf{uX | AC X €G}.
Prove that
(i) n* is an outer measure in S;

(ii) n* = pon G;
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(iii) the n*-induced measure, n: N* — E*, is topological (so B C N*);
(iv) n > pon B;
(v) VACS) (3H €Gs) AC H and pH =n*A.
[Hints: (iii) Using Problem 15 in §5 and Problem 12 in §6, let
1 1
PXY)>e>0, U= EJX Ga(5e), V= yEJY Gy(5e)-
Verify that U,V € G, UD X, VD Y,UNV = 0.
By the definition of n*,
(3GEG) GDXUY and n*G < n*(XUY) +¢;
also, X CGNU and Y C GNV. Thus by (ii),
n*X <pu(GNU) and n*Y < u(GNV).
Hence
n* X+n"Y < p(GNU)+p(GNV) = p((GNU)U(GNV)) < uG =n*G < n*(XUY)+e.

Let € — 0 to get the CP: n* X +n*Y <n*(XUY).
(iv) We have (VA € B)

nA=n"A=inf{uX | AC X e€G}>inf{uX | AC X e B} =puA.

(Why?)
(v) Use the hint to Problem 11 in §5.]

. From Problem 7 with m = pu, prove that if

ACGeg,

with mG < oo and A € B, then mA = nA.
[Hint: A, G, and (G — A) € B. By Problem 7(iii), B C N* and n is additive on B;
so by Problem 7(ii)(iv),

nA=nG —n(G—A) <mG —m(G - A) =mA < nA.

Thus mA = nA. Explain all!]

. Let m, n, and n* be as in Problems 7 and 8. Suppose

S = GGm

n=1

with G,, € G and mG,, < oo (this is called o°-finiteness).
Prove that

(i) m =n on B, and

(ii) m and n are strongly regular.



168 Chapter 7. Volume and Measure

[Hints: Fix A € B. Show that
A= U An (disjoint)

for some Borel sets A, C Gy, (use Corollary 1 in §1). By Problem 8, mA, = nA,
since

An CGneg

and mG, < co. Now use o-additivity to find mA = nA.
(ii) Use G-regularity, part (i), and Theorem 1.]

10. Continuing Problems 8 and 9, show that n is the Lebesgue extension of
m (see Theorem 2 in §6 and Note 3 in §6).
Thus every o°-finite Borel measure m in (S, p) and its Lebesgue ex-
tension are strongly regular.

[Hint: m induces an outer measure m*, with m* = m on B. It suffices to show that
m* =n* on 25. (Why?)
Solet A C S. By Problem 7(v),

(FHeB) ACHand n*A=mH =m*H.

Also,
(3K e€B) AC K and m*A =mK

(Problem 12 in §5). Deduce that
n*fA<nHNK)=m(HNK)<mH=n"A

and
n*A=m(HNK)=m"A]

§8. Lebesgue Measure

We shall now consider the most important example of a measure in £”, due to
Lebesgue. This measure generalizes the notion of volume and assigns “volumes”
to a large set family, the “Lebesgue measurable” sets, so that “volume” becomes
a complete topological measure. For “bodies” in E3, this measure agrees with
our intuitive idea of “volume.”

We start with the volume function v: C — E' (“Lebesgue premeasure”)
on the semiring C of all intervals in E™ (§1). As we saw in §§5 and 6, this
premeasure induces an outer measure m* on all subsets of E™; and m*, in
turn, induces a measure m on the o-field M* of m*-measurable sets. These
sets are, by definition, the Lebesgue-measurable (briefly L-measurable) sets; m*
and m so defined are the (n-dimensional) Lebesgue outer measure and Lebesgue
measure.
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Theorem 1. Lebesgue premeasure v is o-additive on C, the intervals in E™.
Hence the latter are Lebesgue measurable (C C M*), and the volume of each
interval equals its Lebesgue measure:

v=m*=m onC.

This follows by Corollary 1 in §2 and Theorem 2 of §6.

Note 1. As M* is a o-field (§6), it is closed under countable unions, count-
able intersections, and differences. Thus

C C M* implies C, € M*;
i.e., any countable union of intervals is L-measurable. Also, E™ € M*.
Corollary 1. Any countable set A C E™ is L-measurable, with mA = 0.
The proof is as in Corollary 6 of §2.
Corollary 2. The Lebesgue measure of E™ is co.
Prove as in Corollary 5 of §2.

Examples.
(a) Let
R = {rationals in E'}.

Then R is countable (Corollary 3 of Chapter 1, §9); so mR = 0 by Corol-
lary 1. Similarly for R" (rational points in E™).

(b) The measure of an interval with endpoints a,b in E* is its length, b — a.
Let
R, = {all rationals in [a, b]};

so mR, = 0. As [a,b] and R, are in M* (a o-field), so is
0.8~ Ry,
the irrationals in [a,b]. By Lemma 1 in §4, if b > a, then
m([a,b] — Ro) = m([a,b]) — mR, = m([a,b]) =b—a > 0=mR,.

This shows again that the irrationals form a “larger” set than the rationals
(cf. Theorem 3 of Chapter 1, §9).

(¢) There are uncountable sets of measure zero (see Problems 8 and 10 below).

Theorem 2. Lebesgue measure in E™ is complete, topological, and totally o-
finite. That is,

(i) all null sets (subsets of sets of measure zero) are L-measurable;

(ii) so are all open sets (M* D G), hence all Borel sets (M* D B); in partic-
ular, M* 2 F, M* 2 Gs, M* 2D Foy, M* 2 Fus, etc,;
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(iii) each A € M* is a countable union of disjoint sets of finite measure.

Proof. (i) This follows by Theorem 1 in §6.

(i1) By Lemma 2 in §2, each open set is in C,, hence in M* (Note 1). Thus
M* D G. But by definition, the Borel field B is the least o-ring O G. Hence
M* D B*.

(iii) As E™ is open, it is a countable union of disjoint half-open intervals,

E" = U Ay, (disjoint),
k=1
with mAj < oo (Lemma 2 in §2). Hence
(VACE") Ac|JAk

SO
A= J(AN A (disjoint).
k

If, further, A € M*, then AN A, € M*, and
m(ANA;) <mA, <oco. (Why?) O

Note 2. More generally, a o-finite set A € M in a measure space (S, M, 1)
is a countable union of disjoint sets of finite measure (Corollary 1 of §1).

Note 3. Not all L-measurable sets are Borel sets. On the other hand, not
all sets in E™ are L-measurable (see Problems 6 and 9 below.)

Theorem 3.
(a) Lebesgue outer measure m* in E™ is G-reqular; that is,
(1) VACE") m"A=if{mX|AC X eG}
(G = open sets in E™).
(b) Lebesgue measure m is strongly regular (Definition 5 and Theorems 1

and 2, all in §7).

Proof. By definition, m*A is the glb of all basic covering values of A. Thus
given ¢ > 0, there is a basic covering { By} C C of nonempty sets By, such that

L1
(2) AQUBk and m A+§EZ§’UB)¢.

(Why? What if m*A = oo?)
Now, by Lemma 1 in §2, fix for each By, an open interval Cj, O By, such that

vCf — < vBy.

3
9k+1
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Then (2) yields
4 1 N € _ 1
m +§€7Z(’UC]€*W)—Z’UO]€*§€,
k k

so by o-subadditivity,
(3) mUCk§Zka:Zka§m*A+E.
k k k

Let
x=Jc.
k

Then X is open (as the Cy are). Also, A C X, and by (3),
mX <m*A+e.

Thus, indeed, m* A is the glb of all mX, A C X € G, proving (a).

In particular, if A € M*, (1) shows that m is regular (for m*A = mA).
Also, by Theorem 2, m is o-finite, and E™ € M*; so (b) follows by Theorem 1
in §7. O
Definition.

Given AC E" and p € E™, let p+ A or A+ p denote the set of all points
of the form

T+p, T€A.
We call A + p the translate of A by p.

Theorem 4. Lebesque outer measure m* and Lebesque measure m in E™ are
translation invariant. That is,

(i) VACE") (Vpe E") m*A=m*(A+p);
(ii) if A is L-measurable, so is A+ P, and mA = m(A + p).

See also Problem 7 in §10.
Proof. (i) If A is an interval with endpoints @ and b, then A+ p is the interval
with endpoints @ + p and b+ p. (Verify!)

Hence the edge lengths of A and A + p are the same,

Uy =by —ar = (b +pr) — (ar +pr), k=1,2,... ,n
Thus
mA =vA = Hék =m(A+p);
k=1

so the theorem holds for intervals.
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In the general case, m*A is the glb of all basic covering values of A. But a
basic covering consists of intervals that, when translated by p, cover A+ p and
retain the same volumes, as was shown above.

Hence any covering value for A is also one for A + p, and conversely (since
A, in turn, is a translate of A+ p by —p).

Thus the basic covering values of A and of A+ p are the same, with one and
the same glb. Hence

m*A=m"(A+p),

as claimed.
(if) Now let A € M*. We must show that
A+pe M,
i.e., that

(VXCA+p) (VY C—(A+p) m'X+m'Y =m"(XUY).

Thus fix X CA+pand Y C —(A+p).
As is easily seen, X —p C A and Y — p C —A (translate all by —p). Since
A e M*, we get

m*(X —p) +m*(Y —p) =m* (X UY) - p).
(Why?) But by (i), m*X = m*(X —p), m*'Y = m*(Y — p), and
m (X UY)=m"(XUY)—p).

Hence
m*X +m'Y =m* (X UY),

and so A+ p € M*.
Now, as m* = m on M*, (i) yields mA = m(A + p), proving (ii) also. O

Problems on Lebesgue Measure
1. Fill in all details in the proof of Theorems 3 and 4.
1’. Prove Note 2.
2. From Theorem 3 deduce that
(VACE"™) (3Be€Gs) ACBand m"A=mB.
[Hint: See the hint to Problem 7 in §5.]
3. Review Problem 3 in §5.

4. Consider all translates
R+p (peEY
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of
R = {rationals in E'}.

Prove the following.
(i) Any two such translates are either disjoint or identical.
(ii) Each R + p contains at least one element of [0, 1].

[Hint for (ii): Fix a rational y € (—p,1 —p),s00<y+p<1l. Theny+p€ R+ p,
and y +p € [0,1]]
5. Continuing Problem 4, choose one element ¢ € [0,1] from each R + p.
Let @ be the set of all ¢ so chosen.
Call a translate of @, @ +r, “good” iff » € R and |r| < 1. Let U be
the union of all “good” translates of Q.
Prove the following.
(
(b) All of them lie in [—1,2].
(¢) Any two of them are either disjoint or identical.

(d) [0,1] CU C [-1,2]; hence 1 <m*U < 3.

a) There are only countably many “good” Q + 7.
c

[Hint for (c): Suppose
ye@+nn@+r).

Then
y=q+r=q¢+r (3,4 €Q, rr' €R);

soqg=q + (r' —r), with (' —r) € R.
Thus g € R+ ¢’ and ¢ =0+ ¢ € R+ ¢q'. Deduce that ¢ = ¢’ and r = r’; hence
Qtr=Q+r]

6. Show that @ in Problem 5 is not L-measurable.
[Hint: Otherwise, by Theorem 4, each @Q + r is L-measurable, with m(Q +r) = mQ.
By 5(a)(c), U is a countable disjoint union of “good” translates.
Deduce that mU = 0 if mQ = 0, or mU = oo, contrary to 5(d).]

7. Show that if f: S — T is continuous, then f~1[X] is a Borel set in S
whenever X € Bin T'.
[Hint: Using Note 1 in §7, show that

R={XCT|f'X]€BinS}
is a o-ring in T'. As B is the least o-ring O G, R O B (the Borel field in T'.]

8. Prove that every degenerate interval in E™ has Lebesgue measure 0,
even if it is uncountable. Give an example in £2. Prove uncountability.
[Hint: Take @ = (0,0), b= (0,1). Define f: E* — E? by f(z) = (0,z). Show that f
is one-to-one and that [a, b] is the f-image of [0, 1]. Use Problem 2 of Chapter 1, §9.]
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9.

10.

11.

12.

*13.

14.

15.
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Show that not all L-measurable sets are Borel sets in E™.

[Hint for E2: With [a,b] and f as in Problem 8, show that f is continuous (use the
sequential criterion). As m[a,b] = 0, all subsets of [a,b] are in M* (Theorem 2(i)),
hence in B if we assume M* = B. But then by Problem 7, the same would apply to
subsets of [0, 1], contrary to Problem 6.

Give a similar proof for E™ (n > 1).
Note: In E!, too, B # M*, but a different proof is necessary. We omit it.]

Show that Cantor’s set P (Problem 17 in Chapter 3, §14) has Lebesgue
measure zero, even though it is uncountable.
[Outline: Let

U=][0,1] — P;

so U is the union of open intervals removed from [0, 1]. Show that
1o~ /2\n
mU = - (7> =1
225
n=1

and use Lemma 1 in §4.]

Let p: B — E* be the Borel restriction of Lebesgue measure m in E™
(§7). Prove that

(i) p in incomplete;

(ii) m is the Lebesgue extension (*and completion, as in Problem 15
of §6) of .

[Hints: (i) By Problem 9, some p-null sets are not in B. (ii) See the proof (end) of
Theorem 2 in §9 (the next section).]

Prove the following.
(i) All intervals in E™ are Borel sets.

(ii) The o-ring generated by any one of the families C or C’ in
Problem 3 of §5 coincides with the Borel field in E™.

[Hints: (i) Any interval arises from a closed one by dropping some “faces” (degenerate
closed intervals). (ii) Use Lemma 2 from §2 and Problem 7 of §3.]

Show that if a measure m’: M’ — E* in E™ agrees on intervals with
Lebesgue measure m: M* — E*, then the following are true.

(i) m' =m on B, the Borel field in E".
(i) If m’ is also complete, then m’ =m on M*.
[Hint: (i) Use Problem 13 of §5 and Problem 12 above.]

Show that globes of equal radius have the same Lebesgue measure.
[Hint: Use Theorem 4.]

Let f: E™ — E™, with
(@) = ca

(0 < ¢ < o0).
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16.

17.

18.

*19.

Prove the following.
(i) (VA C E™ m*f[A] = "m*A (m* = Lebesgue outer measure).
(i) A e M*iff f[A] € M*.

[Hint: If, say, A = (a@,b], then f[A] = (ca,cb]. (Why?) Proceed as in Theorem 4,
using f~! also.]

From Problems 14 and 15 show that
(i) mGyler) = ¢ - mGy(r);
(ii) mGp(r) = m@ﬁ(r);

(iil) mGp(r) = a - mlI, where I is the cube inscribed in Gp(r) and
1 n
a= (5\/77) -mGg(1).

[Hints: (i) f[Gg(r)] = Gg(er). (ii) Prove that
mGp < mGp < c"mGp
if¢>1. Let ¢ — 1]

Given a < bin E1, let {r,} be the sequence of all rationals in A = [a, b].
Set (Vn)

b—a
(571 = W
and 1 1
G = (an,bp) = (a,b) N (rn — 500, Tn+ 55”)'
Let -
P=A-JGn
n=1

Prove the following.
() S5y 60 = bb—a) = ma.
(ii) P is closed; P° =0, yet mP > 0.
(iii) The Gy, can be made disjoint (see Problem 3 in §2), with mP still

> 0.
(iv) Conmstruct such a P C A (P = P, P° = (}) of prescribed measure
mP =¢>0.

Find an open set G C E', with mG < mG < oo.
[Hint: G = ;2 Gn with G, as in Problem 17.]

If A C E™ is open and convez, then mA = mA.
[Hint: Let first 0 € A. Argue as in Problem 16.]
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89. Lebesgue—Stieltjes Measures

Let
a: E' = E!

be a nondecreasing function (at). Consider the Lebesgue—Stieltjes set function
Sq (Example (d) in §4).
As we noted in Problem 7 of §4, s, > 0 when «o; for then

sala,b) = a(b—) — ala+) > 0.

Similarly for other intervals. Also, ) € C and s,0 = 0 by definition.

Thus s, is a premeasure on C (finite intervals in E'), called the a-induced
Lebesgue-Stieltjes (LS) premeasure in E*.

The outer measure m? induced by s, (§5) is called the a-induced LS outer
measure; its restriction to the family M? of m}-measurable (or LS-measurable)
sets is the a-induced LS measure on E', denoted my,.

Recall that, by our definitions, premeasures, outer measures, and measures
are all nonnegative.

Note 1. No generality is lost by assuming that « is right continuous (if not,
replace it by the right-continuous function 1, with 8(z) = a(z+)). Similarly,
one achieves left continuity by setting 5(z) = a(z—).

Note 2. If « is right continuous, one often restricts s, to the family C* of
all half-open intervals (for motivation, see Problem 7(iv) in §4). This does not
affect m}, or m, (Problem 3’ in §5), and simplifies the proof of additivity

Sa(a,b] 4+ sq(b, ] = a(b) — ala) + alc) — ab) = alc) — ala) = sq(a, .

Recall that both C and C* are semirings (Note 1 in §1).

Theorem 1. The LS premeasure s, is o-additive on the semiring C of all
finite intervals in E'.

Hence (by Theorem 2 in §6) all such intervals are LS-measurable (C C M),
and

MaA = 5, A

for any such interval A.

Proof. As is easily seen, s, is additive (Problem 7 of §4).
It also satisfies Lemma 1 of §1 and Lemma 1 in §2 (Problem 7(v) in §4).
The proof of o-additivity is then quite analogous to that of Theorem 1 of §2;
we omit its repetition.
The rest is immediate by Theorem 2 of §6. O
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Similarly, the proofs of Theorems 2 and 3 (but not 4) of §8 carry over to
LS measures. Thus LS measures are complete, topological, totally o-finite and
strongly reqular.

As in §8, it follows that singletons and countable sets are measurable, but
their LS measure need not be 0 (Problem 8(iii) in §4).

Also, E' € M, but m,E* may be finite (Problem 8(ii)(ii’) in §4).

Since the proofs are the same as in §8, we omit them.

Note, however, the following facts.

(i) For singletons, my{p} = 0 iff a is continuous at p (Problem 7(ii) in §4).

(ii) Hence
meala, bl = mq(a,b] = myla,b) = ma(a,b) = a(b) — a(a)
iff « is continuous at a and b (Problem 7(iv) in §4).
(iii) LS measures need not be translation invariant (Problem 8(i) of §4).
(iv) If a(x) = 2 on E', then m} = m* (= Lebesgue outer measure in E!).
Thus Lebesgue measure is a special case of LS measure.

The latter is a kind of “weighted length.” Imagine that mass is distributed

along the line, with a(z) equal to the mass of
(7003 l’] .

For simplicity, assume that « is right-continuous (cf. Notes 1 and 2). Then the
mass of (a,b] is
O((b) - OK(CL)7

and p is a “point mass” iff

ma{p} > 0.

Our next theorem shows that LS measures practically exhaust all topological
measures in B! of any importance. We shall use Notes 1 and 2 above.

*Theorem 2. Let m: M — E* be a topological measure in E*, finite on C*
(half-open intervals). Then there is an LS measure mg such that

Mo =M
on the Borel field B in E*.
If m is also complete, then mqo = m on all of M.
Proof. Define « as follows:
{ m(0,z] if z >0,
a(r) = .
—m(z,0] ifz <O0.

Clearly, o on E'. Also, the right continuity of m (Theorem 2 of §4) implies
that of . (Verify!)
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Thus « induces an LS measure m,,, with
me(a,b] = sa(a,b] = a(b) — a(a)

(Problem 7(iv) in §4). We claim that m, =m on B.

First, consider any (a,b] € C*. If 0 < a < b, then

m(a,b] = m(0,b] — m(0,a] = a(b) — a(a) = mq(a,b].
Similarly in the cases a < 0 < b and a < b < 0. Thus
me = m (finite) on C*.
By Problem 13 in §5,
me =m on B,

the o-ring generated by C* (Problem 12 of §8). Thus m and m,, have the same
restriction to B (call it u).

Now, by Note 3 in §6, i induces an outer measure p*.

As B D C, both p* and m}, are B-regular, by Theorem 3 in §5. Thus

(VACEY) mi(A)=inf{uX | AC X € B} = " A,

(o3

ie., m} = p*, and so m, is the restriction of both m} and p* to measurable
sets. Hence m,, is the Lebesgue extension of p, by definition.

By Problem 17 in §6, m, = [ is the “least” complete extension of x. Thus
if m is complete, it is an eztension of mq; so m = mg, on M}, as claimed. O

Problems on Lebesgue—Stieltjes Measures
1. Do Problems 7 and 8 in §4 and Problem 3’ in §5, if not done before.

2. Prove in detail Theorems 1 to 3 in §8 for LS measures and outer mea-
sures.

3. Do Problem 2 in §8 for LS-outer measures in E*.

4. Prove that f: E* — (S, p) is right (left) continuous at p iff
lim f(x,) = f(p) as zp, \(p (zn D).
n—oo
[Hint: Modify the proof of Theorem 1 in Chapter 4, §2.]

5. Fill in all proof details in Theorem 2.
[Hint: Use Problem 4.]

6. In Problem 8(iv) of §4, describe m}, and M}.
7. Show that if & = ¢ (constant) on an open interval I C E' then

(YVACT) mi(A)=0.

[e3

Disprove it for nonopen intervals I (give a counterexample).

8.

*9.
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Let m’: M — E* be a topological, translation-invariant measure in E?!,
with m/(0,1] = ¢ < co. Prove the following.

(i) m’ = cm on the Borel field B. (Here m: M* — E* is Lebesgue
measure in E'.)

*(ii) If m’ is also complete, then m’ = ¢m on M*.

(iii) If 0 < ¢ < oo, some set @ C [0,1] is not m/-measurable.

*(iv) If M’ = B, then c¢m is the completion of m’ (Problem 15 in §6).

[Outline: (i) By additivity and translation invariance,
m’(0,7] = ecm(0, 7]
for rational

n
r=—, nkeN
k

(first take r = n, then r = %, then r = 7).

By right continuity (Theorem 2 in §4), prove it for real r > 0 (take rationals
i N\ T).

By translation, m’ = e¢m on half-open intervals. Proceed as in Problem 13 of §8.

(iii) See Problems 4 to 6 in §8. Note that, by Theorem 2, one may assume
m’ = mq (a translation-invariant LS measure). As mq = ¢m on half-open intervals,
Lemma 2 in §2 yields mq = ¢cm on G (open sets). Use G-regularity to prove m}, =

em* and M2 = M* ]
(LS measures in E™.) Let

C* = {half-open intervals in E"}.
For any map G: E™ — E' and any (a,b] € C*, set

ArG(a,b] = G(zy, . ..
- G(Il, ‘e

s The1s Dky Tt 1y o+ o, T)
S Th—1, Qs Tt 1y -+ - s Tn)y 1<k <m.
Given a: E™ — E*, set
$a(8,b] = A1 (Ag(- -+ (Ana(a,b]) -+ -)).
For example, in E2,
sa(a,b] = a(by, b2) — a(bi, az) — [a(ar, b2) — a(ai, a2)].

Show that s, is additive on C*. Check that the order in which the Ay
are applied is immaterial. Set up a formula for s, in E3.

[Hint: First take two disjoint intervals
(@,q U (p,0] = (a,b],

as in Figure 2 in Chapter 3, §7. Then use induction, as in Problem 9 of Chapter 3, §7.]
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*10. If s, in Problem 9 is nonnegative, and « is right continuous in each
variable xy separately, we call a a distribution function, and s, is called
the a-induced LS premeasure in E™; the LS outer measure m}, and
measure

Mo : My, — E*
in E™ (obtained from s, as shown in §§5 and 6) are said to be induced
by a.
For so, m?%, and m, so defined, redo Problems 1-3 above.

*§10. Vitali Coverings

Lebesgue measure m leads to an interesting analogue of the Heine—Borel the-
orem. Below, m* is Lebesgue outer measure in E™. We start with some
definitions.

Definition 1.

A sequence {I;} of sets in a metric space (S, p) converges to a point p

([k %p) iff
JIS ﬂ I,
k=1

and
lim dI; =0,
k—o00

where dI;, = diameter of Ij.

Definition 2.
A family K of nonempty sets in (S, p) is a Vitali covering (V -covering)
of a set A C (S, p) iff for each p € A there is a sequence {I} C K, with
Ik — P.
We then also say that K covers A in the Vitali sense (V-sense).

Theorem 1 (Vitali). If a set K of nondegenerate cubes (or globes) in E™
covers A in the V-sense, then

m* (A — UIk) =0
k

for some disjoint sequence {I;;} C K.

Proof. We give the proof for cubes (it is similar for globes).

First, suppose A C I° for some open cube I°. Then A is also covered in the
V-sense by the subfamily K° C K of those cubes that lie in I°. (Why?) We also
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assume that A ¢ |JI; for any disjoint finite sequence {I;} C K (otherwise, all
is trivial). Finally , we assume that all cubes in K are closed; for other kinds
of cubes, the theorem then easily follows (see Problem 3 below).

We claim that

h
(1) (V disjoint cubes I, ..., I € K°) (3T € K?) IN U I =0.
j=1

Indeed, as
h
A¢ U,
j=1
there is some
h
peA-JI,.
j=1
By assumption, all I; are closed; so
h
_ U I
j=1

is open. Hence there is a globe
h
G c-Yun
j=1

As K° is a V-covering, it contains a sequence I; — p, dI; — 0; so there is
I =1; € K° with p € I and dI < . Therefore,

h
1<Gy6) - I
j=1
SO

h
IﬂUIj:V),
=1

as claimed.
Now, using induction, suppose we have already fixed k disjoint cubes I; in
KC°. By (1), there are cubes I € K° with

k
myrn=o.
j=1
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Let dx be the lub of their diameters. As all I € K° lie in I°,

k
6k:sup{dI‘IEIC°, IngIj}ng°<oo.

=1

Hence by properties of the lub, we find a cube I; € K° such that

k
Lc—-JI
and dlj1 > 15 =

In this way, taking £k = 1,2,..., we select a disjoint sequence {I;} C K°
with dlg4+1 > %51% for all k. We shall show that

m* <A -U Ik) =0
k=1
in four steps.

(I) Let ¢4 be the edge length of Ij; so dIy, = €i\/n. (Why?)
Enclose each I in a cube J;, with the

same center and with edge length Tk
(4n + 1) L.
Then L,
_ _ <>
(Vzely) (Vy & Jk) I | STy
(2) p(i’,g) > 2n by > 261@\/5
=2dI; > 6k_1.

(See Figure 32, where n = 2.) Also,

9¢;,

md, = (4n + 1) mliy.

(IT) As the Iy, lie in I°, the o-additivity of m yieldsF!GURE 32

oo oo
Zka =(4n+1)" Z’fﬂ[k
k=1 k=1

o0
={n+1)"m U Iy,
k=1
< (An+1)"ml° < oc.

Thus the series > mJy, converges; so its “remainder” tends to 0:

o0
lim E mdJr = 0.
T—00

k=r

*§10. Vitali Coverings

Also, mJ; — 0. But by definition,

O < 2dI11 < 2dJpy1 = 2v/m (mJpyr)Y™

Hence lim 0 = 0, too.
k—o0

(III) Now, seeking a contradiction, suppose

k=1
Then as
oo
lim > " m.Jy =0,
™00
k=r

there is r such that

(n fixed).

k=r k=r k=1

Hence
oo

A-UJng
k=1 k

=r

(Why?) Thus there is

pe A— U I
k=1
not in
U Jlm
k=r
so that
(3) (Vk>r) p#Ji, pEA andpe — | J I €~ | Ir.
k=1 k=r
As
- U Ik S g7
k=1
we find (as before) a cube K € K° such that p € K and
KnlJn.=0
k=1

183
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Also, as 0 — 0, we have §; < dK for large k. But by our choice of the ¢, this
implies

k
Kn U 1; 750)
j=1
for large k (why?), whereas
Kn U I, =0,
j=1

as shown above.
Thus there is a least k > r, call it g, such that

KNI, #0,

and 6, < dK < 5, 1.

By (3), 0 & Jg. As
KNI, #0,

let z € KNI, Since z,p € K,
p(Z,P) < dK < dg—1.
But as 2 € I; and p & Ji, we have
p(Z,p) > 641

by (2).

This contradiction proves the theorem for bounded sets A.

(IV) If A is not bounded, use Lemma 2 in §2 to find a sequence {K;} of
disjoint half-open intervals with

Um:Eﬁym

Let
A =ANKY,
where KY is the open interval with the same endpoints; so mK; = mK? and
m(K; — K?)=0
Set

somZ =0 and
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(Why?) As A; = AN K?, we have
(4) UAai=AnJK=An(E"-2)=A-Z.
i=1 i=1

Clearly, each A; is covered in the V-sense by those K-cubes that lie in K.
Thus as shown above,

(Vi) m(A—ULQ:O

for disjoint cubes I;; C K7. That is,

i) JLuzi2 A4,
J

where
Zi= A - I

J

and mZ; = 0. Hence by (4),

o0

UU%UU@QU&:AfZ

i=1 j i

m* <A - UL]) =0.
]

Rearranging the I;; in a single sequence {Ij }, we complete the proof. O

so that

Theorem 2. Ifm*A < oo in Theorem 1, then for every e > 0 there is a finite
disjoint sequence {I;} C K such that

m* (A — Ufk) <e.
k
Proof. Fix ¢ > 0. As m*A < oo, the G-regularity of m* (Theorem 3 of §8)
yields an open G O A such that

mG <m*A+e.

Clearly, A is covered in the V-sense by the subfamily K¢ of those K-sets that
lie in G. Thus by Theorem 1,

m%A—U@):o
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for a disjoint sequence {I;} C K°. Also,

U ca,

and so
Zm[k :mUIk <mG < .

Thus Y mly, converges; so

Zm[k <e
k=r
for large 7.
On the other hand,
A*UI}CQ <A7UI’€>UUL€
k=1 k=1 k=r
Hence
m*(Af U Ik) gm*(A— U zk) ot <0+ ml <,
k=1 k=1 k=r k=r

as required. O

As an application, we obtain the following important theorem.

Theorem 3 (Lebesgue). If f: E' — E' is monotone, it is differentiable al-
most everywhere (“a.e.”), i.e., on E' — Z for some Z of Lebesque measure
zero.

We sketch the proof in a few steps (lemmas). These lemmas anticipate a
more general approach to be taken in §12, with the notation in the following
definition.

Definition 3.
Let m = Lebesgue measure and
K = {all cubes I C E™ with mI > 0}.
Let
s: M = [0,00], M DK,

be another measure in E”, finite on K.
For any natural » > 0, and p € E", we set

I _ 1
9(p) :mf{s— ’pe Iek, dI < —}
ml r
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and
1 — 1
h.(p) = sup{s— ‘pe Iek, dI < —};
ml r
furthermore, we denote

Ds(p) = sup g,(p) and Ds(p) = inf h,.(p).

Cleanly, {g,}1, {h, }4, and
0 < Ds= lim g- < lim hT:ﬁs
r—00 T™—00
at each p € E™. (Why?)
We also write J(Ds > ) for
{z € J | Ds(z) > i},

J(Ds = a) for
{z € J| Ds(z) = a},

etc.

Lemma 1. With the above notation, 0 < Ds < Ds < oo a.e. on E™.

Proof Outline. Fix any open set J C E", withmJ < coand sJ < o0 (e.g., an
open cube in K).

Fori=1,2,... set
and

ICi:{IeK'IgL 5—[>i}.
ml

Verify that C; is a V-covering of A;; so there is a disjoint sequence {I;} C K;,

with
m*(Ai —Ulk) -0

U@gl

and

Hence (cf. Problem 3 below)

m*AigmUIk:ZmIkg %Zslk:%sUIkg %, i=1,2,....

It follows that
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(Why?) But

(Why?) This implies that
m*J(Ds = 00) = 0,

and so Ds < co on J, except for a null set.

But by Lemma 2 in §2, all of E™ is a countable union of such sets J (open
cubes). Thus Ds < oo on E™ — Z, where Z is a countable union of null sets:

mZ = 0.
As 0 < Ds < Ds on all of E™, we have

0<Ds<Ds<oo ae. onE",
as claimed. O

Lemma 2. With the same notation, Ds = Ds a.e. on E™.

Proof Outline. With J as in the previous proof, let
H = J(Ds > Ds).
Then H is a countable union of sets
Hyy = J(Ds > v >u> Ds)

over rational u,v. Thus it suffices to show that all such H,, are m-null.
Let @ be one of them; so @ C J and

m*'Q <mJ < oco.

Hence given € > 0, there is an open set G C J with G O @ and
mG <m*Q +e.

(Why?) We fix this G and set

K:{IeK’IgG, £<u}.
ml

By the definition of Ds, K is a V-covering of @ (verify!); so by Problem 3,

m* <Q N UI,‘;) =m*Q
for a disjoint sequence

ek, Jnca
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Let -
=
k=1
(an open set), and Q, = Q N G’; so
m'Q =m*Q, <mG* <mG <m*Q +e¢.
(Explain!)

Next, let

K’:{IGK‘IQG’, £>v}
ml

It is a V-covering of Q, (why?); so
m*(Qo —UI,;) =0
for a disjoint sequence {I;} C K'. Verify that
u-(m*Q +e¢) >u~mG':u-ZmIg

> Z sIp = sG'
> z:sI,'c
Zv-ZmI,’C:v-mLJI;€
zv~m*(QoﬂUI}€) =v-m'Q,=v-m"Q.

Thus
Ve>0) u-(m"Q+e)>v-m*Q.

Making ¢ — 0, we get
uw-m*Q >v-m*Q.

As u < v, m*A must be 0. This is the desired result. O

Proof of Theorem 3. To fix ideas, let f7.
Let s = my be the f-induced LS measure in E' (§9) so that

slp, 2] = f(z+) = f(p—)-

189

By Lemmas 1 and 2, it suffices to show that f is differentiable at every p € E*,

with
Ds(p) = Ds(p) # oc.

Fix any such p and set
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Then f is continuous at p; for otherwise,

flp+) — f(p—) >0,

whence
Ds(p) = co.

(Why?) Also, by Definition 3, given € > 0, there is a natural r such that

q—¢e<g-(p) <he(p) <q+e.

T € Gﬂp(%).

Let

If x > p, then
Aw:x*p:m[]%x]a

and by continuity,
Af = f(x) = f(p) < f(z+) = f(p)
= f(z+) = f(p—) = slp, ]
< Az -h(p) < Az(q+e).
Also, if > y > p, then

Af = fly+) = f(p=) = slp,y] = Ay - g.(p) > Ay(q —2),
where
Ay =y —p=mlp,y].
Making y 7 x, with z fixed, we get
(¢ —e)Az < Af < (q¢+¢)Ax.
Similarly in the case = < p.
Thus with € — 0, we obtain
A

Fio)=tim 2L =gt o0 D

Problems on Vitali Coverings

1. Prove Theorem 1 for globes, filling in all details.
[Hint: Use Problem 16 in §8.]

=-2. Show that any (even uncountable) union of globes or nondegenerate
cubes J; C E" is L-measurable.
[Hint: Include in K each globe (cube) that lies in some J;. Then Theorem 1 represents
U Ji as a countable union plus a null set.]
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3. Supplement Theorem 1 by proving that

m*(a-J1e) =0

m*A =m* (Am UI;;);
here I° = interior of I.

4. Fill in all proof details in Lemmas 1 and 2. Do it also for K = {globes}.

and

5. Given mZ = 0 and ¢ > 0, prove that there are open globes

G € E",
with -
zc |G
k=1
and

fo
Z mGy, < e.
k=1

[Hint: Use Problem 3(f) in §5 and Problem 16(iii) from §8.]
6. Do Problem 3 in §5 for
(i) C" = {open globes}, and
(ii) C" = {all globes in E"}.

[Hints for (i): Let m’ = outer measure induced by v': C’ — E'. From Problem 3(e)
in §5, show that
(VACE"™) m'A>m*A.

To prove m’A < m* A also, fix ¢ > 0 and an open set G O A with
m*A +¢e > mG (Theorem 3 of §8).
Globes inside G cover A in the V-sense (why?); so
AC zU| Gy (disjoint)
for some globes G}, and null set Z. With G, as in Problem 5,

m'A < Z(MGk +mGL) <mG+e <m*A+ 2]

o ont . . . .
7. Suppose f: E™ &3 E™ is an isometry, i.e., satisfies

|f(z) = f(@)| = [z —g| forz,yeE"
Prove that
(i) (VACE") m*A=m*f[A], and



192 Chapter 7. Volume and Measure

(i) A e M iff f[A] € M*.

[Hints: If A is a globe of radius r, so is f[A] (verify!); thus Problems 14 and 16 in §8
apply. In the general case, argue as in Theorem 4 of §8, replacing intervals by globes
(see Problem 6). Note that f~! is an isometry, too.]

7’. From Problem 7 infer that Lebesgue measure in E™ is rotation invariant.
(A rotation about p is an isometry f such that f(p) = p.)

8. A V-covering K of A C E™ is called normal iff
(i) (VIe K)0<mlI=mI° and
(ii) for every p € A, there is some ¢ € (0, 00) and a sequence
Ik =p ({1} €K)
such that
(Vk) (3ecube Ji D Ix) c-m* Iy > mJy.
(We then say that p and {I} are normal; specifically, c-normal.)

Prove Theorems 1 and 2 for any normal K.
[Hints: By Problem 21 of Chapter 3, §16, dI = dI.
First, suppose K is uniformly normal, i.e., all p € A are c-normal for the same c.

In the general case, let
A; ={z € A|zisinormal}, i=1,2,...;

so K is uniform for A;. Verify that A; & A.
Then select, step by step, as in Theorem 1, a disjoint sequence {I;} C K and
naturals n; < ng < --- <n; < --- such that

(Vi) m* (Ai — Ik> < 1
7
k=1

Let
oo
U= L.
k=1
Then L
(Vi) m*(A; —U) < =
(2
and

A, —-U A-U.
(Why?) Thus by Problems 7 and 8 in §6,

m*(A—U) < lim + =0]

i—00

9. A V-covering K" of E™ is called universal iff
(i) (VI€K")0<ml=mI°< oo, and
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(ii) whenever a subfamily KC C K" covers a set A C E™ in the V-sense,
we have
m*(4-J1) =0
for a disjoint sequence
{I} CK.
Show the following.
(a) K° C M*.
(b) Lemmas 1 and 2 are true with K replaced by any universal K . (In
this case, write D*s and D" s for the analogues of Ds and Ds.)
(¢) Ds=D*s=D"s = Ds a.e.

[Hints: (a) By (i), I = I minus a null set Z C T — I°.
(c) Argue as in Lemma 2, but set

Q=J(D*s >u>v> Ds)

K’:{IEE*‘IgG’, £>v}
ml

to prove a.e. that D*s < Ds; similarly for Ds < D*s.
Throughout assume that s: M’ — E* (M’ D KUK") is a measure in E™, finite
on CUK"]
10. Continuing Problems 8 and 9, verify that

(a) K = {nondegenerate cubes} is a normal and universal V-covering
of E™;

(b) so also is K~ = {all globes in E"};
(c) C = {nondegenerate intervals} is normal.
Note that C is not universal.’

11. Continuing Definition 3, we call ¢ a derivate of s, and write ¢ ~ Ds(p), iff

for some sequence I, — p, with I, € K.
Set
Dp={q€ E" | ¢~ Ds(p)}

and prove that
Ds(p) = min Dy and Ds(p) = max Dj.

L See M. E. Munroe, Measure and Integration, Addison-Wesley (1971), pp. 173-175.
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12. Let K* be a normal V-covering of E™ (see Problem 8). Given a measure
s in E™, finite on K* U IC, write

q~ D*s(p)
iff

for some normal sequence I, — P, with I € K*.

Set
Di={qe E" [¢~D"s(p)},
and then
D*s(p) = inf Dy and D" s(p) = sup D;.
Prove that

. _
Ds=D*s=D s= Ds ae. on E".
[Hint: E™ = |J§2, E;, where
E; ={z € E™ | % is i-normal}.

On each E;, K* is uniformly normal. To prove Ds = D*s a.e. on E;, “imitate”
Problem 9(c). Proceed.]

*811. Generalized Measures. Absolute Continuity

I. We now return to general set functions s: M — E, with E as in Definition 1
of §4.
Definition 1.

A set function s: M — E is a generalized measure in a set S, and
(S, M, s) is a generalized measure space, iff s is o-additive and semifi-
nite (i.e., s # +00 or s # —00) on M, a o-ring in S, and s} = 0.

We call s a signed measure iff E C E* (i.e., s is real or extended real);
if s > 0 then s is a measure; s may also be complex (E = C') or vector
valued.

Definition 2.
Given a set function s: M — E, we define its total variation
vs: M — [0, 0]

by
VAeM) vA= supz [s X5,
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taking the sup over all countable disjoint subfamilies {X;} C M with
U, Xs C A

Note 1. If M is a o-ring, we may equivalently require that

Uxi=4

with {X;} a disjoint sequence in M (add the term X, = A — J, X; if neces-
sary).!

Corollary 1. If s and vs are as in Definition 2, then
(i) vs is monotone on M, and
(i) [sA| < wvsA for every A € M.

Proof. For (i), let AC B, A, B € M. Take any disjoint sequence {X;} C M,
with
Uxicacn

By definition,
Z |SXZ| S USB.
Thus vsB is an upper bound of all such sums, with | J X; C A. Hence
Vg A = lubz |sX;| < wvsB,

proving (i).
To prove (ii), just let {X;} consist of A alone. O

Theorem 1. If s: M — E is a generalized measure, then vs is a measure

on M.

Proof. By definition, vs > 0 on M, a o-ring, and vs@ = 0. (Why?) It remains
to prove o-additivity.
Thus let
A= U A, (disjoint),

with A, A,, € M. To show that
v A = szAn,

take any M-partition {X;} of A. Then
(Vi) Xi=XinA=X;n|JA4, = J(XiNA,) (disjoint)

n

L Any such {X;} is called an M-partition of A (Chapter 8, §1); it may consist of A alone.
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Similarly,
(Vn)  An=JAn N X));
so by definition,
(Vn) D s(An N X,)| < veA.

Hence as
Xi - U(Xz N An)a

we get

s|J(4n N X5)

n

=2

i

<D Is(An N X[ <D veAn.
n,i n

As {X;} was an arbitrary M-partition of A,

Vs A = supz [sX;| < szAn.

It remains to show that

Z S(An n Xz)

n

Z [sX;| = Z

i

szAn < vgA.
This is trivial if v, A = oo.
Thus let vsA < 0o. Then
(Vn) vsd, <vsA < o0

by Corollary 1(i). Now fix ¢ > 0. By properties of lub, each A, has an M-
partition,

An = UXnka
k

such that .
Vs Ap — on < Z |s Xk
k

All X,,;; combined (for all n and k) form an M-partition of A. Thus by defini-

tion,
vg A > ZZ |s X k| > Z(vsAn — 2%) > szAn — €.
n k n n

With € — 0, we get
D vsAy v A,
n
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as required. [

Definition 3.

Given
s:M— FEandt: M' — E'?

we say that s is
(i) t-continuous (written s < t) iff
uX =0=[sX|=0 (X eM);

(ii) absolutely t-continuous (or absolutely continuous with respect to
t) iff
uX - 0= sX —0,
ie.,
Ve>0)(36>0) (VX eM) nX<d= |sX|<e¢;
(iii) t-finite iff

nX <oo=[sX|<oo (XeM).

Corollary 2. If two set functions s,u: M — E are t-continuous (absolutely
t-continuous) so are s +u, and so is ks for any k from the scalar field of E.3

The proof is left to the reader. (Use Definition 3(i)(ii), quantified formula.)
Theorem 2. Let s: M — E andt: M' — E'.
(i) If s < t, then vy K t.

(ii) If, in addition, s and t are generalized measures and vs is t-finite, then
both vs and s are absolutely t-continuous.

(iil) vs K t implies s < t (which is obvious).
Proof. Fix A € M and any disjoint sequence X; € M, with
U X; C A.
If v, A = 0, then (Corollary 1)
(Vi) vX;=0;

2 For the rest of this section, we assume that M and M’ satisfy X € M whenever X € M’
and v X < oco.
3If E = E*, we assume k € E'. If s is scalar valued, k may be a vector in E.
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so by the t-continuity of s, |sX;| = 0, and hence Y |sX;| = 0. As this holds for
any such sum, we also have

v A = supz [sX;|=0

whenever v; A = 0. This proves assertion (i).
Now, let s and ¢ be as in (ii); so vs and v; are measures by Theorem 1.
Suppose v is not absolutely ¢t-continuous. Then

Fe>0) (V6>0) B3XeM) nX<dand v X >e.
(Why?) Taking

fix (Vn) a set X,, € M’, with
0 X, <27" and v, X,, > €.
Let - -
Y, =J Xpand Y = () Vi;

k=n n=1

soY,Y, e MY, \[Y, and
v Y, < i v X < i 27k < ol
k=n k=n
Thus by Theorem 2 in §4 (right continuity),

vY = lim v,Y, < lim 2'7" =0.
n—oo n—oo

Hence by the t-continuity of v, (see (1)),
vY =0<e.
On the other hand, as Y,, D X,,, we have
vsYy > vs X, > €.
Also, v;Y,, < 2'=" implies v,Y;, < 00 (vs is t-finite). Hence

vgY = lim vgY, > ¢,

n— 00

a contradiction. Thus v, is absolutely t-continuous.
So is s; for by Corollary 1(ii), we have

(Ve>0) (36>0) (VX eM) 10X <d= [sX|<v,X <e,

proving (ii). O
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Note 2. Absolute t-continuity always implies t-continuity.*

II. Special notions apply to signed measures. First of all, we have the following
definition.

Definition 4.

A set A C S in a signed measure space (S, M, s) is called positive (nega-
tive) iff sX >0 (sX <0, respectively) whenever

ADX, X eM.
We set
MT ={X € M| X is positive}

and
M~ ={X € M| X is negative}.

The easy proof of Lemmas 1 and 2 is left to the reader.
Lemma 1. In any signed measure space, M™ and M~ are o-rings.
Lemma 2. If s,t are signed measures on M, then

(i) sois ks (k€ Eb);

(ii) so also are s £t, provided s ort is finite on M.

Note 3. Lemma 2 applies to generalized measures s,t: M — E as well.
Lemma 3. Let s: M — E* be a signed measure. Let A € M, 0 < sA < oco.
Then A has a subset Q € M7 such that

0<sA<sQ < oo.

Proof. If A € M™, take Q = A.
Otherwise, A has subsets of megative measure. Let then n; be the least

natural for which there is a set A; € M, with
1
Ay CAand sA; < ——.
ny

(why does such n; exist?); then
s(A— A1) >sA>0.

Now, if A — A; € M™T, take Q = A — A;. If not, let ny be the least natural
for which there is A € M, with

1
Ay CA— A and sdy < ——.
ng

4 For if v4X = 0, then v, X < § for any § > 0. Thus Definition 3(ii) implies (Ve > 0)
[sX| < &; hence |sX]| = 0.
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Again, if

=1
is positive, put
2
Q=4-J4
i=1
If not, let n3 be the least natural for which there is A3 € M, with
2
AzCcA-{JA
i=1
and
1
SA3 < =
n3

Continuing, we either find the desired @) at some step or obtain a sequence
{Ar} € M such that

k
1
(1) (VEEN) sAp<——and Aen CA—|J A
Nk

i=1

(so the Ay, are disjoint). In the latter case, let

Q=4-|J A
k=1
SO
A=QU U Ay (disjoint),
k=1
and

sQ + ZSAk = sA.
k

As [sA| < oo (by assumption), Y sAy converges. By (1), then,
1
— < —sAy) < oo.
Therefore,

lim — =0,
k—o00 N
ie.,

lim ng = oo.
k—o0
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Also, as sAy < 0 and sA > 0, we have
sQ:sA—ZsAk >sA> 0.

Now, given € > 0, choose k so large that

1

e> .
nkfl

As
k
QcA-J4,

i=1

our definition of the nj implies that ) can have no subsets X € M, with

sX < —e< —

nkfl'

(Why?) As e is arbitrary, @ has no subsets of negative measure.
Thus Q € M™, Q C A, and

0< sA<sQ < oo,
as required. O

The following theorem is named after the mathematician Hans Hahn.

Theorem 3 (Hahn decomposition theorem). In any signed measure space
(S, M, s), there is a positive set P C S whose complement is negative. More-
over, P or —P can be chosen from M, according to whether s # oo or s # —oc0
on M.

If S € M, both P and —P can be made s-measurable:

PecMT and —Pc M™.
Proof. By definition, s is semifinite; so s # oo or s # —oo on M; say, s # +00.
As M™ is a o-ring (Lemma 1), the restriction of s to M¥ is a measure, with
0<s<oo
on M™T. Thus by Problem 13 in §6, we fix a set P € M™ such that
sP =max{sX | X € MT} < 0.

By Lemma 3, sP = max sX, even on all of M.
It remains to show that —P is negative. Suppose it is not. Then —P has a
subset Y € M, with sY > 0; so

YNP=Pand YUP € M.
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By additivity,
s(YUP)=sY +sP > sP,

contrary to the maximality of sP. This contradiction settles the case s # +o0.

In case s # —o0, consider —s, which by Lemma 2 is likewise a signed mea-
sure, with —s # 4o00. By what was proved above, there is a set P’ € M that
is positive for —s (hence negative for s), and whose complement is positive for
s.

Finally, if S € M, then P € M implies
S—P=-PecM;
so both P and —P are in M. Thus all is proved. O

Note 4. The set P in Theorem 3 is not unique. However, if P’ € M7 is
another such set, then

s(P—P)=0=s(P' - P),
i.e., any two such sets can differ by a set of measure 0 only. Indeed,
P—-P CPandP-P C-P;
so s(P — P’) is both > 0 and < 0. Thus s(P — P’) = 0. Similarly for P’ — P.

Theorem 4 (Jordan decomposition). FEvery signed measure s: M — E* is
the difference of two measures,

s=s"—s (st,s7>0),
with st or s~ bounded on M.

Proof. Suppose s # +o0o on M. Then by Theorem 3, there is a set P € M™T
such that —P is negative and sP < co. Now define, for all sets A € M,

(2) sTA=s(ANP) and s~ A= —s(A—P).
By additivity,
sA=5(ANP)+s(A—P)=sTA— s A;
s0 s = s — s~ on M, as required. Moreover,
stTA=s(ANP) >0,
since AN P C P and P is positive. Similarly,
sTA=—-s(A-P) >0,

since A — P C —P and —P is negative. Thus s™,s~ > 0 on M, a o-ring.
The o-additivity of s™ and s~ easily follows from that of s (we leave the
proof to the reader). Thus s* and s~ are measures.
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Finally, by (2),
sTA=5(ANP)<sP <o

for all A € M (for
sP =max{sX | X € M},

see the proof of Theorem 3). Thus s is bounded, and all is proved.
The case s # —oc is similar. O

Note 5. For any set X C A (X € M), we have
sX=sTX—-s"X<sTX <sTA,
for s* and s~ are > 0 and monotone. Thus sTA is an upper bound of
{sX|AD X eM}.

By (2), this bound is reached when X = AN P; so it is a mazimum. Similarly
for s7; thus

(3) stA=max{sX|ADX €M} and s” A =max{-sX | AD X € M}.
Note 6. The decomposition is not unique, for we also have
s=(sT+m)— (s +m)

for any finite measure m on M. However, it becomes unique if we add condition
(3). When so defined, s™ and s~ are called the Jordan components of s.

Note 7. Formula (2) shows that
(=s)T =s" and (—s)” =s".
Corollary 3. With s, s, and s~ as in (3), we have the following.
(i) vs = sT +s7; hence if s is a measure (s~ = 0), then
s=wvs=s5".

(i) vs 4s finite (t-finite, t-continuous, absolutely t-continuous) iff st and s~
are, i.e., iff s is.

Proof. We give only an outline here.
(i) Take any M-partition
A= UXi (disjoint).

Setting
m=s"+ s,

verify that
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and
Z\SXA < ZmXi = mUXi = mA.

Thus mA is an upper bound of sums

This bound is reached when X1 = ANP, Xo =A— P (P as in (2)).

(ii) Use Theorem 2, Corollary 2, and Definition 3. Note that vs > |s|, sT,
and s—. O

Corollary 4. A t-finite signed measure s is absolutely t-continuous iff it is
t-continuous.

In particular, this applies to finite measures.
Corollary 4 follows from Theorem 2 and Note 2, by Corollary 3.

II1. If E = E™ (C™), the function
ssM—=E
has n real (complex) components
S1y--- Sn,

as defined in Chapter 4, §3. As in Theorem 2 of Chapter 4, §3, one easily
obtains the following.

Theorem 5. A set function s: M — E™ (C™) is t-continuous (absolutely t-
continuous, additive, o-additive) iff its n components are. Hence a complex
set function s is t-continuous (etc.) iff its real and imaginary parts are.

For o-additivity, one can argue as follows. Let

A= U A; (disjoint),

i=1
with A, A; € M. Use Theorem 2 in Chapter 3, §15, with p = sA and
{Em = Z SAi,
i=1

to get pr = spA, and

m
xmeZSkAi, k=1,...,n.
i=1
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Theorem 6. A generalized measure s: M — E™ (C™) is t-continuous iff it is
absolutely t-continuous. It is always bounded on M, as is vs.

Proof. As s: M — E™ is o-additive, so is each of its components sj, by
Theorem 5. Thus each sy, is a finite (real) signed measure, with

— ot -
Sk =85 — S »

as in Theorem 4. Here the measures skJr and s, are both finite (as s is).

Thus by Problem 13 in §6, they are bounded, say, skJr < K and s;; < K3 on
M. Hence by Corollaries 1 and 3,

[sk] < vs, :s',:—ks;( < Ki + Ko;

that is, vs, is bounded on M (k =1,2,... ,n). Hence so are s and v, for
|s| <ws < szk
k

(see Problem 4(iii)).

Now, as v, is finite, it is certainly t-finite. Thus by Theorem 2 and Note 2,
s is t-continuous iff it is absolutely ¢-continuous.

This settles the case E = E™, hence also E = C = E?. The case E = C" is
analogous. [

IV. Completion of a Generalized Measure. From Problems 14 and 15 of §6,
recall that every measure m has a completion 7. A similar construction, which
we now describe, applies to generalized measures s: M — E.

Given such an s, let M be the family of all sets X U Z, where X € M and
Z is vg-null, i.e., Z C U for some U € M, v,U = 0 (note that vs is a measure
here, by Theorem 2). That is,

M={XUZ|XeM, ZCU, UecM, v,U=0}.
We now define 5: M — E by setting
sA=sX

whenever A = X U Z, with X and Z as above.

As in Problems 14 and 15 of §6, it follows that M is a o-ring O M, and
that s is a o-additive extension of s, hence a generalized measure. We call 5
the completion of s. It is complete in the sense that M contains all vg-null sets
(but it may miss some subsets of X with sX = 0). If s > 0 (a measure), then
s = wg; so our present definitions agree with Problem 15 in §6. We use these
ideas in the following part.
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V. Signed Lebesgue—Stieltjes (LS) Measures. Motived by Theorem 3 in
Chapter 5, §7, we shall say that a function

a: E' - E!
is of bounded variation on E! iff
a=g—h,

with g1 and At on all of E'.
Then g and h induce two LS measures my and my, in E L
Let py and py, be their restrictions to the Borel field B in E'. Then

04 = g — Hh

is finite for sets X € B inside any finite interval I C E' (as g and py, are finite
on intervals).

By Lemma 2, 0}, is a signed measure on the B-sets in I. Moreover, o}, does
not depend on the particular choice of gt and ht (9 — h = &) on I. For if also
a=u—v (uf,v}) on EL, set

O = fu = flo-
Then for any (z,y] C I,
o (9] = a(y+) — alz+) = o5 (z,y]  (verify!);

so by Problem 13 in §5, o/, = o on B-sets in I.
Thus o}, is uniquely determined by «. Its completion

s3]

Sa =

is the a-induced Lebesgue—Stieltjes (LS) signed measure in I.
If further iy or pup is finite on all of B, the same process defines a signed LS
measure in all of E*.

Problems on Generalized Measures
1. Complete the proofs of Theorems 1, 4, and 5.
1. Do it also for the lemmas and Corollary 3.

2. Verify the following.
(i) In Definition 2, one can equivalently replace “countable {X;}” by
“finite {X;}.”
(ii) If M is a ring, Note 1 holds for finite sequences {X;}.
(iii) If s: M — E is additive on M, a semiring, so is vs.
[Hint: Use Theorem 1 from §4.]
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3. For any set functions s,¢ on M, prove that
(i) vjs] = vs, and
(ii) vst < avy, provided st is defined and
a=sup{|sX|| X € M}.

4. Given s,t: M — E, show that
(1) vs4r < vs + 01
(i) vgs = |k|vs (k as in Corollary 2); and
(iii) if £ = E" (C") and

n
s = E Sk€k,
k=1
then

n
Vsy, S Vs S E Vsk -
k=1

[Hints: (i) If
AD|JX; (disjoint),
with A;, X; € M, verify that
(s + )X < [sX5] + [£X5],
Z [(s + 1) X;| <vsA+viA, ete;
(ii) is analogous.
(iii) Use (ii) and (i), with |eg| = 1.]

5. If g1, ht, and o = g — h on E', can one define the signed LS measure
Sq by simply setting sq = mg — my, (assuming my < 00)?
[Hint: the domains of mg and mj, may be different. Give an example. How about
taking their intersection?]

6. Find an LS measure m, such that a is continuous and one-to-one, but
Mg is not m-finite (m = Lebesgue measure).
[Hint: Take

and

7. Construct complex and vector-valued LS measures s,: M — E™ (C™)
in B
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8. Show that if s: M — E™ (C") is additive and bounded on M, a ring,

SO iS V.
[Hint: By Problem 4(iii), reduce all to the real case.

Use Problem 2. Given a finite disjoint sequence {X;} C M, let Ut (U~) be the
union of those X; for which sX; > 0 (sX; < 0, respectively). Show that

Zin =sUt —sU™ < 2sup|s| < o0!]

. For any s: M — E* and A € M, set

sTA=sup{sX | AD X € M}

and
sTA=sup{—sX|AD X e M}.

Prove that if s is additive and bounded on M, a ring, so are sT and s~ ;
furthermore,

1
st = i(vs +5) >0,
1
sT = i(vs—s) >0,
s=s"—s7, and
Vg = st +s™
[Hints: Use Problem 8. Set
s = 1(1} + s)
=5 .

Then (VX e M| X C A)

25X = sA+sX —s(A—X) <sA+ (|sX]| +|s(A— X))
< sA+uvsA=25A.

Deduce that st A < s’A.
To prove also that s’A < st A, let € > 0. By Problems 2 and 8, fix {X;} C M,
with

n

A= U X; (disjoint)

i=1
and
n
VA —e < Z |s X
i=1
Show that
n
25'A—e=viA+sA—e<sUt —sU™ +3UX,- =2sUt
i=1
and

2sTA>2sUT >25'A—¢l]
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10. Let

11.

K = {compact sets in a topological space (S,G)}
(adopt Theorem 2 in Chapter 4, §7, as a definition). Given
ssM—=E, MC2°

we call s compact reqular (CR) iff

Ve>0) (VAeM) (3FeK) (3GeQ)
FGeM, FCACG, and v,G — e <wvsA <wvsF +e.

Prove the following.
(i) If s,t: M — E are CR, so are s = ¢ and ks (k as in Corollary 2).

(ii) If s is additive and CR on M, a semiring, so is its extension to the
ring M (Theorem 1 in §4 and Theorem 4 of §3).

(iii) If E = E™(C") and vs < oo on M, a ring, then s is CR iff its
components sy are, or in the case £ = E', iff sT and s~ are
(see Problem 9).

[Hint for (iii): Use (i) and Problem 4(iii). Consider vs(G — F).]

(Aleksandrov.) Show that if s: M — E is CR (see Problem 10) and
additive on M, a ring in a topological space S, and if v < oo on M,
then vs and s are o-additive, and v, has a unique o-additive extension
U5 to the o-ring N generated by M.

The latter holds for s, too, if S € M and E = E™ (C").
[Proof outline: The o-additivity of vs results as in Theorem 1 of §2 (first check
Lemma 1 in §1 for vs).

For the o-additivity of s, let

A= Ai (disjoint), A, A; € M;
i=1

then

r—1

SA — Z SA,;

i=1

oo
<D 0sA; =0
i=r

as r — oo, for
oo oo
S o= (J <o
i=1 =1

(Explain!) Now, Theorem 2 of §6 extends vs to a measure on a o-field
M* DN DM

(use the minimality of A). Its restriction to N is the desired v (unique by

Problem 15 in §6).
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A similar proof holds for s, too, if s: M — [0,00). The case s : M — E™ (C™)
results via Theorem 5 and Problem 10(iii) provided S € M; for then by Corollary 1,
vsS < oo ensures the finiteness of vs, sT, and s~ even on N

12. Do Problem 11 for semirings M.
[Hint: Use Problem 10(ii).]

*§12. Differentiation of Set Functions

In the proof of Theorem 3 in §10 and the lemmas of that section, we saw the
connection between quotients of the form

Af _ J(@) ~ ()
Ax T—p

and those of the form
sl

ﬁv
where m is Lebesgue measure and s is another suitable measure. With this in
mind, we now use quotients sI/ml for forming derivatives of set functions.
Below, m is Lebesgue measure in E";

K = {nondegenerate cubes}.

Definition 1.
Assume the set function
ssM —-E (M 2K)
in E™ and that ¢ € F.
(i) We say that ¢ is the derivative of s at a point p € E™ iff

for all sequences {I}.} C K, with I, — p (see Definition 1 in §10),

Notation: J
1= 50) = - s(p)
If, in addition, |g| < oo, we say that s is differentiable at p.
It
g = lim i
k—oo mly

for at least one such sequence I, — p, we call ¢ a derivate of s at p
and write

q ~ Ds(p).
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If &' (p) exists, it is the unique derivate of s at p.

(ii) In case E is E* or E', we admit infinite derivates and derivatives.
For any set function

st M — E*
(measure or not) with
M DK,
we also define
Ds(p) and Dis(p)

exactly as in Definition 3 of §10.

Equivalently, Ds(p) is the least and Ds(p) is the largest derivate
of s at p (Problem 11 in §10). This shows that if E = E* or E = E,
derivates exist at every p.

Note 1. Hence ¢ = s'(p) in E* iff
g = Ds(p) = Ds(p)-

Note 2. We treat Ds, Ds, and s’ as functions on points of E™. Thus they
are point functions, even though s is a set function.

The easy proofs of Theorems 1 and 2 (with K and M’ D K as above) are
left to the reader.

Theorem 1. If s,t: M’ — E are differentiable at p, so are s =t and ks for
any scalar k. (If s,t are scalar valued, k may be a vector.) Moreover,

(s+t) =5 £t and (ks) = ks’ at p.
(See also Problem 7.)

Theorem 2. A set function s: M’ — E" (C") is differentiable at p iff its
components si,So, ..., S are; and then

T
/ / / _ _
s'=(s1,.--.,8.) = E €;s; atp.
i=1

In particular, for complex functions,

I . / _
s =8,t+t1-8, atp.

The process described in Definition 1 will be called Lebesgue differentiation
or K-differentiation, as opposed to “Q-differentiation,” defined next.!

1 'We follow some ideas by E. Munroe here.
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Definition 2.

Let p* be a G-regular (§5) outer measure in a metric space (S, p); re-
call that

G = {all open sets in S}.
Let pr: M — E* be the p*-induced (§6) measure in S.
A countable (two-indexed) set family
Q={U} M (i,n=1,2,...)
is called a network in S (with respect to p and p) iff
(i*) the space

(oo}
S=|J U, (disjoint), i=1,2,...,
n=1
with
O<uU,fL <oo, H4n=12..;
(ii*) each Uit! is a subset of some U! (the U decrease as i increases);

(iii*) for each p € S, there is a sequence

with I, — p; that is,
pE ﬂ I,
k=1
and dI, — 0 (dI = diameter of I} in (S, p)).

Now, given any set function
ssM = E (M 2Q),

we define derivatives, derivates (also Ds and Ds if E C E*), and differentia-
bility exactly as in Definition 1, replacing K by €, and Lebesgue measure m
by w.

Note that these derivates and derivatives depend not only on p and p but
also on the choice of (2. To stress this, one might write s, , and D, s for s" and
Ds, respectively. Mostly, however, no confusion is caused by simply writing s’
and Ds (and we shall do so).

A network for E™ is suggested in the “hint” to Problem 2 of §2. See also
Note 3.

2 Thus for each fized i, the U}, are disjoint. Also, p is o-finite, and S € M.
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Theorems 1 and 2 carry over to (2-differentiation, with the same proofs. We
shall also need a substitute for the Vitali theorem (Theorem 1 of §10). It is
quite simple.

Definition 3.

Let 2 be as in Definition 2. A set family A" C Q is called an Q-covering
of AC(S,p)iff
AcUN,

where (JA is defined to be [Jycp X

Theorem 3. Let N be an Q-covering of A C S. Then there is a disjoint
sequence

{Ii} SN
with
Ac| I
k
so that
M* (A - U Ik) =0
k
and

,u*Azu*(AﬂU[k).
k

Proof. As V' C Q, NV consists of some of the Uf. For each i, let
Ni={U e N|n=1,...},

i.e., N consists of all U € N with that particular index i.

Now, by Definition 2(i*)(ii*), any two U{ are either disjoint, or one contains
the other. (Why?) Thus to construct {I}}, start with all the (disjoint) N''-sets
(if Nt #£ (). Then add those U2 € N2 that are not subsets of any set from A1
and hence are disjoint from such sets. Next, add those U? € A" that are not
subsets of any set chosen from A'' or N2, and so on.

All U? so chosen form a disjoint subfamily K C N that covers all of A, as

Ac| N =k
(Why?)
K is countable (as 2 is); so we can put it in a sequence {I}, with

AC U Iy, (disjoint),
k

as required. [
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We can now prove our main result for - and Q-differentiation alike.
Theorem 4.
(i) Ifs: M' — E* (E", C") is a generalized measure in E™, finite on K, then
s is differentiable a.e. on E™ (under Lebesgue measure m).

(i1) Similarly for Q-differentiation in (S, p), provided s is finite on Q and
reqular.’

Proof. Via components and the Jordan decomposition (Theorem 4 of §11),

all reduces to the case where s is a measure (> 0). Then the proof for K-
differentiation is as in Lemmas 1 and 2 in §10. (Verify!)

For Q-differentiation, the proof of Lemma 1 in §10 still works, with iC-
coverings replaced by (2-coverings.

In the proof of Lemma 2, after choosing rationals v > wu, we choose @,
G 2 @Q, the Q-covering

I
IC:{IEQ‘IQG, i<u}
ul
of @, and the sequence {I;} C K, as before. (In selecting G, we use the
G-regularity of p*; the I need not be cubes here, of course.)

Then, however, instead of forming the set @Q),, we use the regularity of s to
select an open set G’ € M’ with

¢'2Jn2@
k

and
SG'fsgsUIk SZsIk.

The set family
1
IC’:{IEQ‘IQG’, S—>v}
ul
is then an Q-covering of @ (why?); so we find a disjoint sequence {I;,} C K’

with
crcaca

and obtain

u~(u*Q+s)2u-uGZu-Zu[kZZSIkZSG'szZZsI,’CfE
& 2 2

Zv-ZuI,'cfszv-,uUI,;stv~,u*Qfs.
k

3 A signed measure s is called regular iff st and s~ are regular (Definition 4 in §7). A
complex measure s is regular iff s;e and sj, are. Finally, s: M’ — E” (C") is regular iff all
its components s; are.
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Thus
Ve>0) u-(WQ+e)>v -p'Q—e.
The rest is as in Lemma 2 of §10. O
Note 3. If p* = m*, K-derivatives equal Q-derivatives a.e. for a regular s

(Problem 6). One may use 2 in E", thus avoiding Theorem 1 of §10 (Prob-
lem 13).

Problems on Differentiation of Set Functions

1. Complete the proofs of Theorems 1 to 4 in detail. Verify Note 1.

2. Verify that the hint for Problem 2 in §2 describes a network for E™ (see
Note 3).

3. Show that the measure p in Definition 2 is necessarily topological.
[Hint: Any G € G is a countable union of Q-sets. Why?]

4. (i) Show that the derivates of s at p form exactly the set D7 of all
cluster points of sequences sIj,/ml, with I, — p and {I;} C K.
Do the same considering sequences sl /ul, with I, — p and
{I} C Q.

(ii) Do Problem 11 in §10 for Q-differentiation. Must s be regular

here?

5. Verify that if
(VIe€Q) ul=ul,

then Theorem 4 holds for Q2-differentiation even if s is not regular.
[Hint: The proof of Lemma 2 of §10 holds unchanged.]

6. Prove Note 3 assuming that (i) s is regular, or (ii) (VI € Q) pul = pul°
(see Problem 5).
[Hint: Imitate Problem 9(b) in §10 and the “Q” part in the proof of Theorem 4.]

7. Prove for K- and Q-differentiation that if
s=t+u (s,t,u: M — E*)
and if w is differentiable at p, then Ds = Dt +u' and Ds = Dt +u’ at p.

8. In Theorem 4 show that Ds = Ds a.e. even if s is not finite on all of
K ().
[Hint: For s > 0, Lemma 1 in §10, still holds. For signed measures, use Problem 7,
noting that s or s~ is finite, hence differentiable a.e.]

9. Prove that if f and s = my are as in the proof of Theorem 3 in §10,
then s and f are differentiable at the same points in E', and s’ = f’
there.
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10.

11.

12.
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[Hint: Use Note 1, Definition 1, and Chapter 5, §1, Problem 9, considering one-sided
derivatives, f| and f’ ]

Given a universal V-covering K" (see Problem 9 in §10), develop K -
differentiation as in Definition 1, replacing K by K and writing s'*,
D*s, ... for s/, Ds, etc.

Extend Theorems 1-4 and Problem 7 to K -differentiation. Under the
assumptions of Theorem 4, show that s = s’ a.e. on E™ (use Problem 9
in §10).

Given a normal V-covering K* of E™ (Problem 8 in §10), develop K£*-
differentiation along the lines of Problem 12 in §10 (admitting normal
sequences {I;} only). Do the same questions as in Problem 10, for
K*-differentiation.

Describe what changes if, in Problem 11, we drop the normality restric-
tion on sequences I, — p (call it strong K*-differentiation; write D**s,
s ete.).
Show that
D*s<D*s<Ds<D"s

** implies that of s™.

on E", and so the existence of s
However the proof of Lemmas 1 and 2 in §10 fails for D**s and D75
(at what step?). So does the proof of Theorem 4. What about Theo-

rems 1 and 27

Chapter 8
Measurable Functions. Integration

§1. Elementary and Measurable Functions

From set functions, we now return to point functions
f:8 = (T,0)

whose domain Dy consists of points of a set S. The range space T will mostly
be E, ie., B, E*, C, E™, or another normed space. We assume f(z) = 0
unless defined otherwise. (In a general metric space T, we may take some fixed
element ¢ for 0.) Thus Dy is all of S, always.
We also adopt a convenient notation for sets:
“A(P)” for {x e A| P(x)}.

Thus

A(f #a) ={z € A| f(z) # a},
Alf=g)={z e Al f(x) =y
g

Definition 1.
A measurable space is a set S # () together with a set ring M of subsets
of S, denoted (S, M).
Henceforth, (S, M) is fixed.

Definition 2.
An M-partition of a set A is a countable set family P = {A4;} such that
A= U A; (disjoint),
with 4, 4; € M.! '
We briefly say “the partition A = |J A;.”

L'P may be finite; it may even consist of A alone.
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An M-partition P’ = { By} is a refinement of P = {A4;} (or P’ refines
P, or P’ is finer than P) iff

k

i.e., each B is contained in some A;.

The intersection P’ M P" of P’ = {4;} and P” = {B} is understood
to be the family of all sets of the form

AN By, i k=1,2,....
It is an M-partition that refines both P’ and P".

Definition 3.

A map (function) f: S — T is elementary, or M-elementary, on a set
A € M iff there is an M-partition P = {A;} of A such that f is constant
(f = a;) on each A;.

If P={Ai,...,A;} is finite, we say that f is simple, or M-simple,
on A.

If the A; are intervals in E™, we call f a step function; it is a simple
step function if P is finite.?

The function values a; are elements of T' (possibly wvectors). They may be
infinite if T'= E*. Any simple map is also elementary, of course.
Definition 4.
A map f: S — (T,p) is said to be measurable (or M-measurable) on a
set A in (S, M) iff
f= lim f, (pointwise) on A
m—o0
for some sequence of functions f,: S — T, all elementary on A. (See
Chapter 4, §12 for “pointwise.”)

Note 1. This implies A € M, as follows from Definitions 2 and 3. (Why?)
Corollary 1. If f: S — (T, p') is elementary on A, it is measurable on A.
Proof. Set f,, = f, m = 1,2,..., in Definition 4. Then clearly f,, — f
on A. O

Corollary 2. If f is simple, elementary, or measurable on A in (S, M), it
has the same property on any subset B C A with B € M.

2 Only simple step functions are needed for a “limited approach.” (One may proceed from
here to §4, treating m as an additive premeasure.)
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Proof. Let f be simple on A; so f =a; on A;, i =1,2,...,n, for some finite
M-partition, 4 = |JI_, 4.

If AD B € M, then

{BNA;}, i=12...n,

is a finite M-partition of B (why?), and f = a; on BN A;; so f is simple on B.

For elementary maps, use countable partitions.

Now let f be measurable on A, i.e.,

f=lim fn
m—ro0

for some elementary maps f,, on A. As shown above, the f,, are elementary
on B, too, and f,, — f on B; so f is measurable on B. [
Corollary 3. If f is elementary or measurable on each of the (countably
many) sets Ay in (S, M), it has the same property on their union A =], Ay.

Proof. Let f be elementary on each A,, (so 4,, € M by Note 1).
By Corollary 1 of Chapter 7, §1,

A=JA.=JBn

for some disjoint sets B, C A,, (B, € M).

By Corollary 2, f is elementary on each B,; i.e., constant on sets of some
M-partition {B,;} of B;.
All B,,; combined (for all n and all i) form an M-partition of A,

A= UBn = UBni-

As f is constant on each B, it is elementary on A.

For measurable functions f, slightly modify the method used in Corol-
lary 2. O

Corollary 4. If f: S — (T,p) is measurable on A in (S, M), so is the com-
posite map g o f, provided g: T — (U, p") 1is relatively continuous on f[A].

Proof. By assumption,
f= lim f, (pointwise)
m—ro0

for some elementary maps f,, on A.
Hence by the continuity of g,

9(fm () = 9(f (),

ie, go fm — go [ (pointwise) on A.
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Moreover, all g o f,, are elementary on A (for g o f,, is constant on any
partition set, if f, is).
Thus g o f is measurable on A, as claimed. [

Theorem 1. If the maps f,g,h: S — E* (C) are simple, elementary, or mea-
surable on A in (S, M), so are f £g, fh, |f|* (for real a # 0) and f/h (if
h#0 on A).

Similarly for vector-valued f and g and scalar-valued h.

Proof. First, let f and g be elementary on A. Then there are two M-

partitions,
A=JAi =B,

such that f = a; on A; and g = by on By, say.
The sets A; N By, (for all i and k) then form a new M-partition of A (why?),
such that both f and g are constant on each A; N By, (why?); hence so is f £ g.
Thus f + g is elementary on A. Similarly for simple functions.
Next, let f and g be measurable on A; so

f=1lm f,, and g = lim g,,, (pointwise) on A

for some elementary maps fy., gm-
By what was shown above, f,, £ ¢, is elementary for each m. Also,

fm £ gm — f £ g (pointwise) on A.

Thus f + g is measurable on A.
The rest of the theorem follows quite similarly. O

If the range space is E™ (or C™), then f has n real (complex) components
fis-++ fn, as in Chapter 4, §3 (Part II). This yields the following theorem.
Theorem 2. A function f: S — E™(C"™) is simple, elementary, or measur-
able on a set A in (S, M) iff all its n component functions fi, fa,..., fn are.
Proof. For simplicity, consider f: S — E2, f = (f1, f2)-

If f; and fy are simple or elementary on A then (exactly as in Theorem 1),
one can achieve that both are constant on sets A; N By of one and the same
M-partition of A. Hence f = (f1, f2), too, is constant on each A; N By, as
required.

Conversely, let

f=2¢ = (a;,b;) on C;

A:Ua.

Then by definition, fi = a; and fo = b; on C;; so both are elementary (or
simple) on A.

for some M-partition
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In the general case (E™ or C™), the proof is analogous.

For measurable functions, the proof reduces to limits of elementary maps
(using Theorem 2 of Chapter 3, §15). The details are left to the reader. O

Note 2. As C = E?, a complex function f : S — C is simple, elementary,
or measurable on A iff its real and imaginary parts are.

By Definition 4, a measurable function is a pointwise limit of elementary
maps. However, if M is a o-ring, one can make the limit uniform. Indeed, we
have the following theorem.

Theorem 3. If M is ao-ring, and f: S — (T, p') is M-measurable on A, then

/= 1i_1)n gm (uniformly) on A

for some finite elementary maps gp,.

Thus given € > 0, there is a finite elementary map g such that p'(f,g) < e
on A34

The proof will be given in §2 for 7" = E*. The general case is sketched in
Problem 7 of §2. Meanwhile, we take the theorem for granted and use it below.

Theorem 4. If M is a o-ring in S, if
fm — f (pointwise) on A
(fm: S = (T,p"), and if all f,, are M-measurable on A, so also is f.4

Briefly: A pointwise limit of measurable maps is measurable (unlike contin-
uous maps; cf. Chapter 4, §12).

Proof. By the second clause of Theorem 3, each f,,, is uniformly approximated
by some elementary map g,, on A, so that, takinge =1/m, m=1,2,...,

1
(1) P (frn(2), gm(x)) < p- for all z € A and all m.

Fixing such a g, for each m, we show that g,, — f (pointwise) on A, as
required in Definition 4.
Indeed, fix any z € A. By assumption, f,,(x) — f(x). Hence, given 6 > 0,

k) (Ym>k) o (f(2), fm(z)) <0.

Take k so large that, in addition,

(Vm > k) 1 < 0.
m

3 We briefly write p’(f, g) for sup,cg o' (f(z), 9(2)).
4 The theorem holds also for T = E*, with p’ as in Problem 5 of Chapter 3, §11.
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Then by the triangle law and by (1), we obtain for m > k that
P (f(@), gm(@)) < 0'(f(@), fm(2)) + £/ (fm(2), gm ()
<0+ = < 20.
m

As ¢ is arbitrary, this implies p/'(f(z), gm(z)) — 0, i.e., gm(z) — f(z) for
any (fixed) z € A, thus proving the measurability of f. O

Note 3. If
M = B (= Borel field in 5),

we often say “Borel measurable” for M-measurable. If
M = {Lebesgue measurable sets in E"},

we say “Lebesque (L) measurable” instead. Similarly for “Lebesgue—Stieltjes
(LS) measurable.”

Problems on Measurable and
Elementary Functions in (S, M)

1. Fill in all proof details in Corollaries 2 and 3 and Theorems 1 and 2.
2. Show that P’ M P is as stated at the end of Definition 2.
3. Given AC Sand f, frn: S— (T,p),m=1,2,..., let

and 1
A = A (s f) < ).

n
Prove that

oo o0 o0

O =1 A

n=1k=1m=k
(i) H € M if all A,,, are in M and M is a o-ring.
[Hint: z € H iff
(Vn) (k) (Ym>k) x€ Amn.
Why?]
3’. Do Problem 3 for T'= E* and f = +o00 on H.
[Hint: If f = 400, Amn = A(fm >n).]

=4. Let f: S — T be M-elementary on A, with M a o-ring in S. Show the
following.

(i) A(f =a) € M, A(f # a) € M.
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(ii) If T = E*, then
A(f <a), A(f > a), A(f > a), and A(f > a)
are in M, too.
(iii) (VBCT) AN f~1[B] € M.

[Hint: If

and f = a; on A;, then A(f = a) is the countable union of those A; for which a; = a.]

5. Do Problem 4(i) for measurable f.
[Hint: If f = lim f,, for elementary maps fpm, then

H=A(f =a) = A(fm — a).

Express H as in Problem 3, with
1
Amn =A m A
(hm <)
where hy = p'(fm,a) is elementary. (Why?) Then use Problems 4(ii) and 3(ii).]
=6. Given f,g: S — (T,p'), let h=p'(f,9), ie.,
h(z) = p'(f(2),9(2)).
Prove that if f and g are elementary, simple, or measurable on A, so

is h.
[Hint: Argue as in Theorem 1. Use Theorem 4 in Chapter 3, §15.]

=7. A set B C (T, p') is called separable (in T) iff B C D (closure of D) for
a countable set D C T.
Prove that if f: § — T is M-measurable on A, then f[A4] is separable
inT.
[Hint: f = lim f, for elementary maps fm; say,

fm =amion Api €M, i=1,2,....

Let D consist of all ay,; (m,i = 1,2,...); so D is countable (why?) and D C T.
Verify that
(Vy e fl[A]) Bz e A) y= f(z)=1lim fm(z),

with fm(z) € D. Hence
(Vy € flA]) yeD,

by Theorem 3 of Chapter 3, §16.]
=-8. Continuing Problem 7, prove that if B C D and D = {q1, o, ...}, then

(¥n) BC DGQI (%)
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[Hint: If p€ B C D, any Gp(%) contains some ¢; € D; so

1 1
P (pai) < — orpeGy (;)
Thus
peB) pelJou(s))
i=1

9. Prove Corollaries 2 and 3 and Theorems 1 and 2, assuming that M is a
semiring only.

10. Do Problem 4 for M-simple maps, assuming that M is a ring only.

§2. Measurability of Extended-Real Functions

Henceforth we presuppose a measurable space (S, M), where M is a o-ring in
S. Our aim is to prove the following basic theorem, which is often used as a
definition, for extended-real functions f: S — E*.

Theorem 1. A function f: S — E* is measurable on a set A € M iff it
satisfies one of the following equivalent conditions (hence all of them):

(i*) (Va€ E*) A(f > a) € M; (ii*) (Va € E*) A(f > a) € M;
(iii*) (Va € E*) A(f < a) € M; (iv*) Va € E*) A(f <a) e M.
We first prove the equivalence of these conditions by showing that (i*) =

(ii*) = (iii*) = (iv*) = (i*), closing the “circle.”
(i*) = (ii*). Assume (i*). If a = —o0,

Af>a)=AeM

by assumption. If a = 400,
A(f 2 a) = A(f = 00) = [ A(f > n) € M

by (i*). And if a € E*,

(Verify!) By (i*),
A(f >a— l) e M;
n

so A(f > a) € M (a o-ring!).
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(ii*) = (iii*). For (ii*) and A € M imply
A(f <a)=A—A(f >a) e M.
(iii*) = (iv*). If a € EY,

oo

A(fia):ﬂA(f<a+%>eM.

n=1

What if a = +00?

(iv*) = (i*). Indeed, (iv*) and A € M imply

A(f >a)=A—A(f <a)e M.

Thus, indeed, each of (i*) to (iv*) implies the others. To finish, we need two
lemmas that are of interest in their own right.
Lemma 1. If the maps fn: S — E* (m = 1,2,...) satisfy conditions (i*)-
(iv*), so also do the functions

Supfm; inffm; mfma and li_mfma
defined pointwise, i.e.,
(sup fm)(x) = sup fm(x)a

and similarly for the others.

Proof. Let f =sup f,,. Then

A(f <a)= () A(fm < ). (Why?)

m=1

But by assumption,

A(fméa)e/\/t

(fm satisfies (iv*)). Hence A(f < a) € M (for M is a o-ring).
Thus sup fy, satisfies (i*)—(iv*).
So does inf f,; for

A(inffm > a) = ﬁ A(fm > CL) e M.

(Explain!)
So also do lim f,,, and lim f,,; for by definition,

lim f,, = sup g,
k

= 'Ilf m
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satisfies (i*)—(iv*), as was shown above; hence so does sup g; = lim f,,,.

Similarly for lim f,,. O
Lemma 2. If f satisfies (i*)—(iv*), then
f= li_r>n fm (uniformly) on A

for some sequence of finite functions fp,, all M-elementary on A.
Moreover, if f > 0 on A, the f,, can be made nonnegative, with { f,}1 on A.

Proof. Let H = A(f = 4+00), K = A(f = —00), and

kE—1 k
A< -
Ami A( om *f<2m)
form=1,2,... and k=0,+1,£2,... ,£n,....
By i*)i(iv*)v
H=A(f =400) = A(f > +00) € M,
K e M, and
k—1 k
Ay = A(f < 27) mA(f < Q—m) e M.
Now define
kE—1
(vm) fm: om on Amk7
fm =mon H, and f,, = —m on K. Then each f,, is finite and elementary on
A since

(Ym) A=HUKU U A (disjoint)

k=—o0

and f,, is constant on H, K, and A,,.
We now show that f,,, — f (uniformly) on H, K, and

J = [j Amlm

k=—o00
hence on A.

Indeed, on H we have
lim f,, = limm = 400 = f,
and the limit is uniform since the f,, are constant on H.
Similarly,
fm =—-m — —oco = fon K.
Finally, on A,,r we have

(k—1)27"< f<k2™™
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and fp, = (k—1)27™; hence
lfn — fl <k2™™ —(k—1)27™ =2"".
Thus
[fm = fI <277 =0
on each Amk, hence on
7= U Ame
k=—o00

By Theorem 1 of Chapter 4, §12, it follows that f,, — f (uniformly) on J.
Thus, indeed, f,, — f (uniformly) on A.

If, further, f > 0 on A, then K = 0 and A,,x = 0 for & < 0. Moreover,
on passage from m to m + 1, each A, (k > 0) splits into two sets. On one,

fm+1 = fm; on the other, fi, 411 > fin. (Why?)
Thus 0 < fp, /* f (uniformly) on A, and all is proved. O

Proof of Theorem 1. If f is measurable on A, then by definition, f = lim f,,
(pointwise) for some elementary maps f,, on A.

By Problem 4(ii) in §1, all fp, satisfy (i*)—(iv*). Thus so does f by Lemma 1,
for here f = lim f,, = limf,,.

The converse follows by Lemma 2. This completes the proof. [

Note 1. Lemmas 1 and 2 prove Theorems 3 and 4 of §1, for f: S — E*.
By using also Theorem 2 in §1, one easily extends this to f: S — E™(C™).
Verify!

Corollary 1. If f: S — E* is measurable on A, then
MVae E*) A(f=a) e M and A(f #a) € M.
Indeed,
A(f=a)= A(f > a) N A(f < a) e M

and

A(f#£a)=A—A(f =a) € M.
Corollary 2. If f: S — (T, p') is measurable on A in (S, M), then
AN Gl e M
for every globe G = Gy(0) in (T, p).
Proof. Define h: S — E' by
hz) = p'(f(x),q)
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Then h is measurable on A by Problem 6 in §1. Thus by Theorem 1,
A(h <) e M.
But as is easily seen,
Ah <d)={z e Al (f(x),q) <} = AN fTH[Gy(0)].
Hence the result. O

Definition.
Given f,g: S — E*, we define the maps fV g and f A g on S by

(f Vv g)(x) = max{f(z),g(x)}
and

(f A g)(x) = min{f(z),g(x)};
similarly for fV gV h, f AgAh, etc.

We also set
ff=fvo0and f- =—fVO0.

Clearly, fT* >0and f~ >0on S. Also, f = fT — f~ and |f| = fT + f~.
(Why?) We now obtain the following theorem.

Theorem 2. If the functions f,g: S — E* are simple, elementary, or mea-
surable on A, so also are f +g, fg, fVg, fAg, fr, f~, and | f|* (a #0).

Proof. If f and g are finite, this follows by Theorem 1 of §1 on verifying that

fVg=35(+g+1f - gl

and 1
frng=5f+g=1f—9l)

on S. (Check it!)
Otherwise, consider

A(f = +), A(f = —), A(g = +00), and A(g = —00).

By Theorem 1, these are M-sets; hence so is their union U.

On each of them fV g and f Ag equal f or g; so by Corollary 3 in §1, fV g
and f A g have the desired properties on U. So also have f* = f Vv 0 and
f~=—fVo0 (take g = 0).

We claim that the maps f + g and fg are simple (hence elementary and
measurable) on each of the four sets mentioned above, hence on U.

For example, on A(f = +00),

f £ 9=+ (constant)
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by our conventions (2*) in Chapter 4, §4. For fg, split A(f = +00) into three
sets Ay, Ag, A3 € M, with g > 0 on Ay, g < 0 on Ay, and g = 0 on As; so
fg=+00on A, fg =—00 on Ay, and fg = 0 on As. Hence fg is simple on
A(f = 400).

For |f|*, use U = A(|f| = o0). Again, the theorem holds on U, and also on
A—U, since f and g are finite on A—U € M. Thus it holdson A = (A—-U)UU,
by Corollary 3 in §1. [

Note 2. Induction extends Theorem 2 to any finite number of functions.

Note 3. Combining Theorem 2 with f = f* — f~, we see that f: S — E*
is simple (elementary, measurable) iff f* and f~ are. We also obtain the
following result.

Theorem 3. If the functions f,g: S — Ex are measurable on A € M, then
A(fzg) e M, A(f <g) € M, A(f = g) € M, and A(f # g) € M.
(See Problem 4 below.)

Further Problems on Measurable Functions in (S, M)

1. In Theorem 1, give the details in proving the equivalence of (i*)—(iv*).
2. Prove Note 1.
2’. Prove that f = f* — f~ and |f| = fT + f~.
3. Complete the proof of Theorem 2, in detail.
=4. Prove Theorem 3.
[Hint: By our conventions, A(f > g) = A(f —g > 0) even if g or f is +oo for

some z € A. (Verify all cases!) By Theorems 1 and 2, A(f —g > 0) € M; so
A(f>g) e M, and A(f < g) = A— A(f > g) € M. Proceed.]|

5. Show that the measurability of |f| does not imply that of f.

[Hint: Let f =1o0on Q and f = —1 on A — Q for some Q ¢ M (Q C A); e.g., use Q
of Problem 6 in Chapter 7, §8.]

=-6. Show that a function f > 0 is measurable on A iff f,,, 7 f (pointwise)
on A for some finite simple maps f,, >0, {fm}1
[Hint: Modify the proof of Lemma 2, setting H,, = A(f > m) and fr, = m on Hp,,
and defining the A,,,) for 1 < k < m2™ only.]

=>7. Prove Theorem 3 in §1.
[Outline: By Problems 7 and 8 in §1, there are g; € T such that

tom st (Joa ().
=1

Set
Api=Anf! [qu (%)] eM

by Corollary 2; so p'(f(z),q;) < 717 on Ap;.
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=8.

=9.

10.
11.

12.
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By Corollary 1 in Chapter 7, §1,

oo oo
A= Ani = | Bui (disjoint)
i=1 i=1

for some sets By; € M, By C A,;. Now define g, = q; on By; so p'(f, gn) < ,17 on
each By, hence on A. By Theorem 1 in Chapter 4, §12, g, — f (uniformly) on A.]

Prove that f: S — E' is M-measurable on A iff AN f~1[B] € M for
every Borel set B (equivalently, for every open set B) in E'. (In the
case f: S — E*, add: “and for B = {£00}.”)
[Outline: Let

R={XCE'|Anf1[X] e M}

Show that R is a o-ring in E'.
Now, by Theorem 1, if f is measurable on A, R contains all open intervals; for

AN (a,b)] = A(f > a) N A(f < b).

Then by Lemma 2 of Chapter 7, §2, R O G, hence R 2O B. (Why?)
Conversely, if so,

(a,0) ER = AN f1(a,0)] € M = A(f > a) € M]
Do Problem 8 for f: S — E™.

[Hint: If f = (f1,...,fn) and B = (a,b) C E™, with a = (ay,...
(b1,...,bn), show that

,an) and b=

FHBI= () £ (an, bi)).
k=1

Apply Problem 8 to each fi: S — E' and use Theorem 2 in §1. Proceed as in
Problem 8.]
Do Problem 8 for f: S — C™, treating C" as E>".
Prove that f: S — (T, p’) is measurable on A in (S, M) iff

(i) AN f~G] € M for every open globe G C T, and

(ii) f[A] is separable in T (Problem 7 in §1).

[Hint: If so, proceed as in Problem 7 (without assuming measurability of f) to show
that f = lim g,, for some elementary maps g, on A. For the converse, use Problem 7
in §1 and Corollary 2 in §2.]
(i) Show that if all of T is separable (Problem 7 in §1), there is a
sequence of globes G, C T such that each nonempty open set
B C T is the union of some of these Gy,.

(ii) Show that E™ and C™ are separable.

[Hints: (i) Use the qu(%) of Problem 8 in §1, putting them in one sequence.
(ii) Take D = R™ C E™ in Problem 7 of §1.]

§2. Measurability of Extended-Real Functions 231

13. Do Problem 11 with “globe G C T” replaced by “Borel set B C T.”
[Hints: Treat f as f: A — T', T' = f[A], noting that
Anf i Bl=AnfHBNT).

By Problem 12, if B # 0 is open in T', then BN T’ is a countable union of “globes”
GqNT' in (T, p'); see Theorem 4 in Chapter 3, §12. Proceed as in Problem 8,
replacing E! by T.]

14. A map g: (T,p') — (U, p") is said to be of Baire class 0 (g € By) on
D C T iff g is relatively continuous on D. Inductively, g is of Baire
classm (g € By, n > 1) iff g = limg,, (pointwise) on D for some maps
gm € Bp_1. Show by induction that Corollary 4 in §1 holds also if
g € B,, on f[A] for some n.

§3. Measurable Functions in (S, M, m)

I. Henceforth we shall presuppose not just a measurable space (§1) but a mea-
sure space (S, M,m), where m: M — E* is a measure on a o-ring M C 2%,

We saw in Chapter 7 that one could often neglect sets of Lebesgue measure
zero on E"—if a property held everywhere except on a set of Lebesgue measure
zero, we said it held “almost everywhere.” The following definition generalizes
this usage.

Definition 1.

We say that a property P(x) holds for almost all x € A (with respect to
the measure m) or almost everywhere (a.e.(m)) on A iff it holds on A —Q
for some Q € M with m@Q = 0.

Thus we write
fn— f (ae.) or f=limf, (a.e.(m)) on A

iff f, — f (pointwise) on A — @, mQ = 0. Of course, “pointwise” implies
“a.e.” (take @ =), but the converse fails.
Definition 2.
We say that f: S — (T,p') is almost measurable on A iff A € M and f
is M-measurable on A — @, m@Q = 0.
We then also say that f is m-measurable (m being the measure in-
volved) as opposed to M-measurable.
Observe that we may assume @ C A here (replace @ by AN Q).

*Note 1. If m is a generalized measure (Chapter 7, §11), replace m@ = 0
by v, @ = 0 (v, = total variation of m) in Definitions 1 and 2 and in the
following proofs.
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Corollary 1. If the functions
fn:S‘)(T7p,)7 n:1727"'7
are m-measurable on A, and if

fo = [ (a.e(m))
on A, then f is m-measurable on A.

Proof. By assumption, f, — f (pointwise) on A — Qo, mQ = 0. Also, f, is
M-measurable on

A—Qn, mQ,=0, n=1,2....

(The @, need not be the same.)

Let

Q= U Qn;
n=0
SO
n=0

By Corollary 2 in §1, all f, are M-measurable on A — Q (why?), and f, — f
(pointwise) on A — Q, as A — Q C A — Q.

Thus by Theorem 4 in §1, f is M-measurable on A — Q. As m@Q = 0, this
is the desired result. [

Corollary 2. If f =g (a.e. (m)) on A and f is m-measurable on A, so is g.
Proof. By assumption, f = g on A — @7 and f is M-measurable on A — @2,
with le = ng =0.

Let Q =Q1UQ2. Then m@Q =0and g= f on A— Q. (Why?)

By Corollary 2 of §1, f is M-measurable on A — Q. Hence so is g, as
claimed. [

Corollary 3. If f: S — (T, p') is m-measurable on A, then
f= lim f, (uniformly) on A —Q (mQ =0),
n—oo
for some maps [y, all elementary on A — Q.

(Compare Corollary 3 with Theorem 3 in §1).

Quite similarly all other propositions of §1 carry over to almost measurable
(i.e., m-measurable) functions. Note, however, that the term “measurable” in
§81 and 2 always meant “M-measurable.” This implies m-measurability (take
Q@ = 0), but the converse fails. (See Note 2, however.)

We still obtain the following result.
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Corollary 4. If the functions
fn: S—=E* (n=12,...)
are m-measurable on a set A, so also are
Supfn7 il’lffn, mf’!h aﬂdhﬂfn
(Use Lemma 1 of §2).

Similarly, Theorem 2 in §2 carries over to m-measurable functions.

Note 2. If mis complete (such as Lebesgue measure and LS measures) then,
for f: S — E*(E™, C™), m- and M-measurability coincide (see Problem 3
below).

II. Measurability and Continuity. To study the connection between these
notions, we first state two lemmas, often treated as definitions.

Lemma 1. A map f: S — E"(C™) is M-measurable on A iff
Anf=lBleM
for each Borel set (equivalently, open set) B in E™ (C™).
See Problems 8-10 in §2 for a sketch of the proof.

Lemma 2. A map f: (S,p) = (T, p) is relatively continuous on A C S iff for
any open set B C (T, p'), the set AN f~1[B] is open in (A, p) as a subspace of
(S, p).

(This holds also with “open” replaced by “closed.”)

Proof. By Chapter 4, §1, footnote 4, f is relatively continuous on A iff its
restriction to A (call it g: A — T') is continuous in the ordinary sense.

Now, by Problem 15(iv)(v) in Chapter 4, §2, with S replaced by A, this
means that g~![B] is open (closed) in (A, p) when B is so in (T, p). But

Bl = {z € A| f(z) € B} = An f[B].
(Why?) Hence the result follows. O

Theorem 1. Let m: M — E* be a topological measure in (S,p). If f: S —
E"™ (C™) is relatively continuous on a set A € M, it is M-measurable on A.

Proof. Let B be open in E™ (C™). By Lemma 2,
AnfB
is open in (A, p). Hence by Theorem 4 of Chapter 3, §12,
ANf B =ANU

for some open set U in (S, p).
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Now, by assumption, A is in M. So is U, as M is topological (M D G).
Hence
ANfUB|=AnNU eM

for any open B C E™ (C™). The result follows by Lemma 1. O
Note 3. The converse fails. For example, the Dirichlet function (Exam-

ple (¢) in Chapter 4, §1) is L-measurable (even simple) but discontinuous ev-
erywhere.

Note 4. Lemma 1 and Theorem 1 hold for a map f: S — (T,p'), too,
provided f[A] is separable, i.e.,
flAJ€D
for a countable set D C T' (cf. Problem 11 in §2).

*II1. For strongly reqular measures (Definition 5 in Chapter 7, §7), we obtain
the following theorem.

*Theorem 2 (Luzin). Let m: M — E* be a strongly regular measure in (S, p).
Let f: S — (T,p') be m-measurable on A.
Then given € > 0, there is a closed set F C A (F € M) such that

m(A—F)<e
and f is relatively continuous on F.
(Note that if T'= E*, p’ is as in Problem 5 of Chapter 3, §11.)
Proof.! By assumption, f is M-measurable on a set
H=A-Q, mQ =0;

so by Problem 7 in §1, f[H] is separable in T. We may safely assume that f is
M-measurable on S and that all of T' is separable. (If not, replace S and 1" by
H and f[H], restricting f to H, and m to M-sets inside H; see also Problems 7
and 8 below.)

Then by Problem 12 of §2, we can fix globes G1,Gs, ... in T such that

(1) each open set B # () in T is the union of a subsequence of {Gy}.
Now let € > 0, and set
Sk=SnfHGk =[Gy, k=12,....

By Corollary 2 in §2, S, € M. As m is strongly regular, we find for each Sy
an open set
Uy 2 Sk,

L For a simpler proof, in the case mA < oo, see Problem 10 below.
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with Up € M and
€

Let BkZU;C*Sk,DZUkBk;SODEMaHd

€ 1
(2) mDSZmBkSZngE
k k
and
(2" Uy — B, = Sp = [ LGy

As D = Bg, we have
(Vk) Br—D=DByn(-D)=0.
Hence by (2/),
(Vk) fHGrIN(=D) = (Ux — By) N (~D)
= (UyN(—=D)) — (BxN(=D)) =Up N (-D).
Combining this with (1), we have, for each open set B = J, Gy, in T,

(3) 7 BI0 (=D) = 76k] 0 (=D) = Ui 1 (=D).

Since the Uy, are open in S (by construction), the set (3) is open in S — D
as a subspace of S. By Lemma 2, then, f is relatively continuous on S — D, or
rather on

H-D=A-Q-D

(since we actually substituted S for H in the course of the proof). As m@Q =0
and mD < %e by (2),

m(H — D) < mA — %5.
Finally, as m is strongly regular and H — D € M, there is a closed M-set
FCH-DCA
such that .
m(H-D-F)< ¢
Since f is relatively continuous on H — D, it is surely so on F. Moreover,
A-F=(A-(H-D))U(H—-D-F);

o
m(AfF)gm(Af(HfD))+m(HfoF)<%6+%€=6.
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This completes the proof. [

*Lemma 3. Given [a,b] C E' and disjoint closed sets A, B C (S, p), there
always is a continuous map g: S — [a,b] such that g = a on A and g = b
on B.
Proof. If A=0or B=10,set g=bor g=aon all of S.

If, however, A and B are both nonempty, set

(b= a)o(w, 4)
p(z, A) + p(z, B)
As A is closed, p(z, A) = 0 iff x € A (Problem 15 in Chapter 3, §14); similarly
for B. Thus p(z, A) + p(z, B) # 0.

Also,g=aon A, g=bon B,anda<g<bonS.

glx)=a+

For continuity, see Chapter 4, §8, Example (e). O

*Lemma 4 (Tietze). If f: (S, p) — E* is relatively continuous on a closed set
F C S, there is a function g: S — E* such that g = f on F,

inf g[S] = inf f[F], sup g[S] = sup f[F],
and g is continuous on all of S.

(We assume E* metrized as in Problem 5 of Chapter 3, §11. If | f| < oo, the
standard metric in E' may be used.)

Proof Outline. First, assume inf f[F] = 0 and sup f[F] = 1. Set

a=r(r<t)=ror o]

and

2 2
B=F(fz3)=Fnf H?@]
As Fis closed in S, so are A and B by Lemma 2. (Why?)

As BN A =0, Lemma 3 yields a continuous map ¢;: S — [0, %]7 with g1 =0
on A, and g; = % on B. Set fi = f—g1 on F;so|fi] < %, and f; is continuous
on F.

Applying the same steps to f; (with suitable sets Ay, By C F), find a con-
tinuous map gz, with 0 < g < % . % on S. Then fy = f1 — g2 is continuous,
and 0 < fo < (%)% on F.

Continuing, obtain two sequences {g,} and {f,} of real functions such that
each g, is continuous on S,

0 1 27171
<g, <-(%
*g"*?)(g) ’
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and f, = fn—1 — gn is defined and continuous on F', with
2\ "
0< < (3)

there (fo = f).
‘We claim that

oo
9= Z In
n=1
is the desired map.

Indeed, the series converges uniformly on S (Theorem 3 of Chapter 4, §12).
As all g,, are continuous, so is g (Theorem 2 in Chapter 4, §12). Also,

n 2 n
_ < (Z
-Sa|<(5) 0
k=1
on F' (why?); so f = g on F. Moreover,

12\
0§91§9§Z§(§) =1lons.
n=1

Hence inf g[S] = 0 and sup g[S] = 1, as required.
Now assume

inf f[F]=a <sup f[F]=b (a,b€ E").

Set
f(@)—a
b—a
so that inf A[F] = 0 and sup h[F] = 1. (Why?)
As shown above, there is a continuous map gg on S, with
_f-a
Cb—a

on F, inf go[S] = 0, and sup go[S] = 1. Set

h(z) =

go=nh

a+(b—a)gy =g

Then g is the required function. (Verify!)
Finally, if a,b € E* (a < b), all reduces to the bounded case by considering
H(z) = arctan f(z). O

*Theorem 3 (Fréchet). Let m: M — E* be a strongly regular measure in
(S,p). If f+ S — E*(E™, C™) is m-measurable on A, then

f= _lim fi (a.e.(m)) on A
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for some sequence of maps f; continuous on S. (We assume E* to be metrized
as in Lemma 4.)

Proof. We consider f: S — E* (the other cases reduce to E' via components).

Taking ¢ = % (¢t = 1,2,...) in Theorem 2, we obtain for each i a closed

M-set F; C A such that

m(A—Fz) < 1
1

and f is relatively continuous on each F;. We may assume that F; C F; 4 (if
not, replace F; by UZ:1 Fy).

Now, Lemma 4 yields for each i a continuous map f;: S — E* such that
fi = f on F;. We complete the proof by showing that f; — f (pointwise) on

the set -
B=|JF
i=1

and that m(A — B) = 0.
Indeed, fix any x € B. Then x € F; for some i = ig, hence also for i > ig
(since {F;}71). As f; = f on F;, we have

(Vi>io) fi(x) = f(),
and so f;(z) — f(z) for x € B. As F; C B, we get

m(A—B)<m(A—-F;) <

.| =

for all . Hence m(A — B) =0, and all is proved. O

Problems on Measurable Functions in (S, M, m)

1. Fill in all proof details in Corollaries 1 to 4.
1’. Verify Notes 3 and 4.

2. Prove Theorems 1 and 2 in §1 and Theorem 2 in §2, for almost measur-
able functions.

3. Prove Note 2.
[Hint: If f: S — E* is M-measurable on B = A — Q (mQ = 0, Q@ C A), then
A=BUQ and
Va€e E*) A(f>a)=B(f>a)UQ(f > a).

Here B(f > a) € M by Theorem 1 in §2, and Q(f > a) € M if m is complete. For
f: S — E™(C™), use Theorem 2 of §1.]

*4. Show that if m is complete and f: S — (T, p’) is m-measurable on A
with f[A] separable in T, then f is M-measurable on A.
[Hint: Use Problem 13 in §2.]
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*5.

*9.
10.

11.

Prove Theorem 1 for f: S — (T, p'), assuming that f[A] is separable
inT.

. Given f, — f (a.e.) on A, prove that f,, — g (a.e.) on Aiff f =g (a.e.)

on A.

. Given A € M in (S, M, m), let ma be the restriction of m to

Ma={XeM|XCA}L
Prove that
(i) (A, M4, ma4) is a measure space (called a subspace of (S, M, m));

(ii) if m is complete, topological, o-finite or (strongly) regular, so
ismay.

(i) Show thatif D C K C (T, p’), then the closure of D in the subspace
(K,p') is KN D, where D is the closure of D in (T, p).
[Hint: Use Problem 11 in Chapter 3, §16.]

(ii) Prove that if B C K and if B is separable in (T p'), it is so
in (K,p').
[Hint: Use Problem 7 from §1.]

Fill in all proof details in Lemma 4.

Simplify the proof of Theorem 2 for the case mA < oo.
[Outline: (i) First, let f be elementary, with f = a; on A; € M, A = |J,; 4;
(disjoint), > mA; = mA < oco.
Given € > 0,
- 1

3n) mA— mA; < —e.

@n) Somai<
Each A; has a closed subset F; € M with m(A; — F;) < ¢/2n. (Why?) Now use
Problem 17 in Chapter 4, §8, and set F' = ], F;.

(i) If f is M-measurable on H = A — Q, mQ = 0, then by Theorem 3 in §1,
fn — [ (uniformly) on H for some elementary maps fn. By (i), each f, is relatively
continuous on a closed M-set F,, C H, with mH — mF, < /2"™; so all f, are
relatively continuous on F' = (02| Fy,. Show that F is the required set.]

Given f,: S — (T,p'), n=1,2,..., we say that
(1) fn — f almost uniformly on A C S iff

(V6>0) (3DeM|mD<d) fn— f (uniformly) on A— D;
(ii) fn — f in measure on A iff

(Vd,0 >0) (k) (Yn>k) (3D, € M| mD, <)
p'(f, fn) <o on A—D,.
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Prove the following.

(a) fn — [ (uniformly) implies f,, — f (almost uniformly), and the
latter implies both f,, — f (in measure) and f, — f (a.e.).

(b) Given f, — f (almost uniformly), we have f, — g (almost uni-
formly) iff f = g (a.e.); similarly for convergence in measure.

(¢) If f and f,, are M-measurable on A, then f, — f in measure on
A iff
(o >0)  Tim mAG/(f. f.) > o) = 0.

12. Assuming that f,,: S — (7, p) is m-measurable on A for n =1,2,...,
that mA < oo, and that f, — f (a.e.) on A, prove the following.

(i) Lebesgue’s theorem: f, — f (in measure) on A (see Problem 11).
(ii) Egorov’s theorem: f,, — f (almost uniformly) on A.
[Outline: (i) frn and f are M-measurable on H = A — @Q, mQ = 0 (Corollary 1),
with fp, — f (pointwise) on H. For all ¢, k, set

10 = () (0 (. ) < ) em

n=t
by Problem 6 in §1. Show that (Vk) H;(k) / H; hence
lim mH;(k) = mH = mA < oo;
72— 00

(V6 >0) (Vk) 3ix) m(A—H; (k) < %,

proving (i), since
(90> i) 9 (s f) < - on Hiy (B) = A = (A= Hy, ().

(ii) Continuing, set (V&) Dy, = H;, (k) and

oo oo
D=A- (] Dp=J(A-Dy).
k=1 k=1

Deduce that D € M and
oo oo 6
mD <> m(A - H, (k) <> =0
k=1 k=1

Now, from the definition of the H;(k), show that f, — f (uniformly) on A — D,
proving (ii).]

13. Disprove the converse to Problem 12(i).
[Outline: Assume that A =[0,1); for all 0 < k and all 0 <14 < 2k set

e i—1 7
g(@) = - I ST
0 otherwise.
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Put the g;r in a single sequence by
fok i = gik-
Show that fn, — 0 in L measure on A, yet for no x € A does fn(z) converge as
14. Prove that if f: S — (T, p) is m-measurable on A and g: T — (U, p”) is
relatively continuous on f[A], then go f: S — (U, p") is m-measurable

on A.
[Hint: Use Corollary 4 in §1.]

84. Integration of Elementary Functions

In Chapter 5, integration was treated as antidifferentiation. Now we adopt
another, measure-theoretical approach.

Lebesgue’s original theory was based on Lebesgue measure (Chapter 7, §8).
The more general modern treatment develops the integral for functions f: S —
E in an arbitrary measure space. Henceforth, (S, M, m) is fixed, and the range
space F is E', E*, C, E™, or another complete normed space. Recall that
in such a space, Y, |a;| < oo implies that )~ a; converges and is permutable
(Chapter 7, §2).

We start with elementary maps, including simple maps as a special case.

Definition 1.

Let f: S — E be elementary on A € M; so f = a; on A; for some
M-partition

1

A= U A; (disjoint).

(Note that there may be many such partitions.)

We say that f is integrable (with respect to m), or m-integrable, on
A iff

Z la;| mA; < oo.

(The notation “|a;| mA;” always makes sense by our conventions (2*) in
Chapter 4, §4.) If m is Lebesgue measure, then we say that f is Lebesgue
integrable, or L-integrable.

We then define fA f, the m-integral of f on A, by

(1) /Af:/Afdm:ZaimAi.

L For a “limited approach,” use finite M-partitions and M-simple maps, treating m as
an additive premeasure on M, a ring.
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(The notation “dm” is used to specify the measure m.)
The “classical” notation for [, fdm is [, f(z)dm(z).

Note 1. The assumption
Z la;| mA; < oo
implies
(Vi) |a;lmA; < oo
so a; = 0 if mA; = oo, and mA; = 0 if |a;| = co. Thus by our conventions, all
“bad” terms a; mA; vanish. Hence the sum in (1) makes sense and is finite.

Note 2. This sum is also independent of the particular choice of {A;}. For
if { By} is another M-partition of A, with f = by on By, say, then f = a; = by,
on A; N By, whenever A; N By, # (). Also,

(Vi) A =|J(4in By) (disjoint);
k

le]
k

and hence (see Theorem 2 of Chapter 7, §2, and Problem 11 there)
ZaimAi = ZZ@IW(AI ﬂBk) = ZZbkm(Az ﬂBk) = ZbkmBk
i ik P k
(Explain!)
This makes our definition (1) unambiguous and allows us to choose any
M-partition {4;}, with f constant on each A;, when forming integrals (1).

Corollary 1. Let f: S — E be elementary and integrable on A € M. Then
the following statements are true.

(i) |f] < oo a.e. on A2

(ii) f and |f| are elementary and integrable on any M-set B C A, and

L)< [ins [

(iii) The set B = A(f #0) is o-finite (Definition 4 in Chapter 7, §5), and
L=
A B

2 That is, on A — Q for some Q € M, with mQ = 0.
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(iv) If f = a (constant) on A,

/Af:wmA.

V) [, IfI=04ff f=0 ae. on A

(vi) If mQ =0, then
fr=1o?

(so we may neglect sets of measure 0 in integrals).

(vii) For any k in the scalar field of E, kf is elementary and integrable, and

Jrr=k [ 1

Note that if f is scalar valued, k¥ may be a vector. If £ = E*, we assume
ke E.
Proof.
(i) By Note 1, |f| = |ai| = co only on those A; with mA; = 0. Let @ be the
union of all such 4;. Then m@Q = 0 and |f| < co on A — @, proving (i).
(i) If {A;} is an M-partition of A, {B N A;} is one for B. (Verify!) We have
f=a; and |f| = |a;] on BN A; C A;.
Also,
Z la;lm(BNA;) < Z la;| mA; < oco.
(Why?) Thus f and |f| are elementary and integrable on B, and (ii)
easily follows by formula (1).
(iii) By Note 1, f =0 on A; if mA; = co. Thus f # 0 on A4; only if mA; < occ.
Let {A;,} be the subsequence of those A; on which f # 0; so
(Vk) mA,;, < oc.

Also,
B =A(f #0) =|_JAi, € M (o-finite!).
k

By (ii), f is elementary and integrable on B. Also,

/ f = Zaik mAik?
B k
while

/Af:ZaimA,;.
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These sums differ only by terms with a; = 0. Thus (iii) follows.
The proof of (iv)—(vii) is left to the reader. O

Note 3. If f: S — E* is elementary and sign-constant on A, we also al-

low that
/ f= ZaimAi = +o0.
A i

Thus here fAf exists even if f is not integrable. Apart from claims of inte-
grability and o-finiteness, Corollary 1(ii)—(vii) hold for such f, with the same
proofs.

Example.

Let m be Lebesgue measure in E'. Define f = 1 on R (rationals) and
f=0o0n E! — R; see Chapter 4, §1, Example (c). Let 4 = [0, 1].

By Corollary 1 in Chapter 7, §8, ANR € M* and m(ANR) = 0. Also,
A—Re M*.

Thus {AN R, A — R} is an M*-partition of A, with f =1 on ANR
and f =0o0n A— R.

Hence f is elementary and integrable on A, and

/ f=1-mANR)+0-m(A—-R)=0.
A
Thus f is L-integrable (even though it is nowhere continuous).

Theorem 1 (additivity).

(i) If f: S — E is elementary and integrable or elementary and nonnegative
on A € M, then

®) Af—%:mf

for any M-partition {By} of A.
(i1) If f is elementary and integrable on each set By of a finite M-partition

A={]Bs,
k

it is elementary and integrable on all of A, and (2) holds again.

Proof. (i) If f is elementary and integrable or elementary and nonnegative on
A =, B, it is surely so on each By, by Corollary 2 of §1 and Corollary 1(ii)
above.
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Thus for each k, we can fix an M-partition By, = |J; A, with f constant
(f =agi) on Ag;, i =1,2,.... Then

A:UBk:UUAki
k k 1

is an M-partition of A into the disjoint sets Ay; € M.

Now, by definition,
/ F=> arimAy
By P

and
:E i Ai:E E i M Ak :E
/Af k’iakmk k(,Lakmk) k/ka

by rules for double series. This proves formula (2).
(ii) If f is elementary and integrable on By (k = 1,...,n), then with the
same notation, we have

Z |ak:| mAg; < oo
i

(by integrability); hence

n
Z Z |ak:| mAg; < co.

k=1 i
This means, however, that f is elementary and integrable on A, and so clause
(ii) follows. O
Caution. Clause (ii) fails if the partition {By} is infinite.
Theorem 2.

(i) If f,g: S — E* are elementary and nonnegative on A, then

/A(f+g)=/Af+/Ag-

(ii) If f,9: S — E are elementary and integrable on A, so is f £ g, and

Juza=[r+]q

Proof. Arguing as in the proof of Theorem 1 of §1, we can make f and g
constant on sets of one and the same M-partition of A, say, f = a; and g = b;
on A; € M; so

fftg=a;£b;on A;, i=1,2,....
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In case (i), f,g > 0; so integrability is irrelevant by Note 3, and formula (1)
yields

/(f+9) = (ai+b)mA;i =Y aimA;+» bimA; = / f+/ g
A i i A A
In (ii), we similarly obtain

3

(Why?) Thus f + g is elementary and integrable on A. As before, we also get

/A(fig):/Afi/Ag,

simply by rules for addition of convergent series. (Verify!) O

Note 4. As we know, the characteristic function Cp of a set B C S is

defined
1, z€B,

Cp(x) =
5(@) {O,xESfB
If g: S — E is elementary on A, so that

g=a;on A;, 1,2,...,

for some M-partition

A=A,

g= ZaiC’Al on A.

then

(This sum always exists for disjoint sets A;. Why?) We shall often use this
notation.

If m is Lebesgue measure in E', 5
the integral

= i mA;
/Ag Xi:am

has a simple geometric interpretation;
see Figure 33. Let A = [a,b] C E';
let g be bounded and nonnegative on
E'. Each product a; mA; is the area
of a rectangle with base A; and al- FIGURE 33
titude a;. (We assume the A; to be

Ql
bl
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intervals here.) The total area,
[ o= ama.
A i

can be treated as an approximation to the area under some curve y = f(z),
where f is approximated by g (Theorem 3 in §1). Integration historically arose
from such approximations.

Integration of elementary extended-real functions. Note 3 can be extended
to sign-changing functions as follows.

Definition 2.

If
f=> aiCa, (ai€E")
on
A=A (AieMm),
we set
p— + — -
(3) /A / /A f /A i
with
ff=fv0>0and f~ =(—f)vV0=>0;
see §2.

By Theorem 2 in §2, f* and f~ are elementary and nonnegative on A; so

/A f* and /A -

are defined by Note 3, and so is

=Ll

by our conventions (2*) in Chapter 4, §4.
We shall have use for formula (3), even if

[r=[ 5=

then we say that fA f is unorthodoxr and equate it to +oo, by convention;
cf. Chapter 4, §4. (Other integrals are called orthodoz.) Thus for elementary
and (extended) real functions, [, fis always defined. (We further develop this
idea in §5.)
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Note 5. With f as above, we clearly have
fr= aj and f~ =a; on A,

where
a;i = max(a;,0) and a; = max(—a;,0).
Thus
fr= al -mA; and / = a; -mA;,
[ =2 (=%
so that

(4) /AfZ/AJH*/Af*=Zaj~mAifZai_~mAi.

If fA ff < oo or fA f~ < oo, we can subtract the two series termuwise
(Problem 14 of Chapter 4, §13) to obtain

/f Z a; )mA; = ZaZmA

for aj —a; = a;. Thus formulas (3) and (4) agree with our previous definitions.3

Problems on Integration of Elementary Functions
1. Verify Note 2.
1’. Prove Corollary 1(iv)—(vii).

2. Prove that [, f =0 if mA =0 or f =0 on A. Disprove the converse
by examples.

3. Find a primitive F for f = Cg in our example. Show that

fdm = F(1) — F(0).
[0,1]

4. Fill in the proof details in Theorem 2.

[Hint: Use comparison test for series.]

=-5. Show that if f and g are elementary and nonnegative with f > g on

A, then
/fz/gz&
A A
[Hint: As in Theorem 2, let

f=>a;Ca, andg=> b;Ca,.
i i
Then f > g > 0 implies a; > b; > 0.]

3 For a “limited approach,” pass from here to §9.
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=6. Prove that if f and ¢ are elementary and (extended) real on A, then
/ f+9) / [+ / 9,
provided

i) fAf or ng is finite, or
(i) f4f, [49,and [, f=£ [, g are all orthodoz.
[Outline: As in Theorem 2, let

= ZaiCAi and g = ZbicAiv

SO
ftg=a; £b; on A;.

’/Af‘<0<v,

then by Problem 14 in Chapter 4, §13, and formula (4), > a; mA; converges ab-
solutely; so its termwise addition to any other series does not affect the absolute
convergence or divergence of the latter, i.e., the finiteness or infiniteness of its posi-
tive and negative parts. For example,

Now, if

Z(ai + bi)+ mAi = o

i

iff
Zb?’mAi:oo
Thus if
/g:ioo,
A
then
[uzo=[g=sc=[ 1]
A A A A
If both

/Af,/Ag;éioo,

Theorem 2(ii) applies. In the orthodox infinite case, a similar proof works on noting
that either the positive or the negative parts of both series are finite if

IRK

7. Show that if f is elementary and nonnegative on A and

/f>peEﬂ
A

is orthodox, too. (Verify!)]



250

9.

Chapter 8. Measurable Functions. Integration

then there is an elementary and nonnegative map g on A such that

/Afz/Ag>p,
g=0on A(f =0), and

f>gon A—A(f=0).

[Hints: Let
B=A(f = o)

and

C=A-B;
so B,C € M (Corollary 2 in §2). For all n > 0, define
gn=mnon B
and .
gn = (1 — ;)f on C}
S0 gn, is elementary and nonnegative on A and
f>gnon A—A(f=0). (Why?)

By Theorem 1 and Corollary 1(iv)(vii),

/Agn:/Bgn‘F/an:/B(n)+/c(17%)f:n-m3+<17%>/Cf,
Deduce that
Jm [gn= [ ge [ 1= [ 1om

(3n) /Agn > p.

Ele]

Take g = gn for that n.]

. Show that if £ = E*, Theorem 1(i) holds also if [, f is infinite but

orthodox.

(i) Prove that if f is elementary and integrable on A, so is —f, and

Jen==] 1

(ii) Show that this holds also if f is elementary and (extended) real
and fA f is orthodoz.
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§5. Integration of Extended-Real Functions
We shall now define integrals for arbitrary functions f: S — E* in a measure
space (S, M, m).! We start with the case f > 0.

Definition 1.
Given f > 0 on A € M, we define the upper and lower integrals,

Jand [.

of f on A (with respect to m) by

(1) 7Af = 7Af dm = i%f/Ah

over all elementary maps A > f on A, and

(1) lAf=ZAfdm=SI;p/Ag

over all elementary and nonnegative maps g < f on A.
If f is not nonnegative, we use f* = fVv 0 and f~ = (—f) V0 (§2),

and set
T iT [ o
lAf :lAfdmzlAﬁ —7Af‘-

By our conventions, these expressions are always defined. The integral
Juf (or fAf) is called orthodoz iff it does not have the form oo — oo in

(1), e.g., if f >0 (e, [~ =0),orif [, f < oc. An unorthodox integral
equals +00.

We often write [ for T and call it simply the integral (of f), even if

/Af#lAf?

“Classical” notation is [, f(x)dm(z).

1 Those who wish to consider measurable maps only should take Theorem 3 earlier.

2 There is good reason for identifying “integral” with “upper integral.”
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Definition 2.

The function f is called integrable (or m-integrable, or Lebesgue integrable,
with respect to m) on A, iff

7Afdm—/Afdm7éioo.

The process described above is called (abstract) Lebesgue integration as op-
posed to Riemann integration (B. Riemann, 1826-1866). The latter deals with
bounded functions only and allows h and ¢ in (1’) and (1”) to be simple step
functions only (see §9). It is inferior to Lebesgue theory.

7Afdm and / fdm
LA

depend on m. If m is Lebesgue measure, we speak of Lebesgue integrals, in the
stricter sense. If m is Lebesgue—Stieltjes measure, we speak of LS-integrals,
and so on.

The values of

Note 1. If f is elementary and (extended) real, our present definition of

I

agrees with that of §4. For if f > 0, f itself is the least of all elementary and
nonnegative functions
h>f

and the greatest of all elementary and nonnegative functions
g< f
Thus by Problem 5 in §4,

=min | h=max ,
,/Af h>f Ja 9<f /49

o-To-1

If, however, f # 0, this follows by Definition 2 in §4. This also shows that for
elementary and (extended) real maps,

7Af = /Af always.

ie.,

(See also Theorem 3.)
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Note 2. By Definition 1,

1 e 7Af always.

For if f > 0, then for any elementary and nonnegative maps g, h with

g<f<h

Jo= ]

lAf:sgp/Ag

is a lower bound of all such jA h, and so

Z;fg@aéh=7>ﬁ

In the general formula (1), too,
IRE:
LA A

Z K 7Af+ and 1 s 7Af’-

Theorem 1. For any functions f,g: S — E* and any set A € M, we have
the following results.?

(a) If f =a (constant) on A, then

7Af:1Af:a~mA.

(b) If f =0 on A or mA =0, then

/AleAf:O.
(c) If f > g on A, then

7Af27Ag andZAleAg.

3 Note that integrability is redundant here and in Theorem 2.

we have

by Problem 5 in §4. Thus

since
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(d) If f > 0 on A, then (c) First, let
f>g>0on A

/Af 20 and /Af 2 0. Take any elementary and nonnegative map H > f on A. Then H > g as
o well; so by definition,
Similarly if f <0 on A.

=inf [ A< [ H
(e) If 0 < p < o0, then /Ag th/A 7/14

N [ ¢ Thus B
/Apffp/AfandlApf p/Af s /AfS/AH

/
have
(¢) We have for any such H. Hence also
(-n=-[ famad [ =~ 1
/A J o4 J o4 A g<1§1;ff f
if one of the integrals involved in each case is orthodox. Otherwise, Similarly,
r r >
[ == [ fand [ -py=co=[ 1. /Af—./Ag
A J oA J oA A T T
if f>g2>0.
(£) If f >0 on A and In the general case, f > g implies
ADB, BeM, B B
fr>g"and f~ <g~. (Why?)
then
— — Thus by what was proved above,
[z famafs=] 1 — =
A B J oA J B / f+2/ +and/ ffé/ g .
(g) We have oA 4 A A
— - — Hence .
<] naalf 1< [ in Jr-fr=fo] o
A A Joa A g
oA LA
(but not ie.,
<] [i=]s
J 4 LA A A
in general). Similarly, one obtains
(h)IfszOnAandTAfzo(orf§0andef:0)7thensz /fZ/g-
a.e. on A. A A

(d) Tt is clear that (c) implies (d).
Proof. We prove only some of the above, leaving the rest to the reader.
. . L (e) Let 0 < p < oo and suppose f > 0 on A. Take any elementary and
(a) This following by Corollary 1(iv) in §4. nonnegative map

(b) Use (a) and Corollary 1(v) in §4. h> fon A
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By Corollary 1(vii) and Note 3 of §4, Lemma 1. Let f: S — E* and A € M. Then the following are true.

[ﬁhzgﬁh o Af<quﬁ

for any such k. Hence there is an elementary and (extended) real map

/pf:inf/ph:infp/h:p/ f h>fonA,
A hJa b Ja A .
with
Similarly, . . / h<q.
A
/ pf=p / I -
LA LA (ii) If
The general case reduces to the case f > 0 by formula (1). /A f>pekFEr,
/ . : / . .
(e") Assertion (¢') follows from (1) since there is an elementary and (extended) real map
=NT=r, =H=r" g< fonA,
and —(x —y) =y — x if x — y is orthodox. (Why?) with
(f) Take any elementary and nonnegative map /A g>np;
h>f>0on A moreover, g can be made elementary and nonnegative if f >0 on A.
By Corollary 1(ii) and Note 3 of §4, Proof. If f > 0, this is immediate by Definition 1 and the properties of glb
and lub.
/ h> / h If, however, f # 0, and if
B A .
for any such h. Hence q> / f :/ fr _/ f,
_ _ A A LA
/ f=1inf / h < inf / h= / I our conventions yield
B hJB hJa A

m>/ﬁ4mm)
A

Thus there are u,v € E* such that ¢ = v+ v and

Similarly for [.

(g) This follows from (c) and (e') since £f < |f| implies

[in=] =] 0= [

and f/ fm<w.
— 5 3 — A
> —f) > — > — . —
,/Am - /A( 1)z lAf - /Af To see why this is so, choose u so close to fAfJr that

— > — -
For (h) and later work, we need the following lemmas. - 1 Af
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and set v = q — u.

As the lemma holds for positive functions, we find elementary and nonneg-
ative maps b’/ and A", with

W o<,

/h’<u<ooand/h”>—v.
A A

Let h = A’ — . Then
h>fr—f"=f

and by Problem 6 in §4,

/h:/h'f/h” (for /h’ is ﬁnite!).
A A A A

/h>u+v=q7
A

and clause (i) is proved in full.

Hence

Clause (ii) follows from (i) by Theorem 1(¢’) if

ZAf<oo.

(Verify!) For the case fAf = 00, see Problem 3. O

Note 3. The preceding lemma shows that formulas (1’) and (1”) hold (and
might be used as definitions) even for sign-changing f, g, and h.

Lemma 2. If f: S — E* and A € M, there are M-measurable maps g and
h, with
g< f<honA,

Jr-Tomi Lo

We can take g,h >0 if f >0 on A.

Proof. If o
[ 1=
A

the constant map h = oo satisfies the statement of the theorem.
It

such that

—00<7 J < oo,

A
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let

1
Qn:/f+_7 n:17277
A n

Qn_>/ f < an.
A

By Lemma 1, for each n there is an elementary and (extended) real (hence
measurable) map h, > f on A, with

qn > /Ahn 27Af~

h =inf h, > f.

SO

Let

By Lemma 1 in §2, h is M-measurable on A. Also,

(Vn) qn>/Ahn27Ah27Af

by Theorem 1(c). Hence

SO

as required.
Finally, if

the same proof works with ¢, = —n. (Verify!)
Similarly, one finds a measurable map g < f, with

L=l s

Proof of Theorem 1(h). If f > 0, choose h > f as in Lemma 2. Let

D = A(h > 0) and An:A(h> %),

SO
[eS]

D= U Ap (Why?)7

n=1
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and D, A, € M by Theorem 1 of §2. Also,

o] T e )t

Thus (Vn) mA, = 0. Hence

mD:mUAn:mA(h>0):0;

n=1

s00< f<h<O0(ie, f=0) a.e. on A.
The case f < 0 reduces to (—f) >0. O

Corollary 1. If

/Alf\ < o0

then |f| < oo a.e. on A, and A(f # 0) is o-finite.

Proof. By Lemma 1, fix an elementary and nonnegative h > | f| with

/h<oo
A

(so h is elementary and integrable).

Now, by Corollary 1(i)—(iii) in §4, our assertions apply to h, hence certainly
to f. O

Theorem 2 (additivity). Given f: S — E* and an M-partition P = {B,,}
of A€ M, we have

@) (a) /Af=;/3nf and (b) Lf:; / i

provided
/ f ( / 1, respectively)
A LA

is orthodox, or P is finite.
Hence if [ is integrable on each of finitely many disjoint M-sets B,,, it is

S0 on
A=JBn,

and formulas (2)(a)(b) apply.

41t suffices that f be integrable on A (apply the same proof to f+ and f-).
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Proof. Assume first f > 0 on A. Then by Theorem 1(f), if one of

S0 is T 4f, and all is trivial. Thus assume all /] g [ are finite.
Then for any € > 0 and n € N, there is an elementary and nonnegative map

hy, > f on B, with
/ hn </ f+in.
B, B, 2

(Why?) Now define h: A— E* by h=h, on B,, n=1,2,....
Clearly, h is elementary and nonnegative on each By, hence on A (Corollary 3
in §1), and h > f on A. Thus by Theorem 1 of §4,

Jozfr=x [ = (f se5) =2 ], 1ee

Making ¢ — 0, we get
To prove also

take any elementary and nonnegative map H > f on A. Then again,

Jor=xf w2,

As this holds for any such H, we also have

[ fm=x/,s

This proves formula (a) for f > 0. The proof of (b) is quite similar.

If f z 0, we have o o X
/Af - /Af+ _ZAfi7

where by the first part of the proof,

7Af+ - ;YBnﬁ and L\f‘ - Z/Bﬂf‘-

n —
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K

is orthodox, one of these sums must be finite, and so their difference may be
rearranged to yield

[o=2([, ], r)-2],*

—Dn

If

proving (a). Similarly for (b).

This rearrangement works also if P is finite (i.e., the sums have a finite
number of terms). For, then, all reduces to commutativity and associativity of
addition, and our conventions (2*) of Chapter 4, §4. Thus all is proved. O

Corollary 2. If mQ =0 (Q € M), then for A e M

7A—Qf - 7Af and ZAQf - lAf'

For by Theorem 2,

7Af - 7A—Qf * 7,40Qf7

/AmeZO

where

by Theorem 1(b).
Corollary 3. If

is orthodox, so is

whenever AD X, X € M.

For if - o
/er,/ ff,/ f+701“/ f7 is finite,
A A S g J 4

it remains so also when A is reduced to X (see Theorem 1(f)). Hence orthodoxy
follows by formula (1).
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Note 4. Given f: S — E*, we can define two additive (by Theorem 2) set
functions s and s by setting for X € M

EX:7Xfand§X:/ f-
X

They are called, respectively, the upper and lower indefinite integrals of f, also

denoted by
/ f and / f

By Theorem 2 and Corollary 3, if

I

is orthodox, then § is o-additive (and semifinite) when restricted to M-sets
X C A. Also,

(or 57 and s;).

sh=s0=0

by Theorem 1(b).

Such set functions are called signed measures (see Chapter 7, §11). In par-
ticular, if f > 0 on S, § and s are o-additive and nonnegative on all of M,
hence measures on M.

Theorem 3. If f: S — E* is m-measurable (Definition 2 in §3) on A, then

o=l

Proof. First, let f > 0 on A. By Corollary 2, we may assume that f is
M-measurable on A (drop a set of measure zero). Now fix ¢ > 0.

Let Ag = A(f =0), Ao = A(f = o0), and
Ay =A((l+e)" < f<@+e)"), n=0,+1,+2,....
Clearly, these are disjoint M-sets (Theorem 1 of §2), and

A=AgUAoU G Ap.

n=-—oo
Thus, setting
0 on Ao,

g=49q X on A, and
(I4+e)™ onA, (n=0,£1,%£2,...)
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and

h=(14+¢)gon A,
we obtain two elementary and nonnegative maps, with

g<f<honA (Why?)

L[]

By Note 1,

Now, if ng = 00, then

7Af21Af2/Ag

f> / = 00.
A LA
If, however, fA g < 00, then

/Ahz/A(lJre)g:(lnLe)/Ag<oo;

so g and h are elementary and integrable on A. Thus by Theorem 2(ii) in §4,

[r=[o=[t-0=[+a-9=<]0

Moreover, g < f < h implies

/AgslAfs/Afs/Ah;
[ [ g o fase [

As € is arbitrary, all is proved for f > 0.

The case f » 0 now follows by formula (1), since f* and f~ are M-
measurable (Theorem 2 in §2). O

yields

—

SO
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Problems on Integration of Extended-Real Functions
1. Using the formulas in (1) and our conventions, verify that
(i) Jaf = +ooiff [ of* = oo
(ii) iAf:oo iffiAf+ = oo; and
(iii) TAf:foo iffiAf* =00 adeAf+ < 0.
(iv) Derive a condition similar to (iii) for iAf = —0o0.
(v) Review Problem 6 of Chapter 4, §4.

2. Fill in the missing proof details in Theorems 1 to 3 and Lemmas 1 and 2.

3. Prove that if fAf = 00, there is an elementary and (extended) real map
ggfonA,Witthg:oo.
[Outline: By Problem 1, we have

As Lemmas 1 and 2 surely hold for nonnegative functions, fix a measurable F < f+

(F > 0), with
/AF=1Af+=oo.

Arguing as in Theorem 3, find an elementary and nonnegative map g < F, with

(1+€)/A91/AF100;

song:ooandOSgSFSf+onA.
Let
AL =AF >0 eM

and

Ag=A(F=0)eM
(Theorem 1 in §2). On A4,

g< F <t =Ff (why?),

//Hg://ég:oc(why?)‘

Now redefine g = —oco on Ag (only). Show that g is then the required function.]

while on Ag, g = F = 0; so

4. For any f: S — E*, prove the following.
(a) If TAf < 00, then f < 0o a.e. on A.
(b) If fAf is orthodox and > —oo, then f > —oo a.e. on A.
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[Hint: Use Problem 1 and apply Corollary 1 to f¥; thus prove (a). Then for (b), use (i) If TA‘H < 0o and TA|g| < 00, then
Theorem 1(e’).] . . .
=-5. For any f,g: S — E*, prove that '/ f_/ g‘g/ If —gl
= — — A A A
(1) fAf+fA92fA(f+g)aand 4
. . ar
() [ ,(f+a)= [, f+ [0 if [[ 9] <oo ‘/ -
| 1= [ o< [ 17-4l
[Hint: Suppose that o o o J o4 J 4 A
/Af + /Ag < /A(f +9)- [Hint: Use Problems 5 and 6.]
Then there are numbers — — 8. Show that any signed measure 55 (Note 4) is the difference of two mea-
> d >/ , S5 =34 —3
u /Af and v L9 sures: 5p =S5fy —Sf_.
with _
utvs [ (F+9).
A

(Why?) Thus Lemma 1 yields elementary and (extended) real maps F > f and §6' Integrable Functions. Convergence Theorems

G > g such that

w> 7 Fandv> 7 G. I. Some important theorems apply to integrable functions.
4 4 Theorem 1 (linearity of the integral). If f,g: S — E* are integrable on a set
As f4+ g < F+ G on A, Theorem 1(c) of §5 and Problem 6 of §4 show that AeMin (S M m) 50 is
[ Gros[Fra=[r+[a<usy pf +4a9
A A A A

1
contrary to fOT any p,q € £, and

u+vS/A(f+g)- /A(prrqg):p/AfJFQ/Ag%

in particular,

Similarly prove clause (ii).]

6. Continuing Problem 5, prove that

7A(f+g)>7Af+1Ag>1A(f+g)>1Af+ZAg7 /A(fig):/Afi/Ag.

ided | [ g Proof. By Problem 5 in §5,
provide g| < 0.
La

[Hint for the second inequality: We may assume that / f + / g > / (f + g) > / (f + g) > / f + / qg.
_ _ AT S AT a T La La S
/(f+g)<ooand/f>foo.

A A (Here
(Why?) Apply Problems 5 and 4(a) to e r
— /f,/f,/g,and/g
AL A LA

[ +9+o.
are finite by integrability; so all is orthodox.)
As

7. Prove the following. - -
- . - — and - 7
(i) Jalfl <ooiff —oo < [ f < [,f < o0 /Af lAfdn /Ag 1,49

Use Theorem 1(¢’).]
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the inequalities turn into equalities, so that

Af+Ag—/?U+m—Z;U+w

Using also Theorem 1(e)(e’) from §5, we obtain the desired result for any
p,ge E'. O

Theorem 2. A function f: S — E* is integrable on A in (S, M,m) iff

(i) 4t is m-measurable on A, and
(ii) TAf (equivalently 7A|f\) is finite.

Proof. If these conditions hold, f is integrable on A by Theorem 3 of §5.

Conversely, let o
/ f= / f # 0.
A J oA

Using Lemma 2 in §5, fix measurable maps g and h (g < f < h) on A, with

o= 7o

By Theorem 3 in §5, g and h are integrable on A; so by Theorem 1,

/A(hfg)=/Ah*/Ag=0~

[}h—fr:a

and so by Theorem 1(h) of §5, h — f =0 a.e. on A.
Hence f is almost measurable on A, and

/f#im

by assumption. From formula (1), we then get

/f+a11<1/f < 00,
Jini=faer=[ s[5 <x

by Theorem 1 and by Theorem 2 of §2. Thus all is proved. O

As

we get

and hence

§6. Integrable Functions. Convergence Theorems 269

Simultaneously, we also obtain the following corollary.
Corollary 1. A function f: S — E* is integrable on A iff fT and f~ are
Corollary 2. If f,g: S — E* are integrable on A, so also are

Vg, fAg |fl, and kf fork € E*,

/Akf:k/Af.

For products fg, this holds if f or g is bounded. In fact, we have the following
theorem.

with
Exercise!

Theorem 3 (weighted law of the mean). Let f be m-measurable and bounded
on A. Set

p = inf f[A] and q = sup f[A].
Then if g is m-integrable on A, so is fg, and

/AfIQIZC/Algl
for some ¢ € [p, q].

If, further, f also has the Darbouz property on A (Chapter 4, §9), then
¢ = f(zg) for some zo € A.

Proof. By assumption,
GkeBY) |fl<k

on A. Hence if/ lg| =0,

‘/Af@‘ 3/4|f9|§k[4|g|:0;

so any c € [p, q] yields
/f\QIZC/ lgl = 0.
A A

If, however, fA lg| # 0, the number

(L) [

Moreover, as f and g are m-measurable on A, so is fg; and as

\/mkw/M<w,
A A

is the required constant.
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fg is integrable on A by Theorem 2.

Finally, if f has the Darboux property and if p < ¢ < ¢ (with p, ¢ as above),
then

fl@) <e< f(y)

for some z,y € A (why?); hence by the Darboux property, f(xo) = ¢ for some
xo € A.

If, however,
¢ <inf f[A] = p,
then
(f=olgl =0
and

Jr=al = [ sial e [ 1ol =0 by

so by Theorem 1(h) in §5, f —c¢ =0 a.e. on A. Then surely f(x¢) = ¢ for some
xg € A (except the trivial case mA = 0). This also implies ¢ € f[A] € [p,q].
Proceed similarly in the case ¢ > ¢. U

Corollary 3. If f is integrable on A € M, it is so on any B C A (B € M).
Proof. Apply Theorem 1(f) in §5, and Theorem 3 of §5, to f™ and f~. O

II. Convergence Theorems. If f,, — f on A (pointwise, a.e., or uniformly),

does it follow that
[ n [ 12
A A

To give some answers, we need a lemma.

Lemma 1. If f >0 on A € M and if

/ f>pekb”,
A

there is an elementary and nonnegative map g on A such that

/g>p,
Ja

and g < f on A except only at those x € A (if any) at which

F) = glz) = 0.
(We then briefly write g C f on A.)
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Proof. By Lemma 1 in §5, there is an elementary and nonnegative map G < f

on A, with
/ fZ/G>p~
J A A

For the rest, proceed as in Problem 7 of §4, replacing f by G there. O
Theorem 4 (monotone convergence). If0 < f, A f (a.e.) on A e M, i.e.,

0< fn < fagr (¥Yn),
and f, — f (a.e.) on A, then

[T

Proof for M-measurable f,, and f on A.! By Corollary 2 in §5, we may
assume that f,, / f (pointwise) on A (otherwise, drop a null set).
By Theorem 1(c) of §5, 0 < f,,  f implies

o< [ hs 1
dm [ hos 1

The limit, call it p, exists in E*, as {[, fo}1. It remains to show that

pz/?legf
7;f—/;ﬁ

by the assumed measurability of f; see Theorem 3 in §5.)

ZAf>p.

Then Lemma 1 yields an elementary and nonnegative map g C f on A, with

v [
A

An=A(fn>9), n=12,....

and so

(We know that

Suppose

Let

I For the general case, see Problem 5.
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Then A, € M and Theorem 5 (dominated convergence). Let f,: S — E be m-measurable on
o° AeM (n=1,2,...). Let
A /A= An.
n=1 fn— f (a.e.) on A.
For if f(z) = 0, then z € A, and if f(z) > 0, then f(z) > g(z), so that Then
fu(z) > g(z) for large n; hence z € A,,.
By Note 4 in §5, the set function s = [ g is a measure, hence continuous by T}LH;O /A |fn = f1 =0,

Theorem 2 in Chapter 7, §4. Thus
. . provided that there is a map g: S — E' such that
/g:sA: lim sA, = lim qg.
JA

n— oo n—o0 . A
n / g < oo
But as g < f,, on A,,, we have A
and
< < .
/Angf/Anfnf/Afn (Vn) |fa]l <g ae on A.
Hence Proof. Neglecting null sets, we may assume that
/g:hm/ gglim/fn:p,
A " A |fal < g <oo

contrary to p < fA g. This contradiction completes the proof. [J on A and f, — f (pointwise) on A; so |f| < g and
n k) —

Lemma 2 (Fatou). If f, >0 on Ae M (n=1,2,...), then o — f1 < 1ful + 1f] < 29
/ li_mfngli_m/ fn- on A. As |f| < oo, we have
o ! =l =0
Proof. Let . on A. Hence, setting
=gl o m= L e =29= 15~ 120
SO frn > gn > 0 and {g,}1 on A. Thus by Theorem 4, we get
— — — — 2g = lim h,, =limh,,.
/ lim gp, =lim/ In :m/ gn < m/ - e
A A A 4 We may also assume that ¢ is measurable on A. (If not, replace it by a mea-
But surable G > g, with
li n = ¢ n = inf fr, = lim f,,.
Jm_ g = Sup g S%pélzlnfk lim f, /G:/g«)o’
A A
Hence
_ i — by Lemma 2 in §5.) Then all
[ g, = [ timg, <tim [ 1.
A A A

hyy =29 — | fn =[]

as claimed. [ .
are measurable (even integrable) on A.
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Thus by Lemma 2,

[ 20= [ timh, <tim [ (2915, - 1)
=117m(/A2g+/A(*\fn*f\)>
~ [ g1~ [ 17 - 11)
=/A29*M/A‘fn*f|-

(See Problems 5 and 8 in Chapter 2, §13.)
Canceling [, 2¢ (finite!), we have

0<~Tm [ If, - |
A
Hence
on/ Ifn—flzli_m/ o= 110,
A A

as |fn — f| > 0. This yields

0=Tm [ 1fo = A =tim [ 1fo = 1 =tim [ 15, - 11,

as required. [
Note 1. Theorem 5 holds also for complex and vector-valued functions (for

|fr — f| is real).

In the extended-real case, Theorems 1(g) in §5 and Theorems 1 and 2 in §6

yield
/Afn—/Af]= A(fn—f)‘ s/A\fn—fHo,
fo0 [

Moreover, f is integrable on A, being measurable (why?), with

/Alf\s/Ag<OO~

For complex and vector-valued functions, this will follow from §7. Observe that
Theorem 5, unlike Theorem 4, requires the m-measurability of the f,.

ie.,

86. Integrable Functions. Convergence Theorems

Note 2. Theorem 5 fails if there is no “dominating”

9> Ifnlwith/g<oo,
A

even if f and the f, are integrable.
Example.

Let m be Lebesgue measure in A = E', f =0, and

I = 1 on[n,n+1],
" 10 elsewhere.

Thenfn%fandefnzl;so

lim Afn:17£0:/Af.

n—oo

The trouble is that any

9> fn (n=12..)

would have to be > 1 on B = [1, 00); so

[oz[g=1mp-.
A B

instead of fA g < 0.

This example also shows that f,, — f alone does not imply

[ fs

Theorem 6 (absolute continuity of the integral). Given f: S — E with

7A\f| < oo

and € > 0, there is § > 0 such that

/X\fl <e

mX<é (ADX, X e M).

whenever

Proof. By Lemma 2 in §5, fix h > |f|, measurable on A, with

o] <

275
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Neglecting a null set, we assume that |h| < co on A (Corollary 1 of §5). Now,
(Vn) set

onl) = { h(z), xze A, =A(h<n),

0, r e —A,.

Then g, < n and g, is measurable on A. (Why?)
Also, gn, > 0 and g, — h (pointwise) on A.
For let e > 0, fix z € A, and find k > h(z). Then

(Vn>k) h(z)<nand g,(z) = h(z).

So
(Yn>k) |gn(z)—h(z)=0<e.

Clearly, g, < h. Hence by Theorem 5

lim / |h — gn| = 0.
n—oo A

Thus we can fix n so large that

/A(hfgn) < %5.

For that n, let

and take any X C A (X € M), with mX < 4.
As g, < n (see above), Theorem 1(c) in §5 yields

/gng/(n):n~mX<n6:}e.
p's X 2

Hence as |f| < h and

J=a0< [ =g < 5

JA

(Theorem 1(f) of §5), we obtain

N 11
/ \f\g/h:/(hfgn)+/gn<f€+75:5,
X X X X 22

as required. [
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Problems on Integrability and Convergence Theorems

1. Fill in the missing details in the proofs of this section.

2. (i) Show that if f: S — E* is bounded and m-measurable on A, with
mA < oo, then f is m-integrable on A (Theorem 2) and

/Af:c-mA,

where inf f[A] < ¢ < sup f[A].
(ii) Prove that if f also has the Darboux property on A, then

(Fzo € A) = f(=o).
[Hint: Take g =1 in Theorem 3.]

(iii) What results if A = [a, b] and m = Lebesgue measure?

3. Prove Theorem 4 assuming that the f,, are measurable on A and that

(3h) Ah>7m

instead of f,, > 0.
[Hint: As {fn}1, show that

(Vn > k) / fn > —oo.
A

If
(3n) / fn =00,
A
then
/f:lim/ fn = o0.
A A
Otherwise,

< 005

(¥n>k) ‘/Afn

50 fn is integrable. (Why?) By Corollary 1 in §5, assume |f| < co. (Why?) Apply
Theorem 4 to hy = frn — fr (n > k), considering two cases:

/h<ooand/‘h:oo‘]
A A

4. Show that if f,  f (pointwise) on A € M, there are M-measurable
maps F,, > f, and F > f on A, with F,, /' F (pointwise) on A, such
that
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[Hint: By Lemma 2 of §5, fix measurable maps h > f and hy, > fn with the same

integrals. Let
F, = inf (hAhg), n=12,...,

and F' = sup,, I\, < h. (Why?) Proceed.]

5. For A € M and any (even nonmeasurable) functions f, f,: S — E*,

prove the following.
(i) If f, / f (a.e.) on A, then

[T

(3n) / fn > —oc.

A

provided

(i) If f,, \¢ f (a.e.) on A, then

[ R l K

(3n) 1 fu < o0,

A

provided

[Hint: Replace f, fn by F, Fy as in Problem 4. Then apply Problem 3 to Fy; thus
obtain (i). For (ii), use (i) and Theorem 1(e’) in §5. (All is orthodoz; why?)]

6. Show by examples that

(i) the conditions

7Afn>*00 and/ fn < o0
LA

in Problem 5 are essential; and
(ii) Problem 5(i) fails for lower integrals. What about 5(ii)?

[Hints: (i) Let A = (0,1) C E', m = Lebesgue measure, f, = —cc on (0, %), fn=1
elsewhere.

(i) Let M = {E',0}, mE* =1, m0 =0, fn = 1 on (—n,n), fr = 0 elsewhere.
If f=1o0on A= E', then f, — f, but not

[ =] s
Explain!]

7. Given f,: S — E* and A € M, let

gn = inf frand h, =sup fr (n=1,2,...).
k>n

k>n
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Prove that
(1) TAhﬂfn < @TAfn provided (3n) TAgn > —o0; and

(ii) iAan < mi,qf” provided (3n) iAh” < 0.
[Hint: Apply Problem 5 to g, and hy,.]

(iii) Give examples for which

7A1men #@7Afn and [ T, T [ o
(See Note 2). - -

8 Let f, >0on Ae Mand f, — f (a.e.)on A. Let AD X, X €¢ M.

Prove the following.
(i) It
[ 5o [ 1<,
A A

then

/iYﬁl;éj[Xf.

(ii) This fails for sign-changing f.

[Hints: If (i) fails, then

li_m7an < 7Xf o li_m7an - /Xf.

Find a subsequence of

{/x fn} {/ X n}
A—
contradic mg Lemma 2.

(ii) Let m = Lebesgue measure; A = (0,1), X = (0, 3),

=9. (i) Show that if f and g are m-measurable and nonnegative on A, then

(Va,b>0) /A(af—l—bg):a/Af—ﬁ—b/Ag.

(i) If, in adldition, J4f <ooor [,g < oo, this formula holds for any
a,be E.

[Hint: Proceed as in Theorem 1.]
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=-10. If

11.

12.

f = an7
n=1

with all f,, measurable and nonnegative on A, then

RIS

[Hint: Apply Theorem 4 to the maps
n
gn=> fx /I
k=1
Use Problem 9.]
If

q:;[q|fn|<w

and the f, are m-measurable on A, then

> |fal < o0 (a.e)on A

n=1

and f =37 f, is m-integrable on A, with

RIS

[Hint: Let g = >->° ;| | fn|- By Problem 10,

/Ag:g:l/Alnt:q<<>0;

s0 g < oo (a.e.) on A. (Why?) Apply Theorem 5 and Note 1 to the maps

n
gn =Y fr;
k=1

note that |gn| < g.]

(Convergence in measure; see Problem 11(ii) of §3).

(i) Prove Riesz’ theorem: If f,, — f in measure on A C S, there is a
subsequence {f,,} such that f,, — f (almost uniformly), hence
(a.e.), on A.

[Outline: Taking

86. Integrable Functions. Convergence Theorems

pick, step by step, naturals

ny<ng <---<ngp<---

and sets Dy € M such that (Vk)

and

mDy, < 2-k

P (fry, £) < 27F

on A — Dy. (Explain!) Let

En, =

Dy,

ICs

mE, < 2'=™. (Why?) Show that

(Yn) (Vk>n) p (fa,, f)<2'7"

on A — Ey. Use Problem 11 in §3.]

(ii) For maps f,: S — F and g: S — E' deduce that if

in measure on A and

then

(Vn) |fn] <g (ae)on A,

o= f

F1< g (ac) on A

[Hint: fn, — f (a.e.) on A]

13. Continuing Problem 12(ii), let

fn = f

in measure on A € M (f,: S — E) and

with

Prove that

Does

(Vn) |fn] <g (ae)on A,

lim
n—oo

/g<oo.
A

/Jh—ﬂzO

281
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[Outline: From Corollary 1 of §5, infer that g = 0 on A — C, where See also Problem 7 in §5 and Note 1 of §6 (for measurable functions) as regards
oo J—
¢ = | O (disjoint), lim / ful
k=1 A

Cl, < oo. (W M- bl A. Why?) Also, . .
mCi < 0o. (We may sssume g M-measurable on yT) Also 14. Do Problem 12 in §3 (Lebesgue-Egorov theorems) for 7' = E, assuming

oo>/;g:/;kcg+/cg:0+§1/c]€g; (Vn) |fnl <g (a.e.)on A,

so the series converges. Hence with

(Ve >0) (3p) /A9—6<é/ckg=/Hg7 /A9<OO

(instead of mA < 00).
[Hint: With H;(k) as before, it suffices that

where
P
H=JCreMm
k=1 lim m(A — H;(k)) = 0.
and mH < co. As |fn — f| < 2g (a.e.), we get e
_ _ — (Why?) Verify that

W [ te=n< [ Ap-s1< [ Aps14 [ 2a< [ ifa-fl42e
Eav A H A-H " (vn) ' (fn, ) =fn — fl <29 (a.e) on A,
(Explain!) and
As mH < oo, we can fix o > 0 with . 1
(Vik) A= Hi(k) CA(29> 1) UQ (mQ=0).

o-mH <e. k

Also, by Theorem 6, fix § such that Infer that
(Vi, k) m(A— H;(k)) < co.
2/ g<e . L. )
X Now, as (Vk) H;(k) \( 0 (why?), right continuity applies.]

whenever A D X, X € M and mX < 4.
As fn — f in measure on H, we find M-sets D,, C H such that

(Vn>ng) mD, <4é . .
. 87. Integration of Complex and Vector-Valued Functions
an
|fn7f‘ <UODA7L:H7D7L‘
I. First we consider functions f: S — E™(C™). For such functions, it is

i ? . . .
(We may use the standard metric, as |f| and |fn| < o0 a.e. Why?) Thus from (1), natural (and easy) to define integration “componentwise” as follows.!

we get o o
/ Ifn —f‘ S/ ‘fn _ fl 42 Definition 1.
4 _— — A function f: S — E™ is said to be integrable on A € M iff its n (real)
= /A [fn = fI+ /D [frn — fl +2¢ components, fi,..., fn, are. In this case, we define
J— ) " n

</A'L‘fn—f|+3€ (1) /f:/fdm:(/fly/f277/fn)zzék/fka

<o-mH + 3¢ < 4e A A A A A 1 A
for n > ng. (Explain!) Hence where the €j, are basic unit vectors (as in Chapter 3, §§1-3, Theorem 2).

Hm/A‘f" —fI=0. L As before, we presuppose an arbitrary (but fixed) measure space (S, M, m).
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In particular, a complex function f is integrable on A iff its real and
imaginary parts (fre and fin) are. Then we also say that [, f emists.
By (1), we have

2) /Af: (/Afre,/Afim):/Afrem/Afim.

If f: S — C™, we use (1), with complez components fj.

With this definition, integration of functions f: S — E™ (C™) reduces to
that of fi: S — E'(C), and one easily obtains the same theorems as in §§4-6,
as far as they make sense for vectors.

Theorem 1. A function f: S — E™(C™) is integrable on A € M iff it is
m-measurable on A and [, |f] < oco.

(Alternate definition!)

Proof. Assume the range space is E".

By our definition, if f is integrable on A, then its components fj are. Thus
by Theorem 2 and Corollary 1, both in §6, for £ = 1,2,... ,n, the functions
fz' and f,~ are m-measurable; furthermore,

/Afljyé:tooand /Af;#j:oo.

This implies

oo>/Af,j+/Af,;:A(fi+f;):A|fk|, k=1,2,....n.

Since |f] is m-measurable by Problem 14 in §3 (] - | is a continuous mapping
from E™ to E'), and

|fl =

n
> et
k=1

n n

< el el =D Il
k=1 k=1

we get

/A|f|s/A§:j|fk|=i/Afk<oo.

Conversely, if f satisfies

1<

(k) 1/Afk

2 For vector-valued functions, too, this phrase means integrability.

then

< oQ.
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Also, the fi, are m-measurable if f is (see Problem 2 in §3). Hence the fj are
integrable on A (by Theorem 2 of §6), and so is f.

The proof for C™ is analogous. O

Similarly for other theorems (see Problems 1 to 4 below). We have already

noted that Theorem 5 of §6 holds for complex and vector-valued functions. So
does Theorem 6 in §6. We prove another such proposition (Lemma 1) below.

II. Next we consider the general case, f: S — E (E complete). We now adopt
Theorem 1 as a definition. (It agrees with Definition 1 of §4. Verify!) Even
if B = E*, we always assume |f| < oo a.e.; thus, dropping a null set, we can
make f finite and use the standard metric on E*.

First, we take up the case mA < oo.

Lemma 1. If f,, — f (uniformly) on A (mA < o), then

/Am—fmo.

Proof. By assumption,
(Ve>0) (3k) (Vn>k) |fn—fl<econA;

SO

> [1f-f< [ @=cmi<o

As € is arbitrary, the result follows. O

Our goal is to prove results on linearity (Theorem 2) and additivity (Theo-
rem 3) for general F; for a “limited approach,” see Problem 2 for E = E™ (C™).
*Lemma 2. If

/|f\<oo (mA < c0)
A

and
f= lim f, (uniformly) on A —Q (m@Q =0)

n—oQ

for some elementary maps f, on A, then all but finitely many f, are elementary
and integrable on A, and

lim In
n—0o0 A

exists in E; further, the latter limit does not depend on the sequence { f,}.

Proof. By Lemma 1,

(Ve >0) (3q) (Vn,k > q) /Alfn—f|<€and /A\fn—fkl<€~
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(The latter can be achieved since

kILH;oA|f”_f’f| :/A|fn —fl<e?)

lfol < 1fn = fI+ 111,

Now, as

Problem 7 in §5 yields

o>k 151 [ir-n+ [1n<es [if<e

Thus f, is elementary and integrable for n > k, as claimed. Also, by Theorem 2

and Corollary 1(ii), both in §4,
=| [ = p| < [ 15 -l <e
A A

/Afn—/Afk

Thus { [, fn} is a Cauchy sequence. As E is complete,

(Vn,k>q)

lim/Afn # +o0

exists in F, as asserted.

Finally, suppose g, — f (uniformly) on A — @ for some other elementary
and integrable maps g,. By what was shown above, lim [ 4 n exists, and

lim/Agn —limAfn 1imA(gn — fn)

by Lemma 1, as g, — f, — 0 (uniformly) on A. Thus

hm/ In —hrn/ s

This leads us to the following definition.
*Definition 2.
If f: S — E is integrable on A € M (mA < 00), we set

[ =] ram= 1w | .

for any elementary and integrable maps f,, such that f,, — f (uniformly)
on A—Q, mQ =0.

§lim/|gn—fn—0\:0
A

and all is proved. [

31Indeed, fn — f& — fn — f (uniformly) on A as k — oco; so Lemma 1 applies.
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Indeed, such maps exist by Theorem 3 of §1, and Lemma 2 excludes ambi-
guity.

*Note 1. If f itself is elementary and integrable, Definition 2 agrees with
that of §4. For, choosing f,, = f (n=1,2,...), we get

IRENR:

*Note 2. We may neglect sets on which f = 0, along with null sets. For
if f=0on A— B (A D B, Be M), we may choose f, = 0 on A— B in
Definition 2. Then

/Aleim/Afnzlim/Bfn:/Bf.

Thus we now define
[r=]1
A B

even if mA = oo, provided f =0 on A — B, i.e.,
f=fCponA

(C'p = characteristic function of B), with A O B, B € M, and mB < co.
If such a B exists, we say that f has m-finite support in A.

*Note 3. By Corollary 1 in §5,

Am<m

implies that A(f # 0) is o-finite. Neglecting A(f = 0), we may assume that

(the latter as in §4).

A=|JBn, mB, < oo, and {B,}t

(if not, replace B, by J;_, Bx); so B, / A.

*Lemma 3. Let ¢: S — E be integrable on A. Let B, /S A, mB, < oo,
and set

fn:¢CB"7 n=12....
Then f, — ¢ (pointwise) on A, all f, are integrable on A, and

lim / fn
n—oo A
exists in E. Furthermore, this limit does not depend on the choice of {By,}.

Proof. Fix any x € A. As B,, /* A= B,,
(Fng) (Vn>ng) =€ B,.
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By assumption, f,, = ¢ on B,,. Thus
(Vn>mno) folx)=¢(x);

so fn — ¢ (pointwise) on A.
Moreover, f, = ¢ Cp, is m-measurable on A (as ¢ and Cp, are); and

|fnl =19/ CB,

[1nl< [ 16 <.

Thus all f,, are integrable on A.
As f,=0o0n A— B, (mB < c0),

/Afn

is defined. Since f, — ¢ (pointwise) and |f,| < |¢| on A, Theorem 5 in §6,

with g = |¢|, yields
[ 10 =60
A

The rest is as in Lemma 2, with our present Theorem 2 below (assuming m-
finite support of f and g), replacing Theorem 2 of §4. Thus all is proved. [

implies

*Definition 3.
If ¢: S — FE is integrable on A € M, we set

o= [ oan=tm [ 1.
A . A n—>00
with the f,, as in Lemma 3 (even if ¢ has no m-finite support).

Theorem 2 (linearity). If f,g: S — E are integrable on A € M, so is

pf+aqg

frofs

Furthermore if f and g are scalar valued, p and ¢ may be vectors in E.

for any scalars p,q. Moreover,

/ (pf +a9) =

*Proof. For the moment, f, g denotes mappings with m-finite support in A.
Integrability is clear since pf + gg is measurable on A (as f and g are), and

Ipf + a9l < Ipl1f] + lal gl
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[ vt +asl < 1ol [ 1f1+1al [ 1ol < .

Now, as noted above, assume that
f=[Cp, and g=gCp,
for some By, Bs C A (mBy + mBy < 00). Let B = By U Bg; so
f=9=pf+q9=00nA-B;

yields

additionally,

/Af=/Bf,/Ag=/Bg, and A(pf+qg)=[3(pf+qg)~

Also, mB < o0; so by Definition 2,

/Bf:hm/Bfnand /Bgzlim/Bgn

for some elementary and integrable maps
fn — f (uniformly) and g, — ¢ (uniformly) on B — @, m@Q = 0.
Thus
pfn + q9n — pf + qg (uniformly) on B — Q.
But by Theorem 2 and Corollary 1(vii), both of §4 (for elementary and inte-

grable maps),
/ (pfn +qgn) :p/ fn "‘Q/ 9n-
B B B
Hence

/A (nf +a9) = /B (pf +qg) = lim /B (pfn + a9n)

:lim(p/BfnnLq/Bgn):p/BfﬂLQ/Bg:P/AfJFQ/Ag

This proves the statement of the theorem, provided f and g have m-finite
support in A. For the general case, we now resume the notation f,g,... for
any functions, and extend the result to any integrable functions.

Using Definition 3, we set

A= Bn, {Bn}t, mB, < o,

n=1
and
fn:fCBnagn:gCan n:172a"--
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Then by definition,

f— lim fn and /g: lim Ins
A A

n—oo n—oQ

pAf+qu=n1Lg(pAfn+QAgn)-

As fn, gn have m-finite supports, the first part of the proof yields

p/ fn+Q/gn:/(pfn+qgn)-
A A A
Thus as claimed,

p/Af+q/Ag=lim/A(pfn+qgn)=/A(pf+qg)- O

Similarly, one extends Corollary 1(ii)(iii)(v) of §4 first to maps with m-finite
support, and then to all integrable maps. The other parts of that corollary
need no new proof. (Why?)

Theorem 3 (additivity).
(i) If f: S — E is integrable on each of n disjoint M-sets Ay, it is so on

their union
n
A= A,
k=1

[o-x].

(ii) This holds for countable unions, too, if f is integrable on all of A.

and so

and

*Proof. Let f have m-finite support: f = fCp on A, mB < co. Then

By,=ArNB, k=12... n

where

By Definition 2, fix elementary and integrable maps f; (on A) and a set @
(m@ = 0) such that f; — f (uniformly) on B — @ (hence also on By, — @), with

/f:/f—hm fi and/ f= lim fl7 k=1,2,...,n.
A B 11— 00 1—> 00
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As the f; are elementary and integrable, Theorem 1 in §4 yields

/AfiZ/Bfizli/kai:§/Akfi~
Hence

f=1lim [ fi= lim fi= (‘hm / fi) = f
/A i—oo | 2—)001;1. B, 1; =00 J A, ; A

Thus clause (i) holds for maps with m-finite support. For other functions,
(1) now follows quite similarly, from Definition 3. (Verify!)
As for (ii), let f be integrable on

A= U Ay (disjoint), Ay € M.
k=1

In this case, set g, = f Cp,, where B, = Jj_, Ax, n=1,2,.... By clause (i),

we have

(3) /f‘gn;/Jgngn:;::l/Akgn:;/Mﬂ

since g, = f on each Ay C B,.

n?

Also, as is easily seen, |g,| < |f| on A and g, — f (pointwise) on A (proof
as in Lemma 3). Thus by Theorem 5 in §6,

/A\gn*f\%(l
A(g7z_f)‘ S/Algn—f\,

/f: lim In»
A n—oo J 4

-

9n —
A

we obtain

and the result follows by (3).

Problems on Integration of Complex
and Vector-Valued Functions

1. Prove Corollary 1(iii)—(vii) in §4 componentwise for integrable maps
f: 58— E™(C™).

2. Prove Theorems 2 and 3 componentwise for E = E™ (C™).

2’. Do it for Corollary 3 in §6.
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11.

12.

13.
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[ 1<

/\fk|<oo, E=1,...,n.
A

. Prove Theorem 1 with

replaced by

. Prove that if f: S — E™ (C™) is integrable on A, so is | f|. Disprove the

converse.

. Disprove Lemma 1 for mA = oc.
*6.
*7.
*8.
*9,

=10.

Complete the proof of Lemma 3.
Complete the proof of Theorem 3.
Do Problem 1 and 2/ for f: S — E.

Prove formula (1) from definitions of Part 11 of this section.

Show that
‘/Af‘ g/Alfl

for integrable maps f: S — E. See also Problem 14.

[Hint: If mA < oo, use Corollary 1(ii) of §4 and Lemma 1. If mA = oo, “imitate”
the proof of Lemma 3.]

Do Problem 11 in §6 for f,: S — E. Do it componentwise for £ =
E’IL (C7l).
Show that if f,g: S — E!(C) are integrable on A, then*

[ < i 1o

In what case does equality hold? Deduce Theorem 4(c’) in Chapter 3,
§61-3, from this result.

[Hint: Argue as in that theorem. Consider the case

1 — = 0.
(3teEY /Alf tg] = 0.

Show that if f: S — E' (C) is integrable on A and

‘/Af‘=/A|f\,

Becel) cf =1/l

then
a.e. on A.

4 One may assume that [, |f|> and [, |g|* are finite (otherwise, all is trivial).

§7. Integration of Complex and Vector-Valued Functions 293

[Hint: Let a = fA f. The case a = 0 is trivial. If a # 0, let

c:M; c|=1; ca =|al.
a

Let r = (¢f)re. Show that r < |cf| = |f],

/Af:/Acf:/ATS/A\f\:’/Af
Joui= [ = [ e

(cf)re = lcf] (a.e.), and cf = [cf| = |f] a.e. on A]
14. Do Problem 10 for E = C using the method of Problem 13.

15. Show that if f: S — F is integrable on A, it is integrable on each M-set
B C A. If, in addition,
fr=
B

for all such B, show that f =0 a.e. on A. Prove it for E = E™ first.
[Hint for E = E*: A= A(f > 0)UA(f <0). Use Theorems 1(h) and 2 from §5.]

16. In Problem 15, show that
5= / f
is a o-additive set function on
MAZ{XEM‘XQA}
(Note 4 in §5); s is called the indefinite integral of f in A.

)

88. Product Measures. Iterated Integrals
Let (X, M, m) and (Y, N, n) be measure spaces, with X € M and Y € N. Let
C be the family of all “rectangles,” i.e., sets

A x B,

with A € M, Be N, mA < co, and nB < oo.
Define a premeasure s: C — E' by

s(Ax B)=mA-nB, AxBeC.
Let p* be the s-induced outer measure in X x Y and
p: P*— E*

the p*-induced measure (“product measure,” p = m x n) on the o-field P* of
all p*-measurable sets in X x Y (Chapter 7, §§5-6).
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We consider functions f: X xY — E* (extended-real).

I. We begin with some definitions.
Definitions.

(1) Given a function f: X — Y — E* (of two variables z,y), let f, or f(z, -)
denote the function on Y given by

fa(y) = f(z,9);
it arises from f by fizing x.
Similarly, f¥ or f(-,y) is given by f¥(z) = f(x,y).
(2) Define g: X — E* by

g(a) = /Y f(a, -)dn,

/X/dendm:/xgdm,

/de(:r)/yf(%y)d"(y)-

This is called the iterated integral of f on Y and X, in this order.
Similarly,

and set

also written

) = [ f7dm

/Y/demdn:/yhdn.

Note that by the rules of §5, these integrals are always defined.

and

(3) With f, g, h as above, we say that f is a Fubini map or has the Fubini
properties (after the mathematician Fubini) iff

(a) g is m-measurable on X and h is n-measurable on Y;

(b) fu is n-measurable on Y for almost all z (ie., for x € X — @Q,
m@ = 0); fY is m-measurable on X for y € Y — Q', nQ" = 0; and

(c) the iterated integrals above satisfy

[ fmin= ] [y |

(the main point).
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For monotone sequences
fi: X xY 5 EB* (k=1,2,...),

we now obtain the following lemma.

Lemma 1. If 0 < fi 7 f (pointwise) on X XY and if each fi, has Fubini
property (a), (b), or (c), then f has the same property.

Proof. For k=1,2,..., set

gk(z) :/Yfk(% “)dn
and

Py (y) :/ka(ny)dm-

By assumption,
pointwise on Y. Thus by Theorem 4 in §6,

/Y fula, ) /Y f(a, -)dn,

ie., gr /¢ (pointwise) on X, with ¢ as in Definition 2.
Again, by Theorem 4 of §6,

/9kdm//gdm;
X X

/Xfyfdndm:kliﬁl)r;/x/yfkdndm.
/Y/demdn
Je

(VE) fr(x,-) is n-measurable on Y if

or by Definition 2,

Similarly for
and

Hence f satisfies (¢) if all f; do.
Next, let fi have property (b); so
z € X — Qi (mQy =0). Let

Q=

k=1
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so m@ = 0, and all fi(z, -) are n-measurable on Y, for x € X — Q. Hence
so is

f(z, )= lim fg(z, -).
k—o0
Similarly for f(-,y). Thus f satisfies (b).
Property (a) follows from g5, — g and hy, — h. O

Using Problems 9 and 10 from §6, the reader will also easily verify the fol-
lowing lemma.

Lemma 2.

(i) If f1 and fo are nonnegative, p-measurable Fubini maps, so is afi + bfa
fora,b>0.

(i) If, in addition,

/ fldp<ooor/ fadp < 0,
XxXY XxY

then fi1 — fo is a Fubini map, too.

Lemma 3. Let f =Y 2, f; (pointwise), with fi >0 on X x Y.
(i) If all f; are p-measurable Fubini maps, so is f.

(ii) If the f; have Fubini properties (a) and (b), then

/X/;fdndm—g/x/x;fidndm
/Y/demdn—g/y/xfidmdn.

II. By Theorem 4 of Chapter 7, §3, the family C (see above) is a semiring,
being the product of two rings,

and

{Ae M |mA < oo} and {B €N |nB < co}.

(Verify!) Thus using Theorem 2 in Chapter 7, §6, we now show that p is an
extension of s: C — E.

Theorem 1. The product premeasure s is o-additive on the semiring C. Hence
(i) CCP* andp=s<oo onC, and

(ii) the characteristic function Cp of any set D € C is a Fubini map.
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Proof. Let D=AXx B€C(C;so
Cp(x,y) = Ca(x) - Cp(y).

(Why?) Thus for a fized x, Cp(z, -) is just a multiple of the A/-simple map
C, hence n-measurable on Y. Also,

g(w):/ch(x, ')dn:CA(LE)-/YC’Bdn:C’A(x)-nB;

so g = Cy - nB is M-simple on X, with

//C’andm:/gdm:nB/ Cyudm =nB-mA=sD.
xJy X X

Similarly for Cp(-,y), and

h(y) = /XcD<-,y>dm.

Thus Cp has Fubini properties (a) and (b), and for every D € C

(1) //C’andm://Cdedn:sD.
xJy v Jx

To prove o-additivity, let

D= U D, (disjoint), D; € C;
i=1
S0
Cp=Y Cp,.
i=1

(Why?) As shown above, each Cp, has Fubini properties (a) and (b); so by (1)
and Lemma 3,

sD://C dndm = //C , dndm = sD;,
xly P ; sy P 1:21

as required.
Assertion (i) now follows by Theorem 2 in Chapter 7, §6. Hence

sD =pD = Cp dp;
JXXY

so by formula (1), Cp also has Fubini property (c), and all is proved. [0

Next, let P be the o-ring generated by the semiring C (so C C P C P*).
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Lemma 4. P is the least set family R such that
(i) R2C;
(ii) R is closed under countable disjoint unions; and

(i) H-DeR ifDeR and D C H, HeC.

This is simply Theorem 3 in Chapter 7, §3, with changed notation.
Lemma 5. If D € P (0-generated by C), then Cp is a Fubini map.

Proof. Let R be the family of all D € P such that Cp is a Fubini map. We
shall show that R satisfies (i)—(iii) of Lemma 4, and so P C R.

(i) By Theorem 1, each Cp (D € C) is a Fubini map; so each D € C is in R.
(ii) Let
oo
D = Di (disjoint), D; € R.
i=1

Then
Cp = Z Cp,,
i=1

and each Cp, is a Fubini map. Hence so is Cp by Lemma 3. Thus D € R,
proving (ii).

(iii) We must show that C'i_p is a Fubini map if Cp isand if D C H, H € C.
Now, D C H implies

Cy_p=Cyx—Cp.

(Why?) Also, by Theorem 1, H € C implies
/ Cudp=pH =sH < oo,
XxY

and Cp is a Fubini map. So is C'p by assumption. So also is
Cu-p=Cx—0Cp
by Lemma 2(ii). Thus H — D € R, proving (iii).
By Lemma 4, then, P C R. Hence (VD € P) Cp is a Fubini map. O

We can now establish one of the main theorems, due to Fubini.

Theorem 2 (Fubini I). Suppose f: X x Y — E* is P—measurable on X x Y
(P as above) rom. Then f is a Fubini map if either

(i) f0on X XY, or
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/Xxy|f|dp7 /X/Y|f|dndm7 or /y/demdn

is finite."

(ii) one of

In both cases,

(2) /X/dendm:/y/xfdmdn:/xxyfdp.

Proof. First, let
f= ZaicDi (a; >0, D; € P),
i=1

i.e., f is P-elementary, hence certainly p-measurable. (Why?) By Lemmas 5
and 2, each a;Cp, is a Fubini map. Hence so is f (Lemma 3). Formula (2) is
simply Fubini property (c).

Now take any P-measurable f > 0. By Lemma 2 in §2,

f=lim fron X xXY
k— o0

for some sequence {fx}1 of P-elementary maps, fr > 0. As shown above, each
fx is a Fubini map. Hence so is f by Lemma 1. This settles case (i).

Next, assume (ii). As f is P-measurable, so are f*, f_, and | f| (Theorem 2
in §2). As they are nonnegative, they are Fubini maps by case (i).

Sois f = fT — f~ by Lemma 2(ii), since f* <|f| implies

/ ftdp < oo
XxY

by our assumption (ii). (The three integrals are equal, as |f| is a Fubini map.)
Thus all is proved. [

ITI. We now want to replace P by P* in Lemma 5 and Theorem 2. This works
only under certain o-finiteness conditions, as shown below.

Lemma 6. Let D € P* be o-finite, i.e.,
o0
D = | Di (disjoint)
i=1
for some D; € P*, with pD; < o0 (i=1,2,...).2

I Note the use of absolute values; without them, Theorem 2 fails (see Problem 5').
2 See Note 2 in Chapter 7, §8.
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Then there is a K € P such that p(K — D) =0 and D C K.

Proof. As P is a o-ring containing C, it also contains C,. Thus by Theorem 3
of Chapter 7, §5, p* is P-regular.
For the rest, proceed as in Theorems 1 and 2 in Chapter 7, §7. O

Lemma 7. If D € P* is o-finite (Lemma 6), then Cp is a Fubini map.
Proof. By Lemma 6,

(3K eP) p(K-D)=0, DCK.
Let @ = K — D, so pQ =0, and Cg = Cx — Cp; that is, Cp = Cx — Cg and
/ Cqdp =pQ = 0.
XxY
As K € P, Ck is a Fubini map. Thus by Lemma 2(ii), all reduces to proving

the same for Cg.
Now, as pQ = 0, @ is certainly o-finite; so by Lemma 6,

3ZeP) QCZ pZ=pQ=0.

Again C'z is a Fubini map; so
/ /C’Zdndm: Czdp=pZ=0.
Jx Jy X XY

As Q C Z, we have Cg < Cyz, and so

/x/yCandm:/XUYCQ(% ~)dn} dm

§/ {/ Cyz(z dn} dmz/ Cyzdp=0.
x Ly XXY
Similarly,

(4) /Y/XCQdmdn:/{/ Col-

Thus setting

(3)

dm} dn = 0.

/ Co(x, -)dn and h(y / Cqo(-,y)dm,

/gdm:(J:/ hdn.
X Jy

Hence by Theorem 1(h) in §5, g =0 a.e.on X, and h =0a.e.onY. So g and h
are “almost” measurable (Definition 2 of §3); i.e., Cq has Fubini property (a).

we have
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Similarly, one establishes (b), and (3) yields Fubini property (c), since

//Candm //CQdmdn—/ Cqdp =0,
X XY

as required. [J

Theorem 3 (Fubini IT). Suppose f: X xY — E* is P*-measurable® on X xY
and satisfies condition (i) or (ii) of Theorem 2.

Then f is a Fubini map, provided f has o-finite support, i.e., f vanishes
outside some o-finite set H C X x Y.

Proof. First, let
f:Za,-C’Di (ai >0, Di G’P*),

with f =0 on —H (as above).

As f =a; # 0 on A;, we must have D; C H; so all D; are o-finite. (Why?)
Thus by Lemma 7, each Cp, is a Fubini map, and so is f. (Why?)

If f is P*-measurable and nonnegative, and f = 0 on —H, we can proceed
as in Theorem 2, making all fi vanish on —H. Then the f; and f are Fubini
maps by what was shown above.

Finally, in case (ii), f = 0 on —H implies

fr=f =Ifl=0on -H.

Thus f+, =, and f are Fubini maps by part (i) and the argument of Theo-
rem 2. O

Note 1. The o-finite support is automatic if f is p-integrable (Corollary 1
in §5), or if p or both m and n are o-finite (see Problem 3). The condition is
also redundant if f is P-measurable (Theorem 2; see also Problem 4).

Note 2. By induction, our definitions and Theorems 2 and 3 extend to any
finite number ¢ of measure spaces

(Xi7Mi7mi), Z:1, ,q.

One writes
pP=m1 X M2

if ¢ = 2 and sets

M1 X Mg X -+ X Mgy1 = (M1 X -+ X Myg) X Mgt1.

3 Or, equivalently, p-measurable (Note 2 in §3), as p is complete (Theorem 1 of Chap-
ter 7, §6).
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Theorems 2 and 3 with similar assumptions then state that the order of inte-
grations is immaterial.

Note 3. Lebesgue measure in F? can be treated as the product of ¢ one-
dimensional measures. Similarly for LS product measures (but this method is
less general than that described in Problems 9 and 10 of Chapter 7, §9).

IV. Theorems 2(ii) and 3(ii) hold also for functions

f: X xY = E*(C")

if Definitions 2 and 3 are modified as follows (so that they make sense for such
maps): In Definition 2, set
@)= [ foan
Y

if f, is n-integrable on Y, and g(z) = 0 otherwise. Similarly for hA(y). In
Definition 3, replace “measurable” by “integrable.”
For the proof of the theorems, apply Theorems 2(i) and 3(i) to |f|. This

yields
// |f|dmdn://|f\dndm:/ |f| dp.
Yy Jx xJy XxY

Hence if one of these integrals is finite, f is p-integrable on X x Y, and so are
its ¢ components. The result then follows on noting that f is a Fubini map
(in the modified sense) iff its components are. (Verify!) See also Problem 12
below.

V. In conclusion, note that integrals of the form

/ fdp (DeP)
JD

reduce to

/ f-Cpdp.
XxXY

Thus it suffices to consider integrals over X x Y.

Problems on Product Measures and Fubini Theorems
1. Prove Lemmas 2 and 3.
1’. Show that {4 € M | mA < oo} is a set ring.
2. Fill in all proof details in Theorems 1 to 3.

2’. Do the same for Lemmas 5 to 7.
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3.

5.

Prove that if m and n are o-finite, so is p = m xn. Disprove the converse
by an example.
[Hint: (|J; Ai) x (U] Bj) = Ui,]‘(Ai x Bj). Verify!]

. Prove the following.

(i) Each D € P (as in the text) is (p) o-finite.
(ii) All P-measurable maps f: X x Y — E* have o-finite support.

[Hints: (i) Use Problem 14(b) from Chapter 7, §3. (ii) Use (i) for P-elementary and
nonnegative maps first.|

(i) Find D € P* and = € X such that Cp(z, ) is not n-measurable
on Y. Does this contradict Lemma 77
[Hint: Let m = n = Lebesgue measure in E*; D = {z} x Q, with Q non-
measurable.]

(i) Which C-sets have nonzero measure if X = Y = E' m* is as in

Problem 2(b) of Chapter 7, §5 (with S = X)), and n is Lebesgue
measure?

Let m = n = Lebesgue measure in [0,1] = X =Y. Let

k(k+1) on (%ﬂ, ﬂ and

0 elsewhere.

fr=

Let
fy) = (@) = frrr(@)] fu(y);
k=1

the series converges. (Why?) Show that

(i) (k) [x fo =15

(i) [y Jy fdndm=1#0= [, [, fdmdn.
What is wrong? Is f P-measurable?

[Hint: Explore
[ [ 1s1dnam,)
xJy

. Let X =Y =10,1], m as in Example (c) of Chapter 7, §6, (S = X) and

n = Lebesgue measure in Y.

(i) Show that p =m X n is a topological measure under the standard
metric in £2.

(ii) Prove that D = {(z,y) € X XY |z =y} € P*.
(iii) Describe C.

[Hints: (i) Any subinterval of X x Y is in P*; (ii) D is closed. Verify!]
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7.

=10.
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Continuing Problem 6, let f = Cp.
(i) Show that

/Y/dendmzo#lz/y/xfdmdn.

What is wrong?
[Hint: D is not o-finite; for if

at least one D; is uncountable and has no finite basic covering values (why?),
so p*D; = o0.]

(ii) Compute p*{(z,0) |z € X} and p*{(0,y) |y € Y}.

. Show that D € P* is o-finite iff

o0
DC U D; (disjoint)
=1
for some sets D; € C.
[Hint: First let p*D < co. Use Corollary 1 from Chapter 7, §1.]

. Given D eP,ae X,andbeY, let Y
Di={yeYllaypeDn)  yo ,

and Da
D" ={z € X | (x,b) € D}. |

(See Figure 34 for X =Y = E'.) 5 :1 X

Prove that

(i) Dy €N, D? € M,

(ii) Cpla, -) =Cp,, nD, :/ Cpla, -)dn, mDP :/ Cp(-,b)dm.
Y X

FIGURE 34

[Hint: Let
R={Z€P|Za N}

Show that R is a o-ring D C. Hence R O P; D € R; Dy € N. Similarly for D?.]
Let m = n = Lebesgue measure in B! = X =Y. Let f: E' — [0,00)
be m-measurable on X. Let

H={(z,y) € B>|0<y< f(z)}

and
G={(r,y) € E? |y = f(z,y)}
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11.

*12.

(the “graph” of f). Prove that

(i) H € P* and
pH:/ fdm
b'e

(= “the area under f”);
(i) G € P* and pG = 0.

[Hints: (i) First take f = Cp, and elementary and nonnegative maps. Then use
Lemma 2 in §2 (last clause). Fix elementary and nonnegative maps f * f, assuming
fr < f (if not, replace fr by (1 — %)fk) Let

Hy = {(z,9) [0 <y < fe(2)}.
Show that Hy, ~ H € P*.
(ii) Set
o(x,y) =y — f(=).
Using Corollary 4 of §1, show that ¢ is p-measurable on E?; so G = E?(¢ = 0) € P*.
Dropping a null set (Lemma 6), assume G € P. By Problem 9(ii),
(Vo e BY / Co(@, -)dn = nGa =0,
Y

as G = {f(x)}, a singleton.]
Let
f(@,y) = d1(x)da(y).

Prove that if ¢1 is m-integrable on X and ¢ is n-integrable on Y, then
f is p-integrable on X x Y and

/Xxyfdp:/x¢1-/y¢g.

Prove Theorem 3(ii) for f: X xY — E (E complete).
[Outline: If f is P*-simple, use Lemma 7 above and Theorem 2 in §7.
If

oo
I=> axCp,, DyeP,
k=1

let

and fr = fCq, , so the f;, are P*-simple (hence Fubini maps), and fr — f (point-
wise) on X x Y, with |fx| < |f] and

/ |f]dp < oo
XXY

(by assumption). Now use Theorem 5 from §6.
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Let now f be P*-measurable; so
f = lim fi (uniformly)
k—oo

for some P*-elementary maps g; (Theorem 3 in §1). By assumption, f = fCy (H
o-finite); so we may assume g = gxCg. Then as shown above, all g, are Fubini
maps. So is f by Lemma 1 in §7 (verify!), provided H C D for some D € C.

In the general case, by Problem 8,

HC UDi (disjoint), D; € C.
(3

Let H; = H N D;. By the previous step, each fCp, is a Fubini map; so is
K
fr=>_IfCn,
i=1
(why?), hence so is f = klim fk, by Theorem 5 of §6. (Verify!)]
— 00
13. Let m = Lebesgue measure in E', p = Lebesgue measure in £, X =

(0, 00), and
V={ye b ||yl =1}

Given T € E* — {0}, let

r=|Z| and =~ €Y.
r
Call r and @ the polar coordinates of T # 0.
IfDCY, set
n*D=s-p{ru|aeD, 0<r <1}

Show that n* is an outer measure in Y’; so it induces a measure n in Y.
Then prove that

fdp= / Pl dm(7')/ f(ra) dn(a)
Es X Y
if f is p-measurable and nonnegative on E*.
[Hint: Start with f = Ca,
A={rulaue€ H, a<r<b},

for some open set H C'Y (subspace of E¥). Next, let A € B (Borel set in Y'); then
A C P*. Then let f be p-elementary, and so on.]

89. Riemann Integration. Stieltjes Integrals

I. In this section, C is the family of all intervals in E™, and m is an additive
finite premeasure on C (or Cy), such as the volume function v (Chapter 7,

§1-2).
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By a C-partition of A € C (or A € Cy), we mean a finite family
P={A;}ccC
such that
A= UAi (disjoint).

As we noted in §5, the Riemann integral,

RAf=RAfML

of f: E™ — E' can be defined as its Lebesgue counterpart,

Aﬂ

with elementary maps replaced by simple step functions (“C-simple” maps.)
Equivalently, one can use the following construction, due to J. G. Darboux.

Definitions.
(a) Given f: E" — E* and a C-partition
P={A,..., A}

of A, we define the lower and upper Darboux sums, S and S, of f over
P (with respect to m) by

(1) S(f,P)=_mA;-inf f[A;] and S(f,P) = > _ mA; - sup f[A;]."

i=1 =1

(b) The lower and upper Riemann integrals (“R-integrals”) of f on A (with
respect to m) are

RlAf:RlAfdm:s%pﬁ(f,P) and

R/ f= R/ fdm =inf S(f,P),2
A A P
where the “inf” and “sup” are taken over all C-partitions P of A.

(¢) We say that f is Riemann-integrable (“R-integrable”) with respect to m
on A iff f is bounded on A and

RlAf:R7Af.

1.2 These expressions exist in E* (Chapter 4, §4, (2*)).
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‘We then set

R/Af—R/Af—R7Afdm-R/Afdm

and call it the Riemann integral (“R-integral”) of f on A. “Classical”
notation:

R /A £(z) dm(z).

If A= [a,b] C E', we also write

R[lbf:R[lbf(w)dm(w)

instead.
If m is Lebesgue measure (or premeasure) in E', we write “dz” for
“dm(z).”
For Lebesgue integrals, we replace “R” by “L,” or we simply omit “R.”
If f is R-integrable on A, we also say that

R s

exists (note that this implies the boundedness of f); note that

R[Af andR7Af

are always defined in E*.

Below, we always restrict f to a fixed A € C (or A € C5); P, P, P", P*,
and Py denote C-partitions of A.
We now obtain the following result for any additive m: C — [0, 00).

Corollary 1. If P refines P’ (§1), then
S(f,P") < S8(f,P) < S(f,P) < S(f,P").
Proof. Let P’ = {4;}, P = {Bit}, and
(Vi) A =B
k

By additivity,

mA; = Z mB;,.
k
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Also, B C A; implies
f[Bix] € flAil;
sup f[Bix] < sup f[A{; and
inf f[By] > inf f[A;].

So setting
a; = inf f[4;] and b, = inf f[B;],
we get
S(f,P') = Z a;mA; = Z Z a;mBij,
% ik
<Y bwmBix = S(f,P).
ik
Similarly,
S(f,P") < S(f,P),
and

is obvious from (1). O
Corollary 2. For any P’ and P",
S(f,P") <S(f,P").

RlAf§R7Af.

Proof. Let P =P ' NP” (see §1). As P refines both P’ and P”, Corollary 1
yields

Hence

S(f.P") < S(f.P) < S(f,P) <S(f,P").

Thus, indeed, no lower sum S(f,P’) exceeds any upper sum S(f, P").
Hence also

sup S(f, P') < inf S(f,P"),
P =
ie.,
R / f<R / /.
J A J A

as claimed. [O
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Lemma 1. A map f: A — E' is R-integrable iff f is bounded and, moreover,

(3) (Ve>0) 3P) S(f,P)-S(f,P)<e.

Proof. By formulas (1) and (2),

S(f.P) SR/ fSR/Af§§(f,7’)~
LA

el

R/Af:RZAf;

Conversely, if so, definitions (b) and (c) imply the existence of P’ and P”
such that

Hence (3) implies

<e€.

As € is arbitrary, we get

so f is R-integrable.

1
SUP) >R [ 75
A 2
and
_ 1
S(f,P") < R/ f+ze.
)
Let P refine both P’ and P”. Then by Corollary 1,
g(.ﬁ 'P) - §(f7 P) < §(f7 PN) - ﬁ(fv Pl)

c(nfre ) (rfr-) -

Lemma 2. Let f be C-simple; say, f = a; on A; for some C-partition P* =

{A;} of A (we then write
=Y aiCa,

as required. O

on A; see Note 4 of §4).
Then

(4) Rf j=R[ 1= =507 = Y ma.

Hence any finite C-simple function is R-integrable, with RfA [ asin (4).
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Proof. Given any C-partition P = {By} of A, consider
P AP ={A;N By}
As f =a; on A; N By, (even on all of A;),
a; = inf f[A; N By] = sup f[A4; N By].

Also,
A ={J(Ain By) (disjoint)
ik

and

(Vi) A ={J(4in By);

k

SO

mA; = Z??’l(Az n Bk)

k

and

S(f,P) =Y aim(A;NBy) =Y aimA; = S(f,P7)
ik i
for any such P.
Hence also
S amd;=swps(1.P) =k [ 1
i P LA
Similarly for RT 4+ This proves (4).
If, further, f is finite, it is bounded (by max |a;|) since there are only finitely
many a;; so f is R-integrable on A, and all is proved. [

Note 1. Thus S and S are integrals of C-simple maps, and definition (b)
can be restated:

R/ f:supR/gandR/ f:infR/h,
Joa g A A h A

taking the sup and inf over all C-simple maps g, h with
g< f<hon A.

(Verify by properties of glb and lub!)

Therefore, we can now develop R-integration as in §§4-5, replacing elemen-
tary maps by C-simple maps, with S = E™. In particular, Problem 5 in §5
works out as before.

Hence linearity (Theorem 1 of §6) follows, with the same proof. One also
obtains additivity (limited to C-partitions). Moreover, the R-integrability of f
and ¢ implies that of fg, f Vg, f A g, and |f|. (See the Problems.)
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Theorem 1. If f; — f (uniformly) on A and if the f; are R-integrable on A,
so also is f. Moreover,

lIm R [ |f— fil=0 and _limR/fizR/f.
12— 00 A 72— 00 A A

Proof. Asall f; are bounded (definition (c)), so is f, by Problem 10 of Chap-
ter 4, §12.

Now, given ¢ > 0, fix k such that
(Vi > k) Vfﬁh<£j on A.
Verify that
(Vi=k) (YP) |S(f—fi. P)l <eand |S(f - fi, P)| <&
fix one such f; and choose a P such that
S(fi.P) = 8(fi,P) <,
which one can do by Lemma 1. Then for this P,
S(f,P)—S(f,P) < 3e.
(Why?) By Lemma 1, then, f is R-integrable on A.

Finally,
13 IRELIR:

SR/A|f*fz‘|
nf ()il

for all ¢ > k. Hence the second clause of our theorem follows, too. [

Corollary 3. If f: E' — E' is bounded and regulated (Chapter 5, §10) on
A = [a,b], then [ is R-integrable on A.

In particular, this applies if f is monotone, or of bounded variation, or
relatively continuous, or a step function, on A.
Proof. By Lemma 2, this applies to C-simple maps.

Now, let f be regulated (e.g., of the kind specified above).

Then by Lemma 2 of Chapter 5, §10,

f=lim g; (uniformly)
71— 00

for finite C-simple g;.
Thus f is R-integrable on A by Theorem 1. O
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II. Henceforth, we assume that m is a measure on a o-ring M 2O C in E",
with m < oo on C. (For a reader who took the “limited approach,” it is now
time to consider §§4-6 in full.) The measure m may, but need not, be Lebesgue
measure in E".

Theorem 2. If f: E™ — E' is R-integrable on A € C, it is also Lebesque
integrable (with respect to m as above) on A, and

L/f:R/f

A A

Proof. Given a C-partition P = {4;} of A, define the C-simple maps
g= ZaiCAz and h = ZbiCA1

with
a; = inf f[4;] and b; = sup f[A;].

Then g < f < h on A with

&ﬁﬁ:§:mm%:LA9

and

mﬁpy:z)ﬂmh:L/h
p A
By Theorem 1(c) in §5,

Sujv—LA9<§/j<L7;f<LAh—S@P)

As this holds for any P, we get

(5) RZAf = supS(7,P) < LZAf < L7Af SR =R 7

J A
R/;f:R7>f

Thus these inequalities become equations:

R/Af=/Af:7Af:R/Af-

But by assumption,
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Also, by definition (c¢), f is bounded on A; so |f| < K < co on A. Hence

‘/f‘ /|f|<K mA < 0.3
Z;f—/;f#im,

i.e., f is Lebesgue integrable, and
tfs=rfr
A A

Note 2. The converse fails. For example, as shown in the example in §4,
f = Cgr (R = rationals) is L-integrable on A = [0, 1].

Yet f is not R-integrable.

For C-partitions involve intervals containing both rationals (on which f = 1)
and irrationals (on which f = 0). Thus for any P,

S(f,P)=0and S(f,P)=1-mA=1.

Thus

as claimed. O

(Why?) So
R =inf S(f,P) =
/ f m ( ’ ) 17

R/Af—();éR/Af.

Note 3. By Theorem 1, any R [ 4 J is also a Lebesgue integral. Thus the
rules of §85-6 apply to R-integrals, provided that the functions involved are
R-integrable. For a deeper study, we need a few more ideas.

while

Definitions (continued).

(d) The mesh |P| of a C-partition P = {A4,...,
diagonals dA;:

A,} is the largest of the

|,P‘ = max{dAl,dAg, ce ,qu}.

Note 4. For any A € C, there is a sequence of C-partitions P}, such that
(i) each Pyyq refines P and

(ii) 1imki>oo |Pk‘ =0.

3 This also shows that an R-integral, when one exists, is always finite.
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To construct such a sequence, bisect the edges of A so as to obtain 2™ subinter-
vals of diagonal %dA (Chapter 3, §7). Repeat this with each of the subintervals,
and so on. Then

dA

Lemma 3. Let f: A — E' be bounded. Let {Py} satisfy (i) of Note 4. If
P, ={Ak ... ,A’;k}, put

K

gk =) Caxinf f[Af]

i=1

and

dk
hi= " Caesup flAY].

i=1
Then the functions
g=supgx and h = ir]gfhk
k

are Lebesgue integrable on A,* and

(6) Ag:klgrgog(f,Pk)gR/Ang/AfgkliﬂlO?(f,Pk):/h.

A

Proof. As in Theorem 2, we obtain g < f < hx on A with

/ gx = S(f,Pr)
A

/ hie = S(f, P).
A

Since Pr41 refines Py, it also easily follows that

and

(7) nggk+1Ssgpgk=g§f§h=irklfhkﬁhk+1Shk-

(Verify!)
Thus {gx}1 and {hy}], and so

g=supgr = lim gx and h = inf hy = lim hg.
k k—o0 k k—o0
Also, as f is bounded,

(3K €EY) |f|< K on A.

4 Integrability is with respect to the measure m mentioned above.
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The definition of g and hj then implies
(VE) gkl < K and [hi| < K (why?),
with
/A(K):K~mA<oo.

The gi and hy, are measurable (even simple) on A, with g — ¢ and hy — h.
Thus by Theorem 5 and Note 1, both from §6, g and h are Lebesgue inte-

grable,® with
/g: lim /g/z€ and /h: lim hi.
A k— o0 A A k—o0 A
[o=sury<rf s
A LA

/Ahk —S(,Py) = R7Af’

passage to the limit in equalities yields (6). Thus the lemma is proved. O

and

Lemma 4. With all as in Lemma 3, let B be the union of the boundaries of
all intervals from all Py,. Let |Pr| — 0. Then we have the following.

(i) If f is continuous at p € A, then h(p) = g(p).
(ii) The converse holds if p € A — B.
Proof. For each k, p is in one of the intervals in Py; call it Ay,.
If pe A— B, pis an interior point of Ayy; so there is a globe
Gp(0k) C Apgyp.
Also, by the definition of g, and hyg,
9k(p) = inf f[Ayy] and hy, = sup f[Agp).
(Why?)
Now fix € > 0. If g(p) = h(p), then
0=h(p) —g(p) = lim [hx(p) — gr(p)];
SO
(3k)  |he(p) = ge(p)| = sup f[Arp] — inf f[Arp] <e.
As Gp(0r) € Agp, we get
(Vz € Gp(0r)) | f(x) = f(p) < sup f[Akp] — inf f[Aky] <e,

5 Integrability is with respect to the measure m mentioned above.
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proving continuity (clause (ii)).
For (i), given € > 0, choose § > 0 so that

(Va,y € ANGH(9))  [f(2) = fy)l <e.

Because
(V3 >0) 3ko) (VEk>ko) [Pr]<d

for k > ko, Axp € Gp(d). Deduce that
(Vk > ko) |he(p) —gr(p)l <e. O

Note 5. The Lebesgue measure of B in Lemma 4 is zero; for B consists of
countably many “faces” (degenerate intervals), each of measure zero.

Theorem 3. A map f: A — E' is R-integrable on A (with m = Lebesgue
measure) iff [ is bounded on A and continuous on A — Q for some Q with
m@ = 0.

Note that relative continuity on A — @ is not enough—take f = Cg of
Note 2.

Proof. If these conditions hold, choose {Py} as in Lemma 4.
Then by the assumed continuity, g = h on A — Q, m@ = 0.

Thus
KK
A A
(Corollary 2 in §5).

Hence by formula (6), f is R-integrable on A.
Conversely, if so, use Lemma 1 with

e=lg
to get for each k& some Py such that
_ 1
By Corollary 1, this will still hold if we refine each Py, step by step, so as to
achieve properties (i) and (ii) of Note 4 as well. Then Lemmas 3 and 4 apply.
As

formula (6) shows that

/g: lim S(f,Px) = lim g(ﬂpk):/h.
A k—oo k—o0 A
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As h and g are integrable on A,

Amfgﬁiéhfég=0

Also h — g > 0; so by Theorem 1(h) in §5, h =g on A — @', mQ’ = 0 (under
Lebesgue measure). Hence by Lemma 4, f is continuous on

A—-Q - B,

with mB = 0 (Note 5).
Let Q@ = Q" U B. Then m@ = 0 and

A-Q=A-Q - B;
so f is continuous on A — Q. This completes the proof. [

Note 6. The first part of the proof does not involve B and thus works even
if m is not the Lebesgue measure. The second part requires that mB = 0.

Theorem 3 shows that R-integrals are limited to a.e. continuous functions
and hence are less flexible than L-integrals: Fewer functions are R-integrable,
and convergence theorems (§6, Theorems 4 and 5) fail unless R [, f exists.

III. Functions f: E™ — E* (C®). For such functions, R-integrals are defined
componentwise (see §7). Thus f = (f1,...,fs) is R-integrable on A iff all f

(k < s) are, and then
R/ f= ékR/ S
A kz::l A

A complex function f is R-integrable iff f,. and fi,, are, and then

RAf:RAﬂﬁ4RAﬂm

Via components, Theorems 1 to 3, Corollaries 3 and 4, additivity, linearity,
ete., apply.

IV. Stieltjes Integrals. Riemann used Lebesgue premeasure v only. But as we
saw, his method admits other premeasures, too.

Thus in E', we may let m be the LS premeasure so or the LS measure m,
where a1 (Chapter 7, §5, Example (b), and Chapter 7, §9).

Then
R / fdm
A

is called the Riemann-Stieltjes (RS) integral of f with respect to v, also written

R/Afda or R/abf(x)da(x)
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(the latter if A = [a,b]); f and « are called the integrand and integrator,
respectively.
If a(z) = x, m, becomes the Lebesgue measure, and

R / f(z) da(z)
turns into

R/ f(z)de.

Our theory still remains valid; only Theorem 3 now reads as follows.

Corollary 4. If f is bounded and a.e. continuous on A = [a,b] (under an

LS measure my,) then
b
R / fda

exists. The converse holds if « is continuous on A.

For by Notes 5 and 6, the “only if” in Theorem 3 holds if m,B = 0. Here
B consists of countably many endpoints of partition subintervals. But (see
Chapter 7, §9) mq{p} = 0 if « is continuous at p. Thus the later implies
maB = 0.

RS-integration has been used in many fields (e.g., probability theory, physics,
etc.), but it is superseded by LS-integration, i.e., Lebesgue integration with
respect to m,, which is fully covered by the general theory of §§1-8.

Actually, Stieltjes himself used somewhat different definitions (see Prob-
lems 10-13), which amount to applying the set function o, of Problem 9 in
Chapter 7, §4, instead of s, or m,. We reserve the name “Stieltjes integrals,”

denoted ,
S / fda,

for such integrals, and “RS-integrals” for those based on m, or s, (this termi-
nology is not standard).

Observe that o, need not be > 0. Thus for the first time, we encounter
integration with respect to sign-changing set functions. A much more general
theory is presented in §10 (see Problem 10 there).

Problems on Riemann and Stieltjes Integrals
1. Replacing “M” by “C,” and “elementary and integrable” or “elemen-
tary and nonnegative” by “C-simple,” prove Corollary 1(ii)(iv)(vii) and
Theorems 1(i) and 2(ii), all in §4, and do Problem 5-7 in §4, for R-
integrals.

2. Verify Note 1.
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2’
. Do the following for R-integrals.

Chapter 8. Measurable Functions. Integration

Do Problems 5-7 in §5 for R-integrals.

(i) Prove Theorems 1(a)—(g) and 2, both in §5 (C-partitions only).
(ii) Prove Theorem 1 and Corollaries 1 and 2, all in §6.

(iii) Show that definition (b) can be replaced by formulas analogous to
formulas (1"), (1”), and (1) of Definition 1 in §5.

[Hint: Use Problems 1 and 2'.]

. Fill in all details in the proof of Theorem 1, Lemmas 3 and 4, and

Corollary 4.

. For f,g: E™ — E*(C?), via components, prove the following.

(i) Theorems 1-3 and
(ii) additivity and linearity of R-integrals.
Do also Problem 13 in §7 for R-integrals.

. Prove that if f: A — E*(C?®) is bounded and a.e. continuous on A, then

rfinzrf ]

For m = Lebesgue measure, do it assuming R-integrability only.

. Prove that if f,g: A — E' are R-integrable, then

(i) sois f2, and
(ii) sois fg.
[Hints: (i) Use Lemma 1. Let h = |f| < K < co on A. Verify that
(inf h[AL])? = inf f2[A4,] and (sup h[A;])? = sup f2[AJ];

> sup f2[A;] — inf f2[A;] = (sup h[A;] + inf h[A;]) (sup h[A;] — inf R[A;])
< (sup h[A;] —inf h[A;]) 2K.
(ii) Use

f9= i[(f +9)° = (f - 9)°]-

(iii) For m = Lebesgue measure, do it using Theorem 3.]

. Prove that if m = the volume function v (or LS function s, for a contin-

uous ), then in formulas (1) and (2), one may replace A; by A; (closure
[Hint: Show that here mA = mA,

R/Af:R/Xf,

and additivity works even if the A; have some common “faces” (only their interiors
being disjoint).]
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9.

10.

11.

(Riemann sums.) Instead of S and S, Riemann used sums

S(f,P) = Zf(a:i) dmA;,

where m = v (see Problem 8) and z; is arbitrarily chosen from A;.
For a bounded f, prove that

r=R / fdm
A
exists on A = [a, b] iff for every € > 0, there is P, such that
IS(f,P)—r|<e
for every refinement
P={A;}

of P. and any choice of z; € A;.
[Hint: Show that by Problem 8, this is equivalent to formula (3).]

Replacing m by the o, of Problem 9 of Chapter 7, §4, write S(f, P, «)
for S(f,P) in Problem 9, treating Problem 9 as a definition of the

Stieltjes integral,
b b
S/ fda (0rS/dea).

Here f,a: E' — E' (monotone or not; even f,a: E' — C will do).
Prove that if a: E' — E' is continuous and a7, then

S/abfda:R/abfda,

(Integration by parts.) Continuing Problem 10, prove that

the RS-integral.

S | fda
exists iff .
S [ adf
does, and then
b b
S| fda+S | adf =K,

where
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12.

13.
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[Hints: Take any C-partition P = {A;} of [a, b], with

Ai = [yi-1,vi],

say. For any x; € A;, verify that

S(f,Py) = > fl@) la(yi) — ayi-1)] = Y fzi)a

and
K = Zf(:cl a(y

(i) = > f@:) alyin)

Zf(zl 1 yl 1)

Deduce that
K=S(f,P,a) = S(, P, ) =Y alas) [f (z:)—

here P’ results by combining the partition points x; and y;, so it refines P.
Now, if Sf;7 adf exists, fix Pe as in Problem 9 and show that

b
- S/ adf’ <e

whenever P refines Pe.]

If a: B — E' is of class CD* on [a, ] and if

S/abfda

exists (see Problem 10), it equals

R/abf(:r) o (z)dz

[Hints: Set ¢ = fa', P = {A4;}, A; = [a;—1,0a;]. Then

Zfz.ba ;)

and (Corollary 3 in Chapter 5, §2)

S(f,P,a) = Zf z;) [a(a;) — alai—1) Zf ) (q:), @ € A

As f is bounded and o' is uniformly continuous on [a,b] (why?), deduce that

\K _S(Pra)

(a; —ai-1), = €Ay,

(Ve > 0) (3P:) (VP refining Pe)

1 b 1
[5(6.7) = S Pra)| < g and [s(P.0) = 5 [ fdal < e

Proceed. Use Problem 9.]

(Laws of the mean.) Let f,g,a: B — E'; p < f < qon A = [a,b];

q € E'. Prove the following.

(i) If ot and if
b
S / fda

F@=> al@i1) [fy)—f(@i1)];
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exists, then (3¢ € [p, q]) such that

b
s/ Fda = cla(®) — a(a)].

R/abfda

exists, then (3¢ € [p, q]) such that

Similarly, if

b
R/ fda=cla(d+) — ala—)].

(i") If f also has the Darboux property on A, then ¢ = f(zg) for some
T € A.

(ii) If « is continuous, and f1 on A, then

b b
s [ fda=(1®)a) - f@ala)] -5 [ ads
exists, and (3z € A) such that

S/bfda— S/ da + f(b) S/ da
D f@ ) - al@)] + £0) o) - o).

(ii") If g is continuous and f1 on A, then (3z € A) such that

z b
R/f z)dz =p- R/ g(:c)dm+q~R/ g(x)dx.
If £, replace f by —f. (See also Corollary 5 in Chapter 9, §1.)
[Hints: (i) As af, we get
b
pla(b) —ala)] < S/ fda < qla(b) — a(a)].

(Why?) Now argue as in §6, Theorem 3 and Problem 2.

(ii) Use Problem 11, and apply (i) to [ adf.

(ii") By Theorem 2 of Chapter 5, §10, g has a primitive 3 € CD'. Apply Prob-
lem 12 to Sfab fdp.]

§10. Integration in Generalized Measure Spaces

Let (S, M, s) be a generalized measure space. By Note 1 in §3, a map f is
s-measurable iff it is vs-measurable. This naturally leads us to the following
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definition.

Definition 1.
A map f: S — FE is s-integrable on a set A iff it is vs-integrable on A.
(Recall that v, the total variation of s, is a measure.)

Note 1. Here the range spaces of f and s are assumed complete and such
that f(x)sA is defined for x € S and A € M. Thus if s is vector valued, f
must be scalar valued, and vice versa. Later, if a factor p occurs, it must be
such that p f(z) sA is defined, i.e., at least two of p, f(z), and sA are scalars.

Note 2. If s is a measure (> 0), then vs = st = s (Corollary 3 in Chapter 7,
§11); so our present definition agrees with the previous ones (as in Theorem 1
of §7).

Lemma 1. If m' and m” are measures, with m’ > m' on M, then

[ g1t = [ 1fldm

forallAe M and any f: S — E.

Proof. First, take any elementary and nonnegative map g > |f|,

g = ZCAlai on A.

Then (§4)

/ gdm' = Zai m'A; > Zai m/'A; = / gdm”.
A A

Hence by Definition 1 in §5,

fldm' = inf /gdm/z inf gdm”:/ fldm”,
/A‘ | 9=|f1Ja 9=If1JA -A| |

as claimed. [O

Lemma 2.
(i) If s: M — E™(C™) with s = (s1,...,8n), and if f is s-integrable on
A€ M, then f is si-integrable on A for k=1,2,... n.
(i1) If s is a signed measure and f is s-integrable on A, then f is integrable
on A with respect to both sT and s~ (with sT and s~ as in formula (3)
in Chapter 7, §11).
Note 3. The converse statements hold if f is M-measurable on A.
Proof.
(i) If s = (s1,...,8n), then (Problem 4 of Chapter 7, §11)

vy > v, k=1,...,n.
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Hence by Definition 1 and Lemma 1, the s-integrability of f implies

oo>/ Ifldst/ |l dv,.
A A

Also, f is vs-measurable, i.e., M-measurable on A — Q, with
0=10:Q >1v5,Q >0.
Thus f is sg-integrable on A, k =1,... ,n, as claimed.

(ii) If s = sT — s7, then by Theorem 4 in Chapter 7, §11, and Corollary 3
there, st and s~ are measures (> 0) and vs = sT + 57, so that both

vs > sT =wvgr and vy > 5T = v,-.

Thus the desired result follows exactly as in part (i) of the proof. O

We leave Note 3 as an exercise.
Definition 2.
If f is s-integrable on A € M, we set
(i) in the case s: M — E*,

/Afds:/Afd(ﬁ—/Afds*7

with s and s~ as in formula (3) of Chapter 7, §11;!
(i) in the case s: M — E™ (C"),

./;fds—éék/flfdsk,

with € as in Theorem 2 of Chapter 3, §§1-3;
(iii) if s: M — C,

/ de:/ fdsre+i'/ fd5i111~
A A A
(See also Problems 2 and 3.)
Note 4. If s is a measure, then
and
0=s5" = sim = 2

I By choosing st and s~ as in formula (3) of Chapter 7, §11, we avoid ambiguity.
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so Definition 2 agrees with our previous definitions. Similarly for s: M —
E™(C™).

Below, s, t, and u are generalized measures on M as in Definition 2, while
f,9: S — E are functions, with F a complete normed space, as in Note 1.

Theorem 1. The linearity, additivity, and o-additivity properties (as in §7,
Theorems 2 and 3) also apply to integrals

[ s
JA
with s as in Definition 2.

Proof. (i) Linearity: Let f,g: S — E be s-integrable on A € M. Let p,q be
suitable constants (see Note 1).

If s is a signed measure, then by Lemma 2(ii) and Definitions 1 and 2, f is
integrable with respect to v, s, and s~. As these are measures, Theorem 2
in §7 shows that pf + qg is integrable with respect to v,, s*, and s, and by
Definition 2,

'/f;(prrqg)ds:./A(pf+qg)ds+—./f;(prrqg)ds*
:p.Afds++quds+—p/Afds_—q/Agds_
:p/Afds+q/Agds.

Thus linearity holds for signed measures. Via components, it now follows
for s: M — E™(C"™) as well. Verify!
(i1) Additivity and o-additivity follow in a similar manner. [

Corollary 1. Assume [ is s-integrable on A, with s as in Definition 2.
(i) If f is constant (f =c) on A, we have

/fds:c-sA.
A

f= Z a; Ca,
for an M-partition {A;} of A, then

/fds:ZaisAi and/ |f|ds:Z\ai|sAi
A Z Ja 7

(both series absolutely convergent).

(i) If
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(iii) |f] < o0 a.e. on A2
(iv) [y |fldvs=0iff f=0 a.e. on A.
(v) The set A(f # 0) is (vs) o-finite (Definition 4 in Chapter 7, §5).
(vi) fAfds:fAiQfds ifvsQ@=0o0r f=0o0nQ (QeM).
(vii) f is s-integrable on any M-set B C A.
Proof.

(i) If s = st — 5™ is a signed measure, we have by Definition 2 that

/Afds:/Afds*'f/Afds_:c(s*'Afs_A):osA,

as required.
For s: M — E" (C™), the result now follows via components. (Verify!)

(ii) As f =a; on A;, clause (i) yields
/ fds=a;sA;, i=1,2,....
A

Hence by o-additivity,

/Afds:Z/Alfds:ZaisAi,

as claimed.

Clauses (iii), (iv), and (v) follow by Corollary 1 in §5 and Theorem 1(b)(h)
there, as vy is a measure; (vi) is proved as §5, Corollary 2. We leave (vii) as an
exercise. [J

Theorem 2 (dominated convergence). If

f = lim f; (pointwise)
71— 00

on A—Q (vsQ = 0) and if each f; is s-integrable on A, so is f, and

/ fds = lim fids,
A A

i—oo
all provided that
(Vi) |fil<g
for some map g with fA gdvug < 0.
Proof. If s is a measure, this follows by Theorem 5 in §6. Thus as v, is a

measure, f is vs-integrable (hence s-integrable) on A, as asserted.

2 That is, on A — Q, vsQ = 0.
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Next, if s = s7 — 57 is a signed measure, Lemma 2 shows that f and the f;
are s and s~ -integrable as well, with

/lfildﬁg/ |fi\dvss/gdvs<oo;
A A A
/|fz“d37-
A

As sT and s~ are measures, Theorem 5 of §6 yields

/Afds=/Afds+f/Afdsf:lim(/AfidLﬁf/Afids*)=lim/Af7;ds,

Thus all is proved for signed measures.
In the case s: M — E™(C"™), the result now easily follows by Defini-
tion 2(ii)(iii) via components. O

similarly for

Theorem 3 (uniform convergence). If f; — f (uniformly) on A — Q (vsA <
00, vsQ = 0), and if each f; is s-integrable on A, so is f, and

/ fds= lim fids.
A A

i— 00
Proof. Argue as in Theorem 2, replacing §6, Theorem 5, by §7, Lemma 1. O

Our next theorem shows that integrals behave linearly with respect to mea-
sures.

Theorem 4. Let t,u: M — E* (E™, C™), with v; < oo on M,® and let
s =pt+qu
for finite constants p and q. Then the following statements are true.
(a) Ift and u are generalized measures, so is s.

(b) If, further, f is M-measurable on a set A and is both t- and w-integrable
on A, it is also s-integrable on A, and

/Afds:p/AfdtJrq/Afdu.

Proof. We consider only assertion (b) for s = ¢ + u; the rest is easy.
First, let f be M-elementary on A. By Corollary 1(ii), we set

/fdt:ZaitAiand/fdu:ZaiuAi.
A i A i

30r |t| < oo; see Theorem 6 in Chapter 7, §11. The restriction is redundant if ¢t: M —
E™(C™).
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Also, by integrability,

oo>/|f\dvt:Z|ai|vtAi andoo>/|f|dvu:Z\ai|vuA,-.
A A p

Now, by Problem 4 in Chapter 7, §11,
Vs = V4 < v+ Uy

SO

[ 1fldv =Y lafo.a
A i
<D ail (v Ai + vuAy) :/ |f|dvt+/ |fldv, < oo.
p A A

As f is also M-measurable (even elementary), it is s-integrable on A (by Def-
inition 1), and

/Afds:;aisAizgai(tA,;nLuAi)=/Afdt+/Afdu,

as claimed.
Next, suppose f is M-measurable on A and v, A < co. By assumption,
v A < 00, t00; S0
vsA < v A+ v, A< 0.

Now, by Theorem 3 in §1,
f = lim f; (uniformly)
1—00

for some M-elementary maps f; on A. By Lemma 2 in §7, for large i, the f;
are integrable with respect to both v; and v, on A. By what was shown above,
they are also s-integrable, with

/A fuds = /A fidt + /A £ du.

With ¢ — oo, Theorem 3 yields the result.

Finally, let v,A = co. By Corollary 1(v), we may assume (as in Lemma 3
of §7) that A; ~ A, with v,A; < oo, and v;4; < oo (since v; < o0, by
assumption). Set

fi=fCa, = f (pointwise)
on A, with |f;] <|[f]. (Why?)

As fi=fon A; and f; =0 on A— A;, all f; are both ¢- and u-integrable on
A (for fis). Since v;A4; < oo and v, 4; < oo, the f; are also s-integrable (as
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shown above), with

/Afidsz/,4,fid$:/,4ifidt+/z4ifidu:/Afidt—i_/Afidw

With ¢ — oo, Theorem 2 now yields the result.

To complete the proof of (b), it suffices to consider, along similar lines, the
case s = pt (or s = qu). We leave this to the reader.

For (a), see Chapter 7, §11. O

Theorem 5. If f is s-integrable on A, so is |f|, and

]/Afds < [ Ifldo.

Proof. By Definition 1, and Theorem 1 of §1, f and |f| are M-measurable on

A—Q,vsQ =0, and
/ | f] dvs < o0
A

The desired inequality is immediate by Corollary 1(ii) if f is elementary.

so | f| is s-integrable on A.
Next, exactly as in Theorem 4, one obtains it for the case v;A < oo, and
then for v4A = co. We omit the details. [

Definition 3.

We write
“ds = gdt in A”

or

‘s = /gdt in A”

iff g is t-integrable on A, and

sX:/gdt
X
for ADX, X e M.

We then call s the indefinite integral of g in A. (fngt may be
interpreted as in Problems 24 below.)

Lemma 3. If A e M and
ds = gdt in A,

then
dvs = |g| dvy in A.
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Proof. By assumption, g and |g| are v;-integrable on X, and

sX:/gdt
X

for A D X, X € M. We must show that

vsX:/ lg| dvy
X
for such X.

This is easy if g = ¢ (constant) on X. For by definition,
v, X = sgp; s X,
over all M-partitions P = {X;} of X. As
sX; = / gdt =c-tX;,
X

we have
vs X = bl;pz ] [tX5] = |¢] s%pz [tX;] = |c] v X;
i i

SO

USX:/ lg| dvy.
X

Thus all is proved for constant g.
Hence by o-additivity, the lemma holds for M-elementary maps g. (Why?)
In the general case, g is t-integrable on X, hence M-measurable and finite
on X —Q, v;Q = 0. By Corollary 1(iii), we may assume g finite and measurable
on X; so
g = lim g; (uniformly)
k— o0

on X for some M-elementary maps g, all integrable on X, with respect to vy

(and ).
5 = /gk dt

Let
in X. By what we just proved for elementary and integrable maps,

vst:/|gk\dvt, k=1,2,....
X

Now, if v, X < oo, Theorem 3 yields

/ lg| dve = lim / lgr| dvy = lim vg, X = v, X
X k—oo Jx k—o0
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(see Problem 6). Thus all is proved if v, X < oo.
If, however, v; X = oo, argue as in Theorem 4 (the last step), using the left
continuity of v, and of
[1alav.

Theorem 6 (change of measure). If f is s-integrable on A € M, with

Verify! O

ds = gdt in A,

then (subject to Note 1) fg is t-integrable on A and

/Afds=/Afgdt.

(Note the formal substitution of “gdt” for “ds.”)

Proof. The proof is easy if f is constant or elementary on A (use Corol-
lary 1(ii)). We leave this case to the reader, and next we assume g is bounded
and v, A < oo.

By s-integrability, f is M-measurable and finite on A — @, with

0=v,Q :/ lg| dve
Q

by Lemma 3. Hence 0 = g = fg on Q — Z, v;Z = 0. Therefore,

/Qfgdt:O:/Qfds

for vs@ = 0. Thus we may neglect @@ and assume that f is finite and M-
measurable on A.
As ds = g dt, Definition 3 and Lemma 3 yield

v A = / lgl dvy < 0.
A
Also (Theorem 3 in Chapter 8, §1),
f= lim fr (uniformly)
k—o0

for elementary maps fi, all vs-integrable on A (Lemma 2 in §7). As g is
bounded, we get on A

fg= lim frg (uniformly).
k—o0
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Moreover, as the theorem holds for elementary and integrable maps, frg is
t-integrable on A, and

/fkd.S:/fk_(]dt7 k=1,27...,
A A

Since vsA < oo and v, A < oo, Theorem 3 shows that fg is t-integrable on

A, and
/fds: lim/fkds: lim/fkgdt:/fgdt.
A k—o0 A k—o0 A A

Thus all is proved if v;A < oo and g is bounded on A.

In the general case, we again drop a null set to make f and ¢ finite and
M-measurable on A. By Corollary 1(v), we may again assume A; / A, with
v A; < oo (V).

Now for ¢ =1,2,... set

[ on A <i),
gi 0 elsewhere.
Then each g; is bounded,
gi — g (pointwise),
and
lg:] <19l
on A. We also set f; = fCa,;so f; — f (pointwise) and |f;| < |f| on A. Then

/Afids:/Aifids:/Aifigidt:/Afigidt.

(Why?) Since |f;9:| < |fg| and fig; — fg, the result follows by Theorem 2. O

Problems on Generalized Integration
Recall that in this section E is assumed to be a complete normed space.

1. Fill in the missing details in the proofs of this section. Prove Note 3.

2. Treat Corollary 1(ii) as a definition of

/Afds

for s: M — E and elementary and integrable f, even if E # E™ (C™).
Hence deduce Corollary 1(i)(vi) for this more general case.

3. Using Lemma 2 in §7, with m = vg, s: M — E, construct

/Afds
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5.
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as in Definition 2 of §7 for the case vsA # oo. Show that this agrees
with Problem 2 if f is elementary and integrable. Then prove linearity
for functions with vs-finite support as in §7.

. Define

/Afds (s: M = E)

also for vy A = oo.
[Hint: Set m = vs in Lemma 3 of §7.]

. Prove Theorems 1 to 3 for the general case, s: M — FE (see Problem 4).

[Hint: Argue as in §7.]

From Problems 2-4, deduce Definition 2 as a theorem in the case F =
E™(C™).

. Let s,8,: M — E (k=1,2,...) be any set functions. Let A € M and

My ={X eM|XC A}.

Prove that if
(VX € My) klim spX = sX,
—00

then

lim vs, A = v,4,
k—o0

provided lim vy, exists.
k—o0

[Hint: Using Problem 2 in Chapter 7, §11, fix a finite disjoint sequence {X;} C M 4.

Then
0ol = 3 i o Xil = Jim 3 ClowXil < |l ve A
K K 7
Infer that
vsA < lim ws, A

k— o0

Also,

(Ve >0) (ko) (Vhk>ko) D |seXil <D [sXi|+e<vsA+e.

i i

Proceed.]

. Let (X, M,m) and (Y, N,n) be two generalized measure spaces (X €

M, Y € N) such that mn is defined (Note 1). Set
C={AxB|AeM, BEN, v, A< o0, v,B < o0}

and s(Ax B) =mA-nB for Ax BeC(C.
Define a Fubini map as in §8, Part IV, dropping, however, fXXY fdp
from Fubini property (c) temporarily.
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Then prove Theorem 1 in §8, including formula (1), for Fubini maps
so modified.
[Hint: For o-additivity, use our present Theorem 2 twice. Omit P*.]

8. Continuing Problem 7, let P be the o-ring generated by C in X x Y.
Prove that (VD € P) Cp is a Fubini map (as modified).

[Outline: Proceed as in Lemma 5 of §8. For step (ii), use Theorem 2 in §10 twice.]

9. Further continuing Problems 7 and 8, define

(VD eP) pD://Candm.
xJy

Show that p is a generalized measure, with p = s on C, and that

(YD eP) pD= Cp dp,

XxY

with the following convention: If X XY & P, we set

[ f

whenever H € P, f is p-integrable on H, and f =0 on —H.
Verify that this is unambiguous, i.e.,

Je

so defined is independent of the choice of H.
Finally, let p be the completion of p (Chapter 7, §6, Problem 15); let
P* be its domain.
Develop the rest of Fubini theory “imitating” Problem 12 in §8.
10. Signed Lebesgue—Stieltjes (LS) measures in E' are defined as shown in
Chapter 7, §11, Part V. Using the notation of that section, prove the
following;:

(i) Given a Borel-Stieltjes measure ¢}, in an interval I C E! (or an

LS measure s, = 0%, in I), there are two monotone functions gt
and hf (o = g — h) such that

my = st and my, = s,
both satisfying formula (3) of Chapter 7, §11, inside I.
(i) If f is so-integrable on A C I, then

[ rasa= [ ram,~ [ fim,

for any g7 and ht (finite) such that o = g — h.
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[Hints: (i) Define s& and s; by formula (3) of Chapter 7, §11. Then arguing as in
Theorem 2 in Chapter 7, §9, find gt and A1 with mg = s& and my, = s5.
(ii) First let A = (a,b] C I, then A € B. Proceed.]

*811. The Radon—Nikodym Theorem. Lebesgue Decomposition

I. As you know, the indefinite integral

/fdm

is a generalized measure. We now seek conditions under which a given gener-
alized measure p can be represented as

u:/fdm

for some f (to be found). We start with two lemmas.

Lemma 1. Let m,p: M — [0,00) be finite measures in S. Suppose S € M,
wS >0 (i.e., p#0) and p is m-continuous (Chapter 7, §11).
Then there is 6 > 0 and a set P € M such that mP > 0 and

VXeM) pX>0-m(XNP).

Proof. Asm < oo and puS > 0, there is § > 0 such that

wS —6-mS > 0.
Fix such a § and define a signed measure (Lemma 2 of Chapter 7, §11)
b =p—ém,
so that
(1) VY eM) Y =puY —6-mY,
hence

DS =pS—6-mS>0.

By Theorem 3 in Chapter 7, §11 (Hahn decomposition), there is a ®-positive
set P € M with a ®-negative complement —P =S — P € M.

Clearly, mP > 0; for if mP = 0, the m-continuity of ;& would imply pP = 0,
hence
OP=puP —§-mP =0,

contrary to P > ¢S > 0.
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Also, P DY and Y € M implies Y > 0; so by (1),
0<uY —§-mY.
Taking Y = X N P, we get
0-m(XNP)<u(XNP)<uX,
as required. [

Lemma 2. With m, u, and S as in Lemma 1, let H be the set of all maps
g: S — E*, M-measurable and nonnegative on S, such that

/ gdm < pX
X

for every set X from M.
Then there is f € H with

/fdm:max/gdm.
s 9€H Jg

Proof. H is not empty; e.g., g =0 is in H. We now show that
(2) (Vg,h € H) gV h=max(g,h) €H.

Indeed, g V h is > 0 and M-measurable on S, as g and h are.
Now, given X € M, let Y = X(g > h) and Z = X(g < h). Dropping “dm”
for brevity, we have

Javm=[vn+ [avm=[ o+ [ n<uyuz=nx

proving (2).
Let

k:sup/gdmeE*.
geH J S

Proceeding as in Problem 13 of Chapter 7, §6, and using (2), one easily finds
a sequence {gn T, gn € H, such that

lim Gndm = k.
S

n—oo

(Verify!) Set
f = lim g,.

n—,oo

(It exists since {g,,}1.) By Theorem 4 in §6,

k= lim /gn:/f.
n— o0 S S
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Also, f is M-measurable and > 0 on 5, as all g, are; and if X € M, then
Wn)t/gnéuX;
b's

hence

/f— lim gnng.

n—oo

fr=r=sm [ o

/ f =max / g < pS < oo.
S gEH
This completes the proof. [

Thus f € H and

ie.,

Note 1. As u < oo and f > 0, Corollary 1 in §5 shows that f can be made
finite on all of S. Also, f is m-integrable on S.

Theorem 1 (Radon—Nikodym). If (S, M,m) is a o-finite measure space, if
S e M, and if
w: M — E"(C™)

is a generalized m-continuous measure, then

= /fdm on M
for at least one map
f:S— E™(C"),
M-measurable on S.
Moreover, if h is another such map, then mS(f #h) =0

The last part of Theorem 1 means that f is “essentially unique.” We call f
the Radon—Nikodym (RN) derivative of u, with respect to m.

Proof. Via components (Theorem 5 in Chapter 7, §11), all reduces to the case
i M — EL

Then Theorem 4 (Jordan decomposition) in Chapter 7, §11, yields
p=pt—p,

where uT and p~ are finite measures (> 0), both m-continuous (Corollary 3
from Chapter 7, §11). Therefore, all reduces to the case 0 < pu < oo.
Suppose first that m, too, is finite. Then if p = 0, just take f = 0.
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If, however, uS > 0, take f € H as in Lemma 2 and Note 1; f is nonnegative,
bounded, and M-measurable on S,

/f§u<w7
/fdm k—bup/gdm.
geH

We claim that f is the required map.

Indeed, let
V=u*/fwu

so v is a finite m-continuous measure (> 0) on M. (Why?) We must show
that v = 0.

Seeking a contradiction, suppose vS > 0. Then by Lemma 1, there are
P e M and § > 0 such that mP > 0 and

and

VXeM) vX>5-m(XNP).

Now let
g=f+3¢-Cp;

so g is M-measurable and > 0. Also,
VX eM) /g:/f+6/6b:/f+éwMXmm
b'e X b'e b'e
< / f+v(XNP)
b'e
< / f+HvX =uX
X

by our choice of 6 and v. Thus g € H. On the other hand,

/g:/f—i-é/C'p:/’<:—§—(5mP>k7
s s s

k = sup / g.
geH J S
This proves that [ f = u, indeed.
Now suppose there is another map h € H with

p= [ im = [ am o

contrary to
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SO

/(f —h)dm = 0.
(Why?) Let
Y=S(f>h)and Z = S(f < h);
soY,Z € M (Theorem 3 of §2) and f — h is sign-constant on Y and Z. Also,

by construction,
/(f—h)dm:():/(f—h)dm.
Y Z

Thus by Theorem 1(h) in §5, f—h = 0a.e.on Y, on Z, and hence on S = YUZ;
that is,
mS(f #h) =0.
Thus all is proved for the case mS < oc.
Next, let m be o-finite:

S = U Sk (disjoint)
k=1

for some sets S € M with mS; < .
By what was shown above, on each S, there is an M-measurable map f > 0

such that
[ fdm=px
X

for all M-sets X C Sj,. Fixing such an fj, for each k, define f: S — E! by
f:fk onSk., k:1,27....
Then (Corollary 3 in §1) f is M-measurable and > 0 on S.
Taking any X € M, set X; = X NSk. Then

X = U Xy, (disjoint)
k=1
and X € M. Also,
(Vk) / fdm = frdm = pXy,.
X X
Thus by o-additivity (Theorem 2 in §5),

/fdmzz fdmzZ,usz/LX<oo (1 is finite!).
X k=17 Xk k

Thus f is as required, and its “uniqueness” follows as before. [J
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Note 2. By Definition 3 in §10, we may write
Lédu — fdm77

“/fdnl — PL'”

Note 3. Using Definition 2 in §10 and an easy “componentwise” proof, one
shows that Theorem 1 holds also with m replaced by a generalized measure s.
The formulas

for

,u:/fdmande(f;éh)zo

then are replaced by

,u:/fds and v, S(f # h) = 0.

II. Theorem 1 requires p to be m-continuous (1 < m). We want to generalize
Theorem 1 so as to lift this restriction. First, we introduce a new concept.

Definition.

Given two set functions s,t: M — E (M C 29%), we say that s is ¢-
singular (s L t) iff there is a set P € M such that v,P = 0 and

(3) VXeM|XC-P) sX=0.
(We then briefly say “s resides in P.”)
For generalized measures, this means that
VX eM) sX=sXnNP).
Why?

Corollary 1. If the generalized measures s,u: M — E are t-singular, so is
ks for any scalar k (if s is scalar valued, k may be a vector).

So also are s + u, provided t is additive.
(Exercise! See Problem 3 below.)

Corollary 2. If a generalized measure s: M — E is t-continuous (s < t) and
also t-singular (s L t), then s =0 on M.

Proof. As s L t, formula (3) holds for some P € M, v,P = 0. Hence for all
X eM,
$(X=P)=0(for X —PC-P)

and
w(XNP)=0 (for XNPCP).
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As s < t, we also have s(X N P) = 0 by Definition 3(i) in Chapter 7, §11. Thus
by additivity,
sX=s(XNP)+s(X—-P)=0,

as claimed. [O

Theorem 2 (Lebesgue decomposition). Let s,t: M — E be generalized mea-
sures.

If v is t-finite (Definition 3(iii) in Chapter 7, §11), there are generalized
measures s', s M — E such that

s<tands” Lt
and
s=s5 +5".
Proof. Let vy be the restriction of v, to
M, ={X e M| v, X =0}.

As v, is a measure (Theorem 1 of Chapter 7, §11), so is vy (for My is a o-ring;
verify!).
Thus by Problem 13 in Chapter 7, §6, we fix P € My, with

vsP =voP = max{v: X | X € My}.
As P € My, we have v; P = 0; hence
[sP| < vsP < 00

(for v, is t-finite).
Now define s', s, v, and v" by setting, for each X € M,

(4) §X =s(X - P);
(5) s"X = s(X N P);
(6) V' X = vy(X — P);
(7) V' X = v (X N P).

As s and v, are o-additive, so are s, s”, v/, and v”. (Verify!) Thus
§',s": M — E are generalized measures, while v and v are measures (> 0).
We have

VXeM) sX=s(X-P)+s(XNP)=5X+5"X;

ie.,
s=s5+5".

Similarly one obtains v, = v' + v”.
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Also, by (5), since X N P =0,
—PODXand X e M = s§"X =0,

while v, P = 0 (see above). Thus s” is t-singular, residing in P.

To prove s’ < t, it suffices to show that ' < ¢ (for by (4) and (6), v'X =0
implies |s'X| = 0).

Assume the opposite. Then

@AY eM) vuY =0

(e, Y € Mp), but
0< VY =0u,(Y — P).

So by additivity,
vs(YUP) =vP+v,(Y — P) > v,P,
with Y U P € My, contrary to
vsP = max{v, X | X € Mo}.
This contradiction completes the proof. [J

Note 4. The set function s in Theorem 2 is bounded on M. Indeed, s” L ¢
yields a set P € M such that

(VX eM) §"(X—P)=0;
and v, P = 0 implies vs P < co. (Why?) Hence
'X=8"(XNP)+s'(X—-P)=s"(XNP).
As s = s’ + 5", we have
"] < |s| + [s'| < vs + ver;

SO
"X | = |s" (X N P)| < v,P + vy P,

But vy P = 0 by t-continuity (Theorem 2 of Chapter 7, §11). Thus |s”| <
vs P < 00 on M.

Note 5. The Lebesgue decomposition s = s’ + s’ in Theorem 2 is unique.
For if also
v < tand u” Lt

and
I 1" !/ "
U 4u =s=s5+s",

then with P as in Problem 3, (VX € M)
(8) S(XNP)+s"(XNP)=d4(XNP)+u"(XNP)
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and v,(X N P) =0. But
S(XNP)=0=4(XNP)
by t¢-continuity; so (8) reduces to
S'(XNnP)=u"(XNnP),
or s"X =u"X (for s and u” reside in P). Thus s” =" on M.
By Note 4, we may cancel s” and u” in
s+ =u +u"
to obtain s’ = v’ also.

Note 6. If E = E" (C™), the t-finiteness of v, in Theorem 2 is redundant,
for v, is even bounded (Theorem 6 in Chapter 7, §11).
‘We now obtain the desired generalization of Theorem 1.

Corollary 3. If (S, M,m) is a o-finite measure space (S € M), then for any
generalized measure

w: M— E"(C"),
there is a unique m-singular generalized measure

st M — E"(C™)
and a (“essentially” unique) map

f:8— E™(C"),

M-measurable and m-integrable on S, with
u:/fders”.

(Note 3 applies here.)

Proof. By Theorem 2 and Note 5, = s’ + s” for some (unique) generalized
measures s’,s"”: M — E™ (C™), with s’ < m and s” L m.

Now use Theorem 1 to represent s’ as [ f dm, with f as stated. This yields
the result. O

Problems on Radon—Nikodym
Derivatives and Lebesgue Decomposition

1. Fill in all proof details in Lemma 2 and Theorem 1.

2. Verify the statement following formula (3). Also prove the following:
(i) If P € M along with —P € M, then s L ¢ implies ¢t L s;
(i) s Ltiff vg Lt
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3. Prove Corollary 1.

[Hints: Here M is a o-ring. Suppose s and u reside in P’ and P”, respectively, and
v P’ =0=vP’'. Let P=P UP"” e M. Verify that v;P = 0 (use Problem 8 in
Chapter 7, §11). Then show that both s and u reside in P.]

4. Show that if s: M — E* is a signed measure in S € M, then sT 1 s~
and s~ L st.

5. Fill in all details in the proof of Theorem 2. Also prove the following:

(i) s" and vy are absolutely t-continuous.
[Hint: Use Theorem 2 in Chapter 7, §11.]

(ll) Vg = Vg + Vgrty Vgt 1t
(iii) If s is a measure (> 0), so are s’ and s”.

6. Verify Note 3 for Theorem 1 and Corollary 3. State and prove both
generalized propositions precisely.

*§12. Integration and Differentiation

I. We shall now link RN-derivatives (§11) to those of Chapter 7, §12.
Below, we use the notation of Definition 3 in Chapter 7, §10 and Definition 1
of Chapter 7, §12. (Review them!) In particular,
m: M* — E*

)

is Lebesgue measure in E™ (presupposed in such terms as “a.e.,” etc.); s is an

arbitrary set function. For convenience, we set

s'(p) =0

unless defined otherwise; thus s’ and f [ exist always.

and

We start with several lemmas that go back to Lebesgue.

Lemma 1. With the notation of Definition 3 of Chapter 7, §10, the functions
Ds, Ds, and s’
are Lebesgue measurable on E™ for any set function
s:M = E* (M 2K).

Proof. By definition,
Ds(p) = inf by (p),
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where
sl
he(p) = supd —— ’I -
(p) sup{mI G’Cp}

and
_ 1
;c;:{ze/c(pef, dl<;}, r=12...

As is easily seen (verifyl!),

_ sl 1
1 E*h, >a)=| 1 ‘ Soar< = E*.
(1) (hy > a) U{ eX|a<— <T} ac

The right-side union is Lebesgue measurable by Problem 2 in Chapter 7, §10.
Thus by Theorem 1 of §2, the function h, is measurable on E" for r = 1,2,...,
and so is

Ds = irrlf hy

by Lemma 1 of §2 and Definition 3 in Chapter 7, §10. Similarly for Ds.
Hence by Corollary 1 in §2, the set

A= E™(Ds = Ds)

is measurable. As s = Ds on A, s’ is measurable on A and also on —A (by
convention, s = 0 on —A), hence on all of E™. O

Lemma 2. With the same notation, let s: M’ — E* (M’ 2 K) be a regular
measure in E". Let A€ M* and B € M’ with A C B, and a € E*.
If
Ds>a on A,

then
a-mA < sB.

Proof. Fix ¢ > 0. By regularity (Definition 4 in Chapter 7, §7), there is an
open set G O B, with
sB+ ¢ > sG.

Now let
ICEZ{IEKM'QG, sl > (a—e)ml}.

As Ds > a, the definition of Ds implies that K¢ is a Vitali covering of A.
(Verifyl!)
Thus Theorem 1 in Chapter 7, §10, yields a disjoint sequence {I;} C K¢,

with
m(A - LkJIk> =0
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and

mASm(AfUIk) +mUIk =0+mU[k=ZmIk.
k

UIkQGandsB+esz

(by our choice of K¢ and G), we obtain
sB+¢e> sUIk = Zslk > (a—a)ZmIk > (a —e)mA.
k k k
Thus
(a—e)mA < sB+e.
Making € — 0, we obtain the result. [

Lemma 3. If
t=s+u,

with s, t,u: M' — E* and M’ D K, and if u is differentiable at a point p € E™,
then

Dt =Ds+u' and Dt = Ds+u' at p.

The proof, from definitions, is left to the reader (Chapter 7, §12, Problem 7).
Lemma 4. Any m-continuous measure s: M* — E' is strongly reqular.

Proof. By Corollary 3 of Chapter 7, §11, vs = s < oo (s is finite!). Thus v, is
certainly m-finite.

Hence by Theorem 2 in Chapter 7, §11, s is absolutely m-continuous. So
given € > 0, there is § > 0 such that

VX eM |mX<d) sX<e

Now, let A € M*. By the strong regularity of Lebesgue measure m (Chap-
ter 7, §8, Theorem 3(b)), there is an open set G 2O A and a closed F' C A such
that

m(A—F) <6 and m(G — A) < 0.
Thus by our choice of 4,
s(A—F)<eand s(G—A) <e,

as required. [
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Lemma 5. Let s,s; (K = 1,2,...

) be finite m-continuous measures, with
sk s or s \(s on M*.

*§12. Integration and Differentiation
If the sy, are a.e. differentiable, then

As

349
Dty > Dty > 0
(see above), we get
Ds =Ds = khlﬁo i, a-c. lim Dt;, =0= lim Dt; a.e.on E™.
ko0 k—o00

Proof. Let first sp ' s. Set Now, as t;, = s — s, and as the s; are differentiable, Lemma, 3 yields

ty =5 — sp. Dt = Ds — s}, and Dt;, = Ds — s}, a.e.
By Corollary 2 in Chapter 7, §11, all ¢; are m-continuous, hence strongly reg- Thus
ular (Lemma 4). Also, 5 N\, 0 (since s * s). Hence

lim (Ds — s},) = 0 = lim(Ds — s},),
k—o0
tol > typrl >0 .
ie.,

for each cube I; and the definition of Dtj implies that Ds = klirn s, =Ds a.e.

—00
Dty > Dty > Dtgy1 > 0. This settles the case s;, * s.
As {Dt},}], lim Dty exists (pointwise). Now set In the case s N\ s, one only has to set tx = s — s and proceed as before.
koo 1 (Verify!) O
A, :E”(lim Dty > —), r=1,2,....
k—o0 T
By Lemma 1 (and Lemma 1 in §2), A, € M™*. Since

Lemma 6. Given A € M*, mA < oo, let

s = /C’A dm
— — 1
Dt > lim Dt; > —
ke A= r on M*. Then s is a.e. differentiable, and

on A,, Lemma 2 yields

1

- mAT S tkAr.

r

s’ =Cy4 a.e. on E™.
As t, \, 0, we have

(Ca = characteristic function of A.)
Proof.! First, let A be open and let p € A.
lmAT < lim t;A, = 0. Then A contains some G5(0) and hence also all cubes I € K with dI < 6

r k=00 and p € I.
Thus Thus for such I € K,

mA, =0, r=1,2,....
Also, as is easily seen, sl = /ICA dm = /1(1) dm = ml;

E(l' Dty >0 GE lim Dty > - GA Lo
" lim /k>): "(Hn /k7—>: ” I
koo r=1 koo r r=1 S_ =1= CA(ﬁ)7 p €A
ml
and
m U A, =0.
r=1

Hence by Definition 1 of Chapter 7, §12,
Hence

lim Dt <0 a.e.

s'(p) =1=Ca(p)
ifpe A;ie., s’ =Cy4 on A.
k—o00

! Differentiability follows by Theorem 4 of Chapter 7, §12, but we obtain it anyway.
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‘We claim that -
Ds=s =0 ae. on—A.

s:/CAdm

is a finite (why?) m-continuous measure on M*. By Lemma 4, s is strongly
regular. Also, as sI > 0 for any I € K, we certainly have

To prove it, note that

Ds > Ds > 0.
(Why?) Now let
(2) B=E"(Ds>0) = B,
r=1
where
— 1
(3) BT:E”(DSE—), r=1,2,....
T

We have to show that m(B — A) = 0.
Suppose
m(B —A) > 0.
Then by (2), we must have m(B, — A) > 0 for at least one B,; we fix this B,.
Also, by (3),
— 1
Ds>—-onB,— A
r
(even on all of B;). Thus by Lemma 2,
1
(4) 0<-m(B, —A) gs(B,—A):/ Cadm.
r B,.—A

But this is impossible. Indeed, as C4 = 0 on —A (hence on B, — A), the
integral in (4) cannot be > 0. This refutes the assumption m(B — A) > 0; so
by (2), _

m(E™(Ds > 0) — A) =0;

ie.,

Ds=0=Ds a.e. on—A.
We see that

s =0=C4 ae on—A,
and

s§$=1=C4s onA,

proving the lemma for open sets A.
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Now take any A € M*, mA < co. As Lebesgue measure is regular (Chap-
ter 7, §8, Theorem 3(b)), we find for each k € N an open set G 2 A, with

1
m(Gp — A) < % and G 2 Gy

Let
Sk — /CGk dm.
Then s, N\, s on M* (see Problem 5(ii) in §6). Also, by what was shown above,

the sj, are differentiable, with s), = Cg, a.e.
Hence by Lemma 5,

Ds=Ds= lim Cg, = C4 (a.e.).
k—o00
The lemma is proved. [

Theorem 1. Let f: E™ — E* (E", C") be m-integrable, at least on each cube
in E™. Then the set function
s = /fdm

is differentiable, with s' = f, a.e. on E™.2

Thus s' is the RN-derivative of s with respect to Lebesgue measure m
(Theorem 1 in §11).

Proof. As E™ is a countable union of cubes (Lemma 2 in Chapter 7, §2), it
suffices to show that s’ = f a.e. on each open cube J, with s differentiable
a.e. on J.

Thus fix such a J # () and restrict s and m to
My={XeM"|XCJ}
This does not affect s’ on J; for as J is open, any sequence of cubes

Iy —peJ

- [

is a generalized measure in J; for My is a o-ring (verify!), and f is integrable
on J. Also, m is strongly regular, and s is m-continuous.

terminates inside J anyway.
‘When so restricted,

2 Recall that f f is always defined by our convention.



352 Chapter 8. Measurable Functions. Integration

First, suppose f is My-simple on J, say,

q
f = Z aiCAU
i=1

say, with 0 < a; < 00, A; € M*, and

a
J= U A; (disjoint).

i=1

s—/f—i_ilai/C’Ai.

Hence by Lemma 6 above and by Theorem 1 in Chapter 7, §12, s is differen-
tiable a.e. (as each [ Cy, is), and

Then

as required.

The general case reduces (via components and the formula f = f* — f7) to
the case f > 0, with f measurable (even integrable) on J.

By Problem 6 in §2, then, we have fi  f for some simple maps f; > 0. Let

Sk:/fk Onﬁfo, k‘:1,2,....

Then all s, and s = [ f are finite measures and s, s, by Theorem 4 in §6.
Also, by what was shown above, each sy, is differentiable a.e. on J, with s}, = fi
(a.e.). Thus as in Lemma 5,

Ds=Ds=s = klirn s, =lim f, = f (a.e.) on J,
—00
with ' = f # +oo (a.e.), as f is integrable on J. Thus all is proved. O

II. So far we have considered Lebesgue (K) differentiation. However, our re-

sults easily extend to Q-differentiation (Definition 2 in Chapter 7, §12).

The proof is even simpler. Thus in Lemma 1, the union in formula (1)
is countable (as K is replaced by the countable set family €); hence it is
p-measurable. In Lemma 2, the use of the Vitali theorem is replaced by
Theorem 3 in Chapter 7, §12. Otherwise, one only has to replace Lebesgue
measure m by p on M. Once the lemmas are established (reread the proofs!),

we obtain the following.
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Theorem 2. Let S, p, Q, and p: M — E* be as in Definition 2 of Chapter
7,812. Let f: S — E*(E", C") be p-integrable on each A € M with uA < oo.

Then the set function
s= [ tan

is Q-differentiable, with s’ = f, (a.e.) on S.

Proof. Recall that S is a countable union of sets Ul € Q with 0 < pU! < cc.
As p* is G-regular, each U} lies in an open set J. € M with

pJi < pUg + €l < oo.

Also, f is p-measurable (even integrable) on J. Dropping a null set, assume
that f is M-measurable on J = J;.
From here, proceed exactly as in Theorem 1, replacing m by p. 0O

Both theorems combined yield the following result.

Corollary 1. If s: M' — E*(E", C") is an m-continuous and m-finite gen-
eralized measure in E™, then s is IC-differentiable a.e. on E™, and ds = s’ dm
(see Definition 3 in §10) in any A € M* (mA < o).

Similarly for Q-differentiation.

Proof. Given A € M* (mA < o), there is an open set J D A such that
mJ <mA+¢e < oo.
As before, restrict s and m to
Moy={XeM"|XCJ}

Then by assumption, s is finite and m-continuous on My (a o-ring); so by

Theorem 1 in §11,
s = / fdm

on M, for some m-integrable map f on J.
Hence by our present Theorem 1, s is differentiable, with s’ = f a.e. on J,

and so
s:/f:/s/on/\/lg.

This implies ds = s’ dm in A.
For Q-differentiation, use Theorem 2. [

3 The restriction mA < oo is redundant if s is finite.
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Corollary 2 (change of measure). Let s be as in Corollary 1. Subject to Note 1
in §10, if f is s-integrable on A € M* (mA < 00),* then fs' is m-integrable

on A and
/fds=/fs'dm.
A A

Similarly for Q-derivatives, with m replaced by .
Proof. By Corollary 1, ds = s’ dm in A. Thus Theorem 6 of §10 yields the
result. O

Note 1. In particular, Corollary 2 applies to m-continuous signed LS mea-
sures s = s, in E' (see end of §11). If A = [a,b], then s, is surely finite on
soq-measurable subsets of A; so Corollaries 1 and 2 show that

/Afdsa:/Afs;dm:/Afa’dm,

since s, = /. (See Problem 9 in Chapter 7, §12.)

Note 2. Moreover, s = s, (see Note 1) is absolutely m-continuous iff « is
absolutely continuous in the stronger sense (Problem 2 in Chapter 4, §8).

Indeed, assuming the latter, fix ¢ > 0 and choose 0 as in Definition 3 of
Chapter 7, §11. Then if mX < 6, we have

X C Ulk (disjoint)

for some intervals Iy, = (ay, bg], with

0> Zm[k = Z(bk — ak).

lsX| < |shi| <.

(Why?) Similarly for the converse.?

Hence

Problems on Differentiation and Related Topics
1. Fill in all proof details in this section. Verify footnote 4 and Note 2.
2. Given a measure s: M’ — E* (M’ D K), prove that

(i) s is topological;

(ii) its Borel restriction o is strongly regular; and

(ili) Ds, Ds, and s’ do not change if s or m are restricted to the
Borel field B in E™; neither does this affect the propositions on
K-differentiation proved here.

4 The restriction mA < oo is redundant if s is finite.
5 Note that s{a} = 0 if s is m-continuous.
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[Hints: (i) Use Lemma 2 of Chapter 7, §2. (ii) Use also Problem 10 in Chapter 7,
§7. (iii) All depends on K.]

3. What analogues to 2(i)—(iii) apply to Q-differentiation in E™? In (S, p)?
4. (i) Show that any m-singular measure s in E™, finite on K, has a zero
derivative (a.e.).
(ii) For Q-derivatives, prove that this holds if s is also regular.

[Hint for (i): By Problem 2, we may assume s regular (if not, replace it by o).
Suppose .
mE™(Ds >0)>a >0

and find a contradiction to Lemma 2.]

5. Give another proof for Theorem 4 in Chapter 7, §12.
[Hint: Fix an open cube J € K. By Problem 2(iii), restrict s and m to

Mo={XeB|XCJ}

to make them finite. Apply Corollary 2 in §11 to s. Then use Problem 4, Theorem 1
of the present section, and Theorem 1 of Chapter 7, §12.

For Q-differentiation, assume s regular; argue as in Corollary 1, using Corollary 2
of §11.]

6. Prove that if .
F(2) :L/ fdm (a<z<b)°
with f: B! — E* (E™, C™) m-integrable on A = [a, b], then F is differ-

entiable, with I = f, a.e. on A.
[Hint: Via components, reduce all to the case f > 0, F't on A.

Let .
s:/fdm

on M*. Let t = mp be the F-induced LS measure. Show that s =t on intervals in
A;so s’ =t' = F" a.e. on A (Problem 9 in Chapter 7, §11). Use Theorem 1.]

6 Here L f; fdm = f[a’z] f dm; m =Lebesgue measure.



Chapter 9

Calculus Using Lebesgue Theory

81. L-Integrals and Antiderivatives

I. Lebesgue theory makes it possible to strengthen many calculus theorems.
We shall start with functions on El, f: B! — E. (A reader who has omit-
ted the “starred” part of Chapter 8, §7, will have to set £ = E*(E™, C")
throughout.)

By L-integrals of such functions, we mean integrals with respect to Lebesgue
measure m in E'. Notation:

L/abf:L/abf(:I:)dx:L/[a,b]f
L/baf:—L/abf.

For Riemann integrals, we replace “L” by “R.” We compare such integrals
with antiderivatives (Chapter 5, §5), denoted

/abf,

without the “L” or “R.” Note that
L =1L 8
)

[a,b] (a,b

and

etc., since m{a} = m{b} = 0 here.

Theorem 1. Let f: E' — E be L-integrable on A = [a,b]. Set

H(z):L/zf, z €A
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Then the following are true.

(i) The function f is the derivative of H at any p € A at which f is finite
and continuous. (At a and b, continuity and derivatives may be one-sided
from within.)

(ii) The function H is absolutely continuous on A;' hence Vy[A] < 00.23

Proof. (i) Let p € (a,b], ¢ = f(p) # Loo. Let f be left continuous at p; so,
given ¢ > 0, we can fix ¢ € (a,p) such that

|f(z) —q|] < e for z € (c,p).

Then
wacten [o[-of<z 174
<[ @ =cmlssl=<(p-a)
But
tf o=t -1
L/:q:fJ(p—l’% and
vfr=r e[
= H(p) — H().
Thus
|H(p) — H(z) —q(p —2)| <e(p—2);
N wfq <e (e<z<p).
Hence

AH
=q¢= lim — = H (p).
fp)=g= lim —= ~(p)
If f is right continuous at p € [a,b), a similar formula results for H', (p). This
proves clause (i).

L This is true even in the stronger sense, as in Problem 2 of Chapter 5, §8, or in §2 (next
to this).

2 Recall that Vi [A] is the total variation of H on A (Chapter 5, §§7-8).

3 Part (ii) is true even if f is not L-integrable, only Lf: | f| < oo is needed.
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(ii) Let € > 0 be given. Then Theorem 6 in Chapter 8, §6, yields a 6 > 0
such that

&) FAﬂSLAVRs

whenever

mX <dand AD X, X € M.

Here we may set
T

X =|J A (disjoint)
i=1
for some intervals

so that

i

Then (1) implies that

e>L/X|f:ZL/Ai|f>Z’L/inf|=Z|H(bi)H(ai)|-

Thus
> H(bi) - H(a:)| < &
whenever
Z(bl — ai) <d
and

AD U(ai, b;) (disjoint).

(This is what we call “absolute continuity in the stronger sense.”) By Problem 2
in Chapter 5, §8, this implies “absolute continuity” in the sense of Chapter 5,
§8, hence Vi[A] < oco. O

Note 1. The converse to (i) fails: the differentiability of H at p does not
imply the continuity of its derivative f at p (Problem 6 in Chapter 5, §2).

Note 2. If f is continuous on A — @ (Q countable), Theorem 1 shows that
H is a primitive (antiderivative): H = [ f on A4 Recall that “Q countable”
implies m@ = 0, but not conversely. Observe that we may always assume

a,beq.

4 See Definition 1 in Chapter 5, §5.
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‘We can now prove a generalized version of the so-called fundamental theorem
of calculus, widely used for computing integrals via antiderivatives.

Theorem 2. If f: E' — E has a primitive F on A = [a,b], and if f is bounded
on A — P for some P with mP = 0, then f is L-integrable on A, and

(2) L/msz(x)fF(a) for all z € A.

Proof. By Definition 1 of Chapter 5, §5, F' is relatively continuous and finite
on A = [a,b], hence bounded on A (Theorem 2 in Chapter 4, §8).

It is also differentiable, with F' = f, on A — Q for a countable set Q C A,
with a,b € Q. We fix this @) along with P.

As we deal with A only, we surely may redefine F and f on —A:
Flo) = F(a) %fx<a,
F(b) ifx>b,
and f = 0 on —A. Then f is bounded on —P, while F' is bounded and
continuous on E', and F' = f on —Q;s0 F = [ f on E'.®
Also, forn =1,2,... and t € E!, set

1 F(t+1/n)— F(t)
A0 =n[F(e+ 1) -] = XY PO
(3) fa®) =n[F(t+ =) = F(t) U
Then
fn - F = f on _Q§
ie., fn — f (a.e.) on E! (as mQ =0).
By (3), each f,, is bounded and continuous (as F' is). Thus by Theorem 1
of Chapter 8, §3, I and all f,, are m-measurable on A (even on E'). So is f
by Corollary 1 of Chapter 8, §3.

Moreover, by boundedness, F' and f,, are L-integrable on finite intervals. So
is f. For example, let

|f| <K <ooonA-—P,;
as mP =0,

Jin< [ w0 =K ma<,

proving integrability. Now, as
n

1
F = / f on any interval [t,t+ ],

5 See Definition 1 from Chapter 5, §5.
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Corollary 1 in Chapter 5, §4 yields

1 1
vee B |F(t+ )= ()| < sw |F/(0)]
(vee B |F(i+ ) = FO)| < sup O]

Hence .
Fa® =n|F(t+ ) - F(t)| < K

ie., |fn] < K for all n.
Thus f and f,, satisfy Theorem 5 of Chapter 8, §6, with ¢ = K. By Note 1

there,
lim L/ fn:L/ I
n—oo a a

In the next lemma, we show that also

n—oo

lim L/ fn=F(z) — F(a),
which will complete the proof. [J

Lemma 1. Given a finite continuous F: E* — E and given f, as in (3),
we have

n—oo

(4) lim L /I fn=F(z)—F(a) foralxeE".

Proof. As before, F' and f,, are bounded, continuous, and L-integrable on any
la, z] or [z,a]. Fixing a, let

T
H(m):L/ F, zcFE.
a
By Theorem 1 and Note 2, H = [ F' also in the sense of Chapter 5, §5, with

F = H' (derivative of H) on E*.
Hence by Definition 2 the same section,

/azF:H(:v)—H(a):H(a;)_o:L/ P

ie.,

and so

L/:fn(t)dtzn/;F<t+%) dtfn/:F(t)dt

b+1/n T
:n/ F(t) dtfn/ F(t)dt.

+1/n
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/F(t+ 1/n)dt

by Theorem 2 in Chapter 5, §5, with ¢g(¢t) = ¢t + 1/n.) Thus by additivity,

x z+1/n x z+1/n a+1/n
L/ fa= n/ F— ’n/ F= n/ F— 77,/ F.
a a+1l/n a T a

(We computed

But ,
z+1/n H + 1y H
n/ =)AW@ g - op),
Similarly,
a+l/n
lim n/ F = F(a).
n—oo a

This combined with (5) proves (4), and hence Theorem 2, too. 0O

We also have the following corollary.

Corollary 1. If f: E' — E* (E™, C") is R-integrable on A = [a, b], then

/f L/f F() — F(a),

provided F is primitive to f on A.5

This follows from Theorem 2 by Definition (¢) and Theorem 2 of Chap-
ter 8, §9.

Caution. Formulas (2) and (6) may fail if f is unbounded, or if F' is not
a primitive in the sense of Definition 1 of Chapter 5, §5: We need F/ = f
on A — @, Q countable (m@Q = 0 is not enough!). Even R-integrability (which
makes f bounded and a.e. continuous) does not suffice if

F#/f

Corollary 2. If f is relatively continuous and finite on A = [a,b] and has a
bounded derivative on A — Q (Q countable), then [’ is L-integrable on A and

(6) (Vz € A)

For examples, see Problems 2-5.

(7) L/fﬂ:ﬂ@—f@)ﬁwxeA

This is simply Theorem 2 with F, f, P replaced by f, f’, Q, respectively.

6 We assumed that E = E* (E™, C™) since R-integrals were defined for that case only.
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Corollary 3. If in Theorem 2 the primitive

F= / f
is exact on some B C A, then
0 @ =21 [y sen
¥) = ) T .

(Recall that - F(z) is classical notation for F’(z).)
Proof. By (2), this holds on B C A if F' = f there. O

II. Note that under the assumptions of Theorem 2,

L/:f:F(:c)—F(a):/:f.

Thus all laws governing the primitive [ f apply to L [ f. For example, Theo-
rem 2 of Chapter 5, §5, yields the following corollary.

Corollary 4 (change of variable). Let g: E* — E* be relatively continuous on
A = [a,b] and have a bounded derivative on A — Q (Q countable).
Suppose that f: E' — E (real or not) has a primitive on g[A], ezact on

glA — Q], and that f is bounded on g[A — @Q)].
Then f is L-integrable on g[A], the function
(fog)g

is L-integrable on A, and

b
(9) p/fmunywwx

where p = g(a) and q = g(b).

=LA%@M%

For this and other applications of primitives, see Problem 9. However, often
a direct approach is stronger (though not simpler), as we illustrate next.

Lemma 2 (Bonnet). Suppose f: E! — E' is > 0 and monotonically decreas-
ing on A = [a,b]. Then, if g: E' — E' is L-integrable on A, so also is fg,
and

b
(10) L/fg:ﬂw

Proof. The L-integrability of fg follows by Theorem 3 in Chapter 8, §6, as f is
monotone and bounded, hence even R-integrable (Corollary 3 in Chapter 8, §9).

L/ g for some c e A.
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Using this and Lemma 1 of the same section, fix for each n a C-partition

Pn:{Anz} (22172,7@”)
of A so that
an

S|=

where we have set

Consider any such P = {4;}, i =1,...,q (we drop the “n” for brevity). If
A; = [a;—1,a;], then since f],

w; = f(ai—1) — fai) > |f(z) — fai-1)], z € A;.
Under Lebesgue measure (Problem 8 of Chapter 8, §9), we may set
A; =lai—1,a4] (Vi)
and still get

L/Af9: i—zlf(ai_l)L/Azg(m)dx
. EL/A (@) = flai-1)] g(w) da

(Verify!) Here ag = a and a4 = b.

G(x):L/aIg

and rewrite the first sum (call it r or r,,) as

q
Zfazl

(12)

Now, set

- G(a;-1)]

H
s 5
Lo

G(ai) [f(ai—1) = f(ai)] + G(b) f(ag-1),

~
Il
-

or
q—1

(13) = Gla;) w; + G(b) flag-1),
i=1

because f(a;—1) — f(a;) = w; and G(a) =0

Now, by Theorem 1 (with H, f replaced by G,g), G is continuous on A =
[a,b]; so G attains a largest value K and a least value k on A.
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As fl and f > 0 on A, we have
w; > 0 and f(ag—1) > 0.
Thus, replacing G(b) and G(a;) by K (or k) in (13) and noting that

q—1

S wi = f(a) - flag),

i=1
we obtain
kf(a) <r < Kf(a);

more fully, with ¥ = min G[A4] and K = max G[4],
(14) (Vn) kf(a) <r, < Kf(a).
Next, let s (or rather s,) be the second sum in (12). Noting that
wi = [f(z) = fai-1)],

suppose first that |g| < B (bounded) on A.
Then for all n,

an
B
[sn| < E / w Ewm <n—>0 (by (11))

ni i=1

But by (12),
L/fg:rn-i-sn (Vn).
A

As s, — 0,

L Afg = nli_}rréorn,
and so by (14),

)<L [ 19< K1),

By continuity, f(a)G(z) takes on the intermediate value LfA fg at some

c€ A;so .
L[ fo= @6 = @i [ o

fL/:f.

The passage to an unbounded g is achieved by the so-called truncation
method described in Problems 12 and 13. (Verify!) O

since

Thus all is proved for a bounded g.
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Corollary 5 (second law of the mean). Let f: E} — E! be monotone on
A= [a,b]. Then if g: E' — E' is L-integrable on A, so also is fg, and

b c b
(15) L/ fg:f(a)L/ g+f(b)L/g for some c € A.
Proof. If, say, f| on A, set

h(z) = f(z) — f(b).
Then h > 0 and hl on A; so by Lemma 2,

b c
/gh:h(a)L/g for some ¢ € A.

As

this easily implies (15).
If f1, apply this result to —f to obtain (15) again. O

Note 3. We may restate (15) as

b c b
(Fee A) L/ fg:pL/ g+qL/ 9,
provided either

(i) fTand p < fat) < f(b—) < g, or
(i) fland p> flat) = f(b-) = q.
This statement slightly strengthens (15).
To prove clause (i), redefine

f(a) =pand f(b) = q.

Then still f1; so (15) applies and yields the desired result. Similarly for (ii).
For a continuous g, see also Problem 13(ii’) in Chapter 8, §9, based on Stieltjes
theory.

III. We now give a useful analogue to the notion of a primitive.
Definition.

A map F: E' — E is called an L-primitive or an indefinite L-integral of
f:E'— E,on A =[a,b] iff fis L-integrable on A and

(16) F(x):c—i-L/mf

for all z € A and some fixed finite ¢ € E.
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F:L/f (notF:/f)

F(z) = L/f(x) dx on A.

Notation:

or

By (16), all L-primitives of f on A differ by finite constants only.

If E = E*(E™, C™), one can use this concept to lift the boundedness re-
striction on f in Theorem 2 and the corollaries of this section. The proof will
be given in §2. However, for comparison, we state the main theorems already
now.

*Theorem 3. Let
F:L/f on A= |a,b)
for some f: EY — E*(E™, C"™).
Then F is differentiable, with
F'=f a.e onA.

In classical notation,

(17) fz) = % L/w ft)dt for almost all v € A.

A proof was sketched in Problem 6 of Chapter 8, §12. (It is brief but requires
more “starred” material than used in §2.)

*Theorem 4. Let F': E* — E" (C™) be differentiable on A = [a,b] (at a and
b differentiability may be one sided). Let F' = f be L-integrable on A.
Then

(18) L/zf:F(x)—F(a) for all xz € A.

Problems on L-Integrals and Antiderivatives

1. Fill in proof details in Theorems 1 and 2, Lemma 1, and Corollaries 1-3.
1’. Verify Note 2.
2. Let F be Cantor’s function (Problem 6 in Chapter 4, §5). Let

G =JGw
ki

(Ggi as in that problem). So [0,1] — G = P (Cantor’s set); mP = 0
(Problem 10 in Chapter 7, §8).
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Show that F' is differentiable (F' = 0) on G. By Theorems 2 and 3

of Chapter 8, §9,
1 1
R F':L/ F/:L/F':()
0 0 G

exists, yet F'(1) — F(0) =1—-0#0.
Does this contradict Corollary 1?7 Is F' a genuine antiderivative of f7
If not, find one.

3. Let
1
P { 0 on[0,5),and
1 on[4,1].
Show that
1
R/ F'=0
0
exists, yet

F1)—F0)=1-0=1.

What is wrong?

[Hint: A genuine primitive of F’ (call it ¢) has to be relatively continuous on [0, 1];
find ¢ and show that ¢(1) — ¢(0) =0.]

4. What is wrong with the following computations?

2 ™ 1
(i)L/2 dv_ 1r_

1 22 xl-1

1
d 1
(i) L/ & ln\x|’ L= 0. Is there a primitive on the whole
-1 X —
interval?
[Hint: See hint to Problem 3.]
.
(iii)) How about L/ |z—|dx (cf. examples (a) and (b) of Chap-
1

ter 5, §5)7

5. Let
) 2 m —
F(z) = x° cos ek F(0)=1.
Prove the following:
(i) F is differentiable on A = [0, 1].

(ii) f = F’ is bounded on any [a,b] C (0,1), but not on A.
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(iii) Let
2 1
— ./ — and b, = —— f =1,2,....
an T and b, NeT orn 2,
Show that

AD U [an, by] (disjoint)

n=1

b
" 1

L -
/an f 2n’

b oo
1
L >L > — =
JEELY S oSS
a Unzilan,ba] n=1

and

SO

n=1
and f = F’ is not L-integrable on A.
What is wrong? Is there a contradiction to Theorem 27

6. Consider both

(a) f(=) = sinx’ f(0) =1, and
(b) f(z) = = _xeﬁ, £(0) = 1.

In each case, show that f is continuous on A = [0, 1] and

R/Afgl

ezists, yet it does not “work out” via primitives. What is wrong? Does
a primitive exist?
To use Corollary 1, first expand sinz and e~* in a Taylor series and
find the series for
1

R

approzimately, to within 1/10, using the remainder term of the series to
estimate accuracy.

[Hint: Primitives exist, by Theorem 2 of Chapter 5, §11, even though they are none
of the known “calculus functions.”]

by Theorem 3 of Chapter 5, §9.
Find
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7. Take A, G,, = (an,b,), and P (mP > 0) as in Problem 17(iii) of Chap-
ter 7, §8.
Define F' =0 on P and
1
(b = an)(@ — an)(z — bn)

Prove that F' has a bounded derivative f, yet f is not R-integrable on
A; so Theorem 2 applies, but Corollary 1 does not.
[Hints: If p & P, compute F’(p) as in calculus.

F(z) = (z — an)*(x — b,)? sin

ifx & P.

If p € P and @ — p+ over A — P, then z is always in some (an,bn), p < an < .
(Why?) Deduce that Az =2z —p >z — a, and

'i—i < (x —an)(b—a)? < |Az|(b— a)?;

so F (p) = 0. (What if z — p4 over P?) Similarly, show that F/ =0 on P.

Prove however that F’(z) oscillates from 1 to —1 as 2 — an+ or  — by, —, hence
also as © — p € P (why?); so F’ is discontinuous on all of P, with mP > 0. Now
use Theorem 3 in Chapter 8, §9.]

=8. If
QC A=]a,b
and m@Q = 0, find a continuous map g: A — E', g > 0, g1, with
g =+c0 onQ.
[Hints: By Theorem 2 of Chapter 7, §8, fix (¥n) an open Gy D Q, with
mGy <27

Set
gn(x) = m(Gn N a,z])

and
oo
g = Z gn
n=1

on A; > gn converges uniformly on A. (Why?)
By Problem 4 in Chapter 7, §9, and Theorem 2 of Chapter 7, §4, each g, (hence
g) is continuous. (Why?) If [p, 2] C Gn, show that

gn(x) = gn(p) + (z — p),

SO
Agn
Ax

=1

and

§1. L-Integrals and Antiderivatives 371

9.

=10.

=11.

(i) Prove Corollary 4.

(ii) State and prove earlier analogues for Corollary 5 of Chapter 5, §5,
and Theorems 3 and 4 from Chapter 5, §10.

[Hint for (i): For primitives, this is Problem 3 in Chapter 5, §5. As g[Q] is countable
(Problem 2 in Chapter 1, §9) and f is bounded on

glA] — glQ] € g[A - @],
f satisfies Theorem 2 on g[A], with P = ¢[Q], while (f o g) ¢’ satisfies it on A.]
Show that if h: E* — E* is L-integrable on A = [a, b], and

(Vo € A) L/ h=0,

then h =0 a.e. on A.
[Hints: Let K = A(h > 0) and H = A — K, with, say, nK =¢ > 0.
Then by Corollary 1 in Chapter 7, §1 and Definition 2 of Chapter 7, §5,

H C | JBn (disjoint)

n

for some intervals By, C A, with

ZmBn<mH+5:mH+mK:mA‘

n

(Why?) Set B =J,, Bn; so

Jr=f e

(for L [ h =0 on intervals By). Thus
/ h:/ hf/ h=o.
A—B A B

A-BCA-H=K,

But B D H; so

where h > 0, even though m(A — B) > 0. (Why?)

Hence find a contradiction to Theorem 1(h) of Chapter 8, §5. Similarly, disprove
that mA(h < 0) = > 0.]
Let F't on A = [a,b], |F| < oo, with derived function F' = f. Taking
Theorem 3 from Chapter 7, §10, for granted, prove that

L/foF(x)fF(a), z €A

[Hints: With f, asin (3), F and f, are bounded on A and measurable by Theorem 1
of Chapter 8, §2. (Why?) Deduce that f, — f (a.e.) on A. Argue as in Lemma 1
using Fatou’s lemma (Chapter 8, §6, Lemma 2).]
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12. (“Truncation.”) Prove that if g: S — E is m-integrable on A € M
in a measure space (S, M, m), then for any € > 0, there is a bounded,
M-measurable and integrable on A map go: S — E such that

/|g—go|dm<5.
A

[Outline: Redefine g = 0 on a null set, to make g M-measurable on A. Then for
n=12... set

_J g on A(lg| <n), and
In = 0 elsewhere.

(The function gy, is called the nth truncate of g.)
Each gy is bounded and M-measurable on A (why?), and

/|g\dm<oo
A

by integrability. Also, |gn| < |g| and gn — g (pointwise) on A. (Why?)
Now use Theorem 5 from Chapter 8, §6, to show that one of the g, may serve as
the desired go.]

13. Fill in all proof details in Lemma 2. Prove it for unbounded g.
[Hints: By Problem 12, fix a bounded go (|go| < B), with

s 2f( @)

Verify that

dn
ES) IUm:\g\SZ/ wm\gouZ/ Wailg = g0l
i=1"7Ani i i
<BZwmmAm+Z/ ®)1g - 90!

< +/A[f(a) ~ ®)lg g0l < =+ %

For all n > 2/e, we get |sp| < s+ 6 = e. Hence s, — 0. Now finish as in the
text.]

14. Show that Theorem 4 fails if F' is not differentiable at some p € A.
[Hint: See Problems 2 and 3.

§2. More on L-Integrals and Absolute Continuity

I. In this section, we presuppose the “starred” §10 in Chapter 7. First, how-
ever, we add some new ideas that do not require any starred material. The
notation is as in §1.
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Definition 1.
Given F: E' — E, p€ E', and ¢ € E, we write

q~ DF(p)
and call ¢ an F'-derivate at p iff

F —F
S i P = FO)
k— o0 T — P
for at least one sequence z — p (zx # p).!

If ' has a derivative at p, it is the only F-derivate at p; otherwise,
there may be many derivates at p (finite or not).

Such derivates must exist if E = E! (E*). Indeed, given any p € E, let
1
Tp=p+ r b
let P P
o= F@ = F@)
Tk —P
By the compactness of E* (Chapter 4, §6, example (d)), {yx} must have a
subsequence {yi, } with a limit ¢ € E* (e.g., take ¢ = limyy), and so ¢ ~ DF(p).
We also obtain the following lemma.
Lemma 1. If F: E' — E* has no negative derivates on A — Q, where A =
[a,b] and mQ = 0, and if no derivate of F' on A equals —co, then F1 on A.

Proof. First, suppose F' has no negative derivates on A at all. Fix ¢ > 0
and set
G(z) = F(z) + ex.
Seeking a contradiction, suppose a < p < ¢ < b, yet G(q) < G(p). Then if
1

one of the intervals [p,r] and [r, q] (call it [p1, ¢1]) satisfies G(q1) < G(p1).
Let

1
= §(P1 +q1).

Again, one of [p1,71] and [r1, q1] (call it [pe, ¢2]) satisfies G(g2) < G(p2). Let

1
Ty = 5(172 + q2),

and so on.

L«DF(p)” stands for “an F-derivate at p.”
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Thus obtain contracting intervals [py, ¢,], with
G(gn) <G(pn), n=12,....
Now, by Theorem 5 of Chapter 4, §6, let

o0
Po € [ )[Pn: anl.

n=1

Then set z,, = ¢, if G(gn) < G(p,), and z,, = p, otherwise. Then
G(z,) — G(ps

(2) = Glpo) _

Tn — Po

0

and x, — p,. By the compactness of E*, fix a subsequence

G(mnk) — G(po)

xnk — Do

—c€E",

say. Then ¢ < 0 is a G-derivate at p, € A.

But this is impossible; for by our choice of G and our assumption, all
derivates of G are > 0. (Why?)
This contradiction shows that a < p < ¢ < b implies G(p) < G(q), i.e.,

F(p)+ep < F(q) +eq.

Making € — 0, we obtain F(p) < F(q) when a <p < ¢ <b, i.e., F1 on A.
Now, for the general case, let @ be the set of all p € A that have at least
one DF(p) < 0; so m@Q = 0.
Let g be as in Problem 8 of §1; so ¢’ = co on Q. Given £ > 0, set

G=F+egg.
As g1, we have
tope ) C@=Cw)  Fl)=Fi)
r—=p r—=p

Hence DG(p) > 0if p & Q.

If, however, p € @, then ¢'(p) = oo implies DG(p) > 0. (Why?) Thus all
DG(p) are > 0; so by what was proved above, G1 on A. It follows, as before,
that F'T on A, also. The lemma is proved. [

We now proceed to prove Theorems 3 and 4 of §1. To do this, we shall need
only one “starred” theorem (Theorem 3 of Chapter 7, §10).

Proof of Theorem 3 of §1. (1) First, let f be bounded:
[fI<K on A
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Via components and by Corollary 1 of Chapter 8, §6, all reduces to the real
positive case [ >0 on A. (Explain!)
Then (Theorem 1(f) of Chapter 8, §5) a < z < y < b implies

L/ijL/ayf,

e, F(z) < F(y); so FT and F' > 0 on A.
Now, by Theorem 3 of Chapter 7, §10, F' is a.e. differentiable on A. Thus
exactly as in Theorem 2 in §1, we set

falt) = F(t+ %1) — F(t)

n

— F'(t) ae.

Since all f,, are m-measurable on A (why?), so is F’. Moreover, as |f| < K,
we obtain (as in Lemma 1 of §1)

z+1/n
|fn(~%’)|:n(L/ f)Sn-gzK.

Thus by Theorem 5 from Chapter 8, §6 (with g = K),

L/ F/:,}LIEOL/ fn:L/ f

(Lemma 1 of §1). Hence

L/x(F’ff)zo, z €A,

and so (Problem 10 in §1) F' = f (a.e.) as claimed.

(2) If £ is not bounded, we still can reduce all to the case f > 0, f: Bt — E*,
so that F't and F/ > 0 on A.
If so, we use “truncation”: For n =1,2,..., set

{ f on A(f <n), and
9n =

0 elsewhere.

Then (see Problem 12 in §1) the g,, are L-measurable and bounded, hence L-
integrable on A, with g, — f and

0<gn<f
on A. By the first part of the proof, then,

d

z
_L/ 9In = Gn a-e-OHA7n:1727....
dr  J,
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Also, set (Vn)
Fu@) =L [ (=) 20

so F,, is monotone (1) on A. (Why?)
Thus by Theorem 3 in Chapter 7, §10, each F}, has a derivative at almost
every x € A,

= 11 ) <o

Making n — oo and recalling that g, — f on A, we obtain
F'(z) = f(x) >0 ae. on A.

gn(xz) >0 a.e. on A.

Thus ”
L/ (F' = f)>0.

But as F'1 (see above), Problem 11 of §1 yields

/F’<F — F(a) = L/zf;
L/a /F’ /f<0

(Vo e A) L/I(F’—f)zo;

so by Problem 10 of §1, F' = f a.e. on A, as required. O

SO

Combining, we get

Proof of Theorem 4 of §1. Via components, all again reduces to a real f.2
Let (Vn)
_{f on A(f <n),
=10 on A(f > n);

This makes each g, L-integrable on A. Thus as before, by Theorem 5 of
Chapter 8, §6,

(1) limL/ gn,zL/ f, zeA

n— o0

SO gn — f (pointwise), In < fv gn <M, and |(Jn| < ‘f|

Now, set
x
F,(z)=F(z)-L / n-
Ja

2 Not f > 0, though, since Corollary 1 in Chapter 8, §6, does not apply to differentiation.
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Then by Theorem 3 of §1 (already proved),

d

Fl(z)=F'(z) - . L/m gn = f(x) —gn(x) >0 a.e.on A

(since g, < f).
Thus F), has solely nonnegative derivates on A — Q (m@Q = 0). Also, as

gn < n, we get
1 x
L / gn <1,
Tr—=p a
even if < p. (Why?) Hence

AF, _ AF
> — —n,

Ar — Az

as

Thus none of the F,,-derivates on A can be —oo.
By Lemma 1, then, F,, is monotone (1) on A4; so F,(z) > F,(a), i.e.,

F(x)fL/’gnzF(a)fL/ g = Fla),
or "
F(m)fF(a)zL/ In, TEA n=12....

Hence by (1),
F(x)—F(a)ZL/ f, xzeA

For the reverse inequality, apply the same formula to —f. Thus we obtain the
desired result:

(2) F(z) = a)+L/zf forxe A. O

Note 1. Formula (2) is equivalent to F = L [ f on A (see the last part of
§1). For if (2) holds, then
z)=c+L / /s

with ¢ = F(a); so F = L [ f by definition.

Conversely, if
n=c+L[ 1.

set = a to find ¢ = F(a).
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II. Absolute continuity redefined.
Definition 2.

A map f: E' — E is absolutely continuous on an interval I C E' iff for
every € > 0, there is 6 > 0 such that

r

> (b — a;) < & implies Y | f(bi) — f(ai)| < e
i=1

i=1
for any disjoint intervals (a;, b;), with a;,b; € I.

¢

From now on, this replaces the “weaker” definition given in Chapter 5, §8.

The reader will easily verify the next three “routine” propositions.

Theorem 1. If f,g,h: E' — E*(C) are absolutely continuous on A = [a, b],
s0 are

fxg, hf, and |f].
So also is f/h if
(Fe>0) |h|>¢e on A

All this also holds if f,g: E* — E are vector valued and h is scalar valued.
Finally, if E C E*, then
fvg fAag froand f-
are absolutely continuous along with f and g.

Corollary 1. A function F: E! — E™ (C™) is absolutely continuous on A =
[a,b] iff all its components Fy, ..., F, are.

Hence a complex function F: E' — C is absolutely continuous iff its real
and imaginary parts, Fre and Fi,, are.

Corollary 2. If f: EY — E is absolutely continuous on A = [a,b], it is
bounded, is uniformly continuous, and has bounded variation, V[a,b] < oo,
all on A.

Lemma 2. If F: E' — E™ (C") is of bounded variation on A = [a,b], then
(i) F is a.e. differentiable on A, and
(ii) F' is L-integrable on A.
Proof. Via components (Theorem 4 of Chapter 5, §7), all reduces to the real
case, F: E' — E1.
Then since Vr[A] < 0o, we have
F=g—-h

for some nondecreasing g and h (Theorem 3 in Chapter 5, §7).
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Now, by Theorem 3 from Chapter 7, §10, g and h are a.e. differentiable on
A. Hence so is
g—h=F.
Moreover, g’ > 0 and /' > 0 since g1 and ht.
Thus for the L-integrability of F’, proceed as in Problem 11 in §1, i.e., show
that F’ is measurable on A and that

b b b
L/ F':L/ g'fL/ n
is finite. This yields the result. [

Theorem 2 (Lebesgue). If F: E' — E™(C™) is absolutely continuous on
A = [a,b], then the following are true:

(i*) F is a.e. differentiable, and F' is L-integrable, on A.
(ii*) If, in addition, F' =0 a.e. on A, then F' is constant on A.
Proof. Assertion (i*) is immediate from Lemma 2, since any absolutely con-

tinuous function is of bounded variation by Corollary 2.
(ii*) Now let F" =0 a.e. on A. Fix any

B=la,c]CA

and let Z consist of all p € B at which the derivative F’ = 0.
Given e > 0, let K be the set of all closed intervals [p, z], p < x, such that

AF F -
7‘:’ @ -Fp)| _
Ax T —p
By assumption,
A
lim — =0 cZ
Jim —— (peZ)
and m(B—Z2)=0; B=[a,c] € M*. If p € Z, and x — p is small enough, then
AF -
Az ©

ie., [p,z] € K.
It easily follows that K covers Z in the Vitali sense (verify!); so for any
0 > 0, Theorem 2 of Chapter 7, §10 yields disjoint intervals

It = [pr,zi] € K, I1, C B,
with

q
m* (Zf U Ik> <4,
k=1
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q
m(B -U Ik) <4
k=1

hence also

(for m(B — Z) =0). But

B- U Iy = [a,c] — U[pkwk]
k=1 k=1

= [a,p1) U U T, Pr+1) U [zg, ] (if 2k < pr < @p41);

SO

q q—1
(3) m(B, Ufk) plfa +Zpk+1ka (Cfxq)<§,
k=1

k=1

Now, as F' is absolutely continuous, we can choose § > 0 so that (3) implies

A+ Y [F(prs1) —

k=1

(4) |F(p1) — F(z)| + |F(¢) — F(z,)| < e.

But I, € K also implies
|F(xk) — F(pr)| < e(zx —pr) = - mlj.
Hence

q
<<€th€ <e-mB=¢(c—p).
k=1

> [F(xx) — F(pr)]

) ’
k=1

Combining with (4), we get
|F(c)— F(a)]<e(l+c—a) > 0ase—0;
so F(c) = F(a). As ¢ € A was arbitrary, F is constant on A, as claimed. O
Note 2. This shows that Cantor’s function (Problem 6 of Chapter 4, §5) is
not absolutely continuous, even though it is continuous and monotone, hence
of bounded variation on [0,1]. Indeed (see Problem 2 in §1), it has a zero

derivative a.e. on [0, 1] but is not constant there. Thus absolute continuity, as
now defined, differs from its “weak” counterpart (Chapter 5, §8).

Theorem 3. A map F: E' — E'(C") is absolutely continuous on A =
[a, 0] iff

F:L/f on A
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for some function f;® and then
F(x):F(a)-i-L/ f, weA

Briefly: Absolutely continuous maps are exactly all L-primitives.

Proof. If F = L [ f, then by Theorem 1 of §1, F' is absolutely continuous on
A, and by Note 1,

F(:E)ZF(G)+L/$f, re A

Conversely, if F' is absolutely continuous, then by Theorem 2, it is a.e. dif-
ferentiable and F’ = f is L-integrable (all on A). Let

—L/”f, € A

Then H, too, is absolutely continuous and so is F' — H. Also, by Theorem 3
of §1,
H =f=F,

and so
(F—H) =0 ae.on A

By Theorem 2, F' — H = ¢; i.e.,
F(z)=c+ H(x) :c+L/ 1
andso F =L [ f on A, as claimed. O

Corollary 3. If f,F: EY — E* (E™, C™), we have

F= L/f

on an interval I C E' iff F is absolutely continuous on I and F' = f a.e. on I.
(Use Problem 3 in §1 and Theorem 3.)

Note 3. This (or Theorem 3) could serve as a definition. Comparing ordi-

nary primitives
F= 1

F:L/L

3 Such as F’, the derived function of F.

with L-primitives
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we see that the former require F' to be just relatively continuous but allow only
a countable “exceptional” set @), while the latter require absolute continuity
but allow @ to even be uncountable, provided m@ = 0.

The simplest and “strongest” kind of absolutely continuous functions are
so-called Lipschitz maps (see Problem 6). See also Problems 7 and 10.

ITI. We conclude with another important idea, due to Lebesgue.
Definition 3.
We call p € E' a Lebesgue point (“L-point”) of f: B! — E iff
(i) f is L-integrable on some Gp(9);
(ii) ¢ = f(p) is finite; and

(iii) hmiL/ |f —ql =0.

T—p T

The Lebesgue set of f consists of all such p.
Corollary 4. Let
F:L/f on A = [a,b].

If p € A is an L-point of f, then f(p) is the derivative of F at p (but the
converse fails).

Proof. By assumption,

F(yc):c—&-L/gcf7 x € Gp(9),

G0 <t [l

as x — p. (Here ¢ = f(p) and Az =z —p.)
Thus with z — p, we get

PO = ‘L/:f_(“p)q‘

:ﬁ’L/:f_L/:(q)‘%o

Corollary 5. Let f: E* — E™(C™). Then p is an L-point of f iff it is an
L-point for each of the n components, fi,..., fn, of f.

and
1

|Az|

as required. O

(Exercise!)
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Theorem 4. If f: E' — E*(E", C") is L-integrable on A = [a,b], then
almost all p € A are Lebesgue points of f.

Note that this strengthens Theorem 3 of §1.

Proof. By Corollary 5, we need only consider the case f: B! — E*.
For any r € E', |f —r| is L-integrable on A; so by Theorem 3 of §1, setting

—z [C1r -l

1 xr
—ML/p =7l = 1/(p) |

for almost all p € A.
Now, for each r, let A, be the set of those p € A for which (5) fails; so
mA, = 0. Let {r;} be the sequence of all rationals in E'. Let

Q=J A, U{ab}uA,,

k=1
where
Ass = A(|f] = 00);

som@ = 0. (Why?)
To finish, we show that all p € A — @ are L-points of f. Indeed, fix any
peA—Q and any € > 0. Let ¢ = f(p). Fix a rational r such that

gl < =
q 3
Then
13
Hf*/r\flffq\lSl(ff’r‘)f(ffq)|=\qfr|<g on A— Ay

Hence as mAs, = 0, we have

O ey a<n [(5) = Sl

Since

rZQ2JA,
k

formula (5) applies. So there is 6 > 0 such that |z — p| < § implies

‘(ﬁL/ |f—r\) ~1£(p) — ]

<<
3
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we get

Hence
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1fp) =7 =lg—r| < S,

3
1 ® 1 @
L If=r<|{{—=L]) If=rl)—la—rl[+]a—r|
lz—pl "/, lz—pl " J,
PN
33 37

v 2e
L[ 1 =rl< =l
p

Combining with (6), we have

1 * e 2
7 —gl<Ey o
= /p\f d<S+Z=c

whenever |z — p| < §. Thus

1 T
1mh———L/|f—ﬂ:&
T=p |I’*p| P

as required. O

2/,
=3.

=6.

Problems on L-Integrals and Absolute Continuity

. Fill in all details in the proof of Lemma 1 and of Theorems 3 and 4

from §1.

. Prove Theorem 1 and Corollaries 1, 2, and 5.

Disprove the converse to Corollary 4. (Give an example!)

Show that if F': E' — F is L-integrable on A = [a,b] and continuous at
p € A, then p is an L-point of F.
[Hint: Use the €, § definition of continuity.]

. Complete all proof details for Lemma 2, Theorems 3 and 4, and Corol-

lary 3.

. Let F =1 on R (= rationals) and F' = 0 on E* — R (Dirichlet function).

Show that F' has exactly three derivates (0, +00, and —co) at every
p € EL

We say that F'is a Lipschitz map, or has the uniform Lipschitz property
on A, iff

(K e BY) (Va,y€ A) |F(z) = F(y)| < K|z —yl.
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=T.

Prove the following:
(i) Any such F is absolutely continuous on A = [a, b].

(i) If all derivates of f satisfy

[Df(z)] <k <oo, x€A=]a,b,

then f is a Lipschitz map on A.

Let g: E* — E' and f: E! — E (real or not) be absolutely continuous
on A = [a,b] and g[A], respectively.

Prove that h = f o g is absolutely continuous on A, provided that
either f is as in Problem 6, or g is strictly monotone on A.

. Prove that if F: E' — E! is absolutely continuous on A = [a, ], if

Q C A, and if m@Q = 0, then m*F[Q] = 0 (m = Lebesgue measure).
[Outline: We may assume Q C (a,b). (Why?)
Fix € > 0 and take § as in Definition 2. As m is regular, there is an open G,

QCGC(ad),
with mG < é. By Lemma 2 of Chapter 7, §2,
oo
G = U Iy, (disjoint)
k=1
for some I}, = (ag, by].
Let uy, = inf F[I}], v, = sup F[Ii]; so
1] C lug, vk]

and
m*F[Ik] S Ve — Uk

Also,
S bk —ar) = > mly =mG < 4.

From Definition 2, show that

oo
> (e —uwp) <e
k=1

(first consider partial sums). As

FlQ) C FIG) C|JFII),
k

get
m*F[Q] < Zm*F[lk] = Z(vk —ug) <e—0]
k k
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9.

=10.

11.
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Show that if F' is as in Problem 8 and if
A=la,b) 2B, Be M*
(L-measurable sets), then
F[B] € M*.

(“F preserves M*-sets.”)
[Outline: (i) If B is closed, it is compact, and so is F[B] (Theorems 1 and 4 of
Chapter 4, §6).
(ii) If B € Fo, then
B=|JBi, Bi€F;
7

so by (i),
FIB] =|JFIB)) € Fo C M".

(iii) If B € M*, then by Theorem 2 of Chapter 7, §8,
(3IKeF,) KCB, m(B-K)=0.

Now use Problem 8, with @ = B — K]

(Change of variable.) Suppose g: E! — E' is absolutely continuous and
one-to-one on A = [a,b], while f: E* — E*(E", C") is L-integrable
on g[A].

Prove that (f o g) ¢’ is L-integrable on A and

L/ab(fog)g’:L/qu,

where p = g(a) and ¢ = g(b).
[Hints: Let F =L [ f and H = Fogon A.

By Theorems 2 and 3 and Problem 7 (end), F' and H are absolutely continuous
on g[A] and A, respectively; and H'’ is L-integrable on A. So by Theorem 3,

H=t [0 =1 [(fooy,

as H = (fog)g ae. on Al

Setting f(z) = 0 if not defined otherwise, find the intervals (if any) on
which f is absolutely continuous if f(x) is defined by

(a) sinx;

(b) cos2z;

(c
(
(e

1/x;

tanx;

[oW

)
)
)
) "
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(f) zsin(1/z);

(g) z?sinz=2 (Problem 5 in §1);

(h) Va3 -sin(1/z) (verify that |f/(z)| < 3 +273).
[Hint: Use Problems 6 and 7.]

§3. Improper (Cauchy) Integrals

Cauchy extended R-integration to unbounded sets and functions as follows.
Given f: E' — E and assuming that the right-hand side R-integrals and
limits exist, define (first for unbounded sets, then for unbounded functions)

(i) /:of=/[am)f=wlggcR 1

(i) /_;f=/<_m}f=zgrpw3 .
If both ? N .
/0 f and /_Oof

/7: /= /(7oo,o> I+ /[0,00> I

Now, suppose f is unbounded near some p € A = [a, b], i.e., unbounded on

ANG.,

exist, define

for every deleted globe G-, about p (such points p are called singularities).
Then (again assuming existence of the R-integrals and limits), we define

(1) in case of a singularity p = a,

b . b
[ =] s=pmr|y
a+ (a,b] r=at gy

b— T
/ f:/ f= limR/ fs
a [a,b) z—b— a

(3) ifa <p < bandif
p— b
/ fand/ f
a P+

(2) if p =10, then
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b - D b

[o=[ s [s+] 2
a a p p+

P

[i=] s

P [p,p]

is necessary if RS- or LS-integrals are used.!

exist, then

The term

Finally, if A contains several singularities, it must be split into subintervals,
each with at most one endpoint singularity; and f: f is split accordingly.?

We call all such integrals improper or Cauchy (C) integrals. A C-integral is
said to converge iff it exists and is finite.

This theory is greatly enriched if in the above definitions, one replaces R-
integrals by Lebesgque integrals, using Lebesgue or LS measure in E*. (This
makes sense even when a Lebesgue integral (proper) does exist; see Theorem 1.)
Below, m shall denote such a measure unless stated otherwise.

C-integrals with respect to m will be denoted by

C/ fdm, C f, etc.

[a;b)

C’/f(z)dm(:r) or C’/f(z)dx

(the latter if m is Lebesgue measure). We omit the “C” if confusion with proper
integrals [ f is unlikely.

“Classical” notation:

Note 1. C-integrals are limits of integrals, not integrals proper. Yet they
may equal the latter (Theorem 1 below) and then may be used to compute
them.

Caution. “Singularities” in [a, b] may affect the primitive used in compu-
tations (cf. Problem 4 in §1). Then [a, b] must be split (see above), and Cfab f
splits accordingly. (Additivity applies to C-integrals; see Problem 9, below.)
Examples.

(A) The integral
I /'1/2 dx
Jo 2P

! For RS- and LS-integrals, we may well have fzf) f#0, f[a.b] f# f(a.b) f, etc.
2 This also applies if an infinite interval has an inside singularity.
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has a singularity at 0. By Theorem 1 below,> we get

2 4y 0= da 12 gy
Lf == =t 2
1 1 0+ T

1
)—l— lim (—2+7>:oo+oo:oo.
rz—0+ T

. 1
= lim (—f -1
r—0— T
(B) We have

*d

c/ = = lim (——+2) —2.

Jij2 T THoON T
Hence

(C) The integral

has no singularities (consider deleted globes about 0). The primitive
F(z) = |z| exists (example (b) in Chapter 5, §5); so

1 1
L/ mclaz: = |x|‘
1 X -

In the rest of this section, we state our theorems mainly for

CAWL

but they apply, with similar proofs, to

The measure m is as explained above.
Theorem 1. Let A = [a,00), f: E' — E (E complete).

(i) If f > 0 on A, then

exists (< 00) and equals

C/aoofdm
/Afdm.4

3Tt applies to finite intervals A, too.

4 That is, the proper integral.

etc.
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(ii) The map f is m-integrable on A iff

C/:omm

and f is m-measurable on A; then again,

C’/aoofdm:/Afdm.

Proof. (i) Let f > 0 on A. By the rules of Chapter 8, §5, [, f is always
defined for such f; so we may set

F(J:):/zfdm, T > a.

Then by Theorem 1(f) in Chapter 8, §5, F't on A; for a < x < y implies

F(:v):/azfé/ayf:F(y)-

Now, by the properties of monotone limits,

limF(w)zlim/f:C/ f
Tr—r00 Tr—r00 a a
erists in E*; so by Theorem 1 of Chapter 4, §2, it can be found by making x
run over some sequence Ty — 00, say, Ty = k.
Thus set

Ak:[a,k], k:1,2,,...

Then {Aj}1 and
UAk =A= [(I,OO),

ie., Ay A

Moreover, by Note 4 in Chapter 8, §5, the set function s = [ f is o-additive
and semifinite (> 0). Thus by Theorem 2 of Chapter 7, §4 (left continuity)

(1) /Afdm=k1§§O/Akf=k1LH;O[lkf=Cme,
proving (i).
C/f|f|=/A\f|dm

(ii) By clause (i),
exists, as |f] > 0. Hence
c[ i<
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plus measurability amounts to integrability (Theorem 2 of Chapter 8, §6).

Moreover,
¢ [ i<

implies the convergence of C' f:c f (see Corollary 1 below). Thus as

x
lim f
Tr—00 a
exists, we proceed exactly as before (here s = [ f is finite), proving (ii) also. [

Note 2. If E C E*, formula (1) results even if f is not m-measurable.’

Note 3. While f cannot be integrable unless | f| is (Corollary 2 of Chapter 8,
§6), it can happen that
C / f

¢ [1f1=o

(this is called conditional convergence). A case in point is
*sinx
C / dx;
0o T

Thus C-integrals may be finite where proper integrals are 0o or fail to exist (a
great advantage!). Yet they are deficient in other respects (see Problem 9(c)).

converges even if

see Problem 8.

For our next theorem, we need the previously “starred” Theorem 2 in Chap-
ter 4, §2. (Review it!) As we shall see, C-integrals resemble infinite series.

Theorem 2 (Cauchy criterion). Let A = [a,00), f: E* — E, E complete.

Suppose
/ fdm

exists for each x € A. (This is automatic if E C E*; see Chapter 8, §5.)

Then -
C/ f

converges iff for every e >0, there is b € A such that

(2)

xr
/ fdm’ <e wheneverb<uv <z < 00’
v

® This is true provided [, fdm is finite or orthodoz, so that s = [ f is semifinite.
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b
/ fdm’<oo.

Proof. By additivity (Chapter 8, §5, Theorem 2; Chapter 8, §7, Theorem 3),

/:f:/:fﬁ/jf

ifa<wv <z <oo (Incase E C E*, this holds even if f is not integrable; see
Theorem 2, of Chapter 8, §5.)
C / f

Now, if
r= lim / fdm # +oc.
Tr—00 a

converges, let

Then for any ¢ > 0, there is some

bela,0)=A

(Why may we use the standard metric here?)
Taking « = b, we get (2). Also, if a < b < v < z, we have

/:fdmfr
rf/:fdm

Hence by the triangle law, (2) follows also. Thus this b satisfies (2).

such that
1
< 55 for x > b.

<1
—€
2

and

- 1
€.
2

Conversely, suppose such a b exists for every given € > 0. Fixing b, we thus
have (2) and (2). Now, with A = [a,00), define F': A — FE by

/ fdm,

c ch: lim F(z)

a Tr—r00

SO

6 Here and later, for LS integrals, replace f: by f(u 2] and fbm by f(b.z]'
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if this limit exists. By (2),
|F ()] =

/abfdm‘Jr /bfdm’Jrs

fdm‘ <

/bxfdm’<

if £ > b. Thus F is finite on [b,00), and so we may again use the standard

metric
[ gan= [ ranl <]

p(F(2), F(v)) = |F(z) = F(v)| =
C/mfdm:zlin;oF(x)#im

xfdm'<€

if x,v > b. The existence of

now follows by Theorem 2 of Chapter 4, §2. (We shall henceforth presuppose
this “starred” theorem.)
Thus all is proved. O

Corollary 1. Under the same assumptions as in Theorem 2, the conver-

gence of .

¢ [ ifidm
C’/aoofdm,
[al< [

(Theorem 1(g) of Chapter 8, §5, and Problem 10 in Chapter 8, §7).
Note 4. We say that C [ f converges absolutely iff C' [ |f| converges.

implies that of

Indeed,

Corollary 2 (comparison test). If |f| < |g| a.e. on A = [a,00) for some

f,g: E' = E, then
¢ [ in=e [

c/fm
c/:om

For as |f], |g| > 0, Theorem 1 reduces all to Theorem 1(c) of Chapter 8, §5.

so the convergence of

implies that of
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Note 5. As we see, absolutely convergent C-integrals coincide with proper

(finite) Lebesgue integrals of nonnegative or m-measurable maps. For condi-
tional (i.e., nonabsolute) convergence, see Problems 6-9, 13, and 14.

Iterated C-Integrals. Let the product space X x Y of Chapter 8, §8 be
E' x E' = E?,

and let p = m X n, where m and n are Lebesgue measure or LS measures in
E'. Let
A =a,b], B=c,d],and D = A x B.

/B/Afdmdn:/y/XfCdedn
/Ed/abfdmdn

/cd /ab [, y) dm(x) dn(y).

”

Then the integral

is also written

or

As usual, we write “dz” for “dm(x)” if m is Lebesgue measure in E'; similarly

for n.
We now define

¢ [ [ sanan=jm [ b (dlggo / "t dn(y)) dm(z)
—c [7 [ swdny) dma),

provided the limits and integrals involved exist.

(3)

If the integral (3) is finite, we say that it converges. Again, convergence
is absolute if it holds also with f replaced by |f|, and conditional otherwise.
Similar definitions apply to

o) o) b o)
C/ / fdmdn, C/ / fdndm, etc.

Theorem 3. Let f: E? — E* be p-measurable on E? (p,m,n as above). Then
we have the following.

(i*) The Cauchy integrals

C/ / |fldndm andC/ / |fldmdn
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/EZ | f| dp.

(ii*) If one of these three integrals is finite, then

C/ / fdndm andC’/ / fdmdn

converge, and both equal

exist (< 00), and both equal

fdp.
E2

(Similarly for Cfaoo ffoo fdndm, etc.)

Proof. As m and n are o-finite (finite on intervals!), f surely has o-finite
support.

As |f| = 0, clause (i*) easily follows from our present Theorem 1(i) and
Theorem 3(i) of Chapter 8, §8.

Similarly, clause (ii*) follows from Theorem 3(ii) of the same section. [

Theorem 4 (passage to polars). Let p = Lebesque measure in E%. Suppose
f: E* = E* is p-measurable on E?. Set

F(r,0) = f(rcosf,rsinf), r>0.
Then

oo oo ) 27
(a) C/ / fdxdy:C/ rdr/ Fdb, and
—oo J —oo 0 0
oo oo o /2
(b) c/ / fdwdy:C/ rdr/ F b,
0 0 0 0

provided f is nonnegative or p-integrable on E? (for (a)) or on (0,00) x (0, 00)
(for (b)).7

Proof Outline. First let f = Cp, with D a “curved rectangle”
{(r,0) |11 <r<wry, 61 <6< 0}

for some 71 < 73 in X = (0,00) and 6; < f2 in Y = [0,27). By elementary
geometry (or calculus), the area

1
pD = 5(’“5 — i) (02 — 61)
(the difference between two circular sectors).

7 Hence the integrals in (a) and (b) can also be treated as proper integrals.
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For f = Cp, formulas (a) and (b) easily follow from

pD =1L / Cp dp.
E2
(Verify!) Now, curved rectangles behave like half-open intervals

(7”1, 7‘2] X (01, 02]

in £2, since Theorem 1 in Chapter 7, §1, and Lemma 2 of Chapter 7, §2, apply
with the same proof. Thus they form a semiring generating the Borel field
in E2.

Hence show (as in Chapter 8, §8) that Theorem 4 holds for f = Cp (D € B).
Then take D € M*. Next let f be elementary and nonnegative, and so on, as
in Theorems 2 and 3 in Chapter 8, §8. [

Examples (continued).

(D) Let

J = L/ e dx;

0
o)
J? = (C/ e~ d:c) (C/ eV’ dy)
0 0
:C/ / e~ @) dg dy. (Why?)
o Jo

Set

fla,y) =e )

in Theorem 4(b). Then F(r,0) = e~ ; hence

J2:o/ rdr(/Qe*’“QdQ)
0 0

oo
= C/ re " dr - = = flﬂe_t‘oo = 171
0

(Here we computed
/ re™"" dr

by substituting 72 = ¢.) Thus

oo o 1 1
(4) C/ eilzdx:L/ e dy = \[=m==/T.
Jo 0 4 2
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Problems on Cauchy Integrals

1. Fill in all proof details in Theorems 1-3. Verify also at least some of the
cases other than faoo f. Check the validity for LS-integrals (footnote 6).

2. Prove Theorem 4 in detail.
2’. Verify Notes 2 and 3 and examples (A)—(D).
3. Assuming a > 0, verify the following:

<1 o° 1
(1) / —e~tdt < / e tdt =—.
1t 1 €

[Hint: Use Corollary 2.]

(ii)/ eotdp =
1

a

© 1
(iii) / e dt = —.
0 a

(IV) A e_at sin bt dt = m

4. Verify the following:

R e <1 1
(1) / / e Wdydr = / —e "dz < = (converges, by 3(i)).
1 1 1 X e

oo o0 o0 oo oo 1
(i) / / e~ Wdydx > / / e Wdydx = / —(1—e)dz >
00 (i 1 Jo 1z
/ (f - e_’”) dzx = oo.
1 \z

Does this contradict formula (4) in the text, or Problem 5, which follows?

5. Let f(z,y) = e ™Y and

g(x) = L/l e " dy;
0
so g(0) = 1. (Why?)
(i) Is g R-integrable on A =[0,1]? Is f so on A x A?
(ii) Find g(x) using Corollary 1 in §1.
(iii) Find the value of

1 1
R/ / e_zydyd:r:R/ g
0o Jo 0

to within 1/10.
[Hint: Reduce it to Problem 6(b) in §1.]
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=6. Let f,g: E' — E* be m-measurable on A = [a,b), b < co. Prove the
following:

(i) If
b— b—
C ff<ooorC fm < oo,

a a

then C' ff_ f exists and equals
b—

67
C ff—-c = / f dm (proper).
A

a a

(i) If faF f converges conditionally only, then

(iii) In case C’fab_ |f] < oo, we have

b7
C/ f £ = oo

iff CfaIF lg] = oo; also,

OAFUim:c %fiCAFQ

a
it C f:7 g exists (finite or not).
=-T7. Suppose f: E! — E* is m-integrable and sign-constant on each
An:[an7an+l)7 n:1727~"7

but changes sign from A,, to A,+1, with

U A, = [a,00)
n=1
and {a, }1 fixed.
Prove that if
/ fdm‘ N O
An

as n — oo, then

oo
C / f
a
converges.

[Hint: Use Problem 10 in Chapter 4, §13.]
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=8. Let .
fla)y =22, f0)=1
x
Prove that -
c /0 f(z)de

converges conditionally only.
[Hints: Use Problem 7. Show that

0/000|f\:L/<0m)\f|:L/0°°f+:L/Umf—:oo-1

=-9. (Additivity.) Given f: E! — E (E complete) and a < b < ¢ < oo,
suppose that

/:fdm7éioo

(proper) exists for each = € [a, ¢). Prove the following:
(a) Cf:7 f and C’f:+ f converge.

(:) If
C /
Jb
converges, SO d()eb

c/:_f:c/ab_erc/:_f.

(¢) Countable additivity does not necessarily hold for C-integrals.
[Hint: Use Problem 8 suitably splitting [0, 00).]

10. (Refined comparison test.) Given f,g: E* — E (E complete) and b <
00, prove the following:

(i) If for some a < b and k € E',
|fI < lkg| on [a,b)
then

b— b—
/ lg| < oo implies / |f] < o0.
Ja a

(ii) Such a,k € E' do exist if
/(@)

im — < oo
t=b—|g(t)]

exists.
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(iii) If this limit is not zero, then Then C [° f(z) g(z) dz converges.
[Outline: Set

b b
/ |g|<oozﬁ/ ‘f|<oo G(x):/zg;

(Similarly in the case of fb with a > —c0.) so |G| < K on A. By Lemma 2 of §1, fg is L-integrable on each [u,v] C A, and
at+ - (3¢ € [u,v]) such that

11. Prove that

0 /oo e o[ ol =|rw ["o| = 11w 60 - ) < 250
1 < oo il p<—1; “ “
11 Now, by (a),
(i) / 1 dt < 0o iff p > —1; (Ve>0) GheA) (Vuzh) | < 5o
o+
(iii) / tP dt = oo. Vo>u>k) ’L/ fg‘ <e.
0+ u
12. Use Problems 10 and 11 to test for convergence of the following: Now use Theorem 2.
Now extend this to g: E! — E™ (C™).]
> 3/2 dt
(a /0 1+ ¢2 ) =-14. Do Problem 13, replacing assumptions (a) and (c) by
© (a") f is monotone and bounded on [a,00) = A, and
b —— 0
( /1 tV/1 + t2 (<) C[7 g(x)dx converges.
(C) * w dt [Hint: If f1, say, set ¢ = tlin;lo f(t) and FF'=q— f; so
o Q)
(Q, P polynomials of degree s and r, s > r; Q # 0 for t > a); fg=a9-Fg.
1— dt Apply Problem 13 to
d —_— o
@ | == ¢ [7 P g s
1
() /0 N t7lntdt; 15. Use Problems 13 and 14 to test the convergence of the following:
0 /1— dt (a) / tP sint dt.
. 0
o Int [Hint: The integral converges iff p < 0.]
iy
T " cost
(2) / tan® ¢ dt. (b) dt.
0+ Joy Vi
X v cost
=-13. (The Abel-Dirichlet test.) Given f,g: E' — E!, suppose that [Hint: Integrate /u i dt by parts; then let u — 0 and v — co.]
(a) fl, with tl;rgo f(t)=0; © /°° cost dt.
(b) g is L-measurable on A = [a, 00);® and L
(c) BKeEY) Vzed) |L['g|<K. (d) / sin#? dt.
0

e Hint: Substitute t> = u; th 5 .
8 And hence L-integrable on each [u,v] C A, by (c). [Hint: Substitute u; then use (a).]
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16. The Cauchy principal value (CPV) of Cffooo f(t)dt is defined by

(CPV) / Z f= lim /_ F(t)dt

(if it exists). Prove the following:

(i) If C [ f(t)dt exists, so does (CPV) [ f, and the two are equal.
Disprove the converse.

[Hint: Take f(t) = sign(t)//[t]]

(ii) Do the same for

e o ()

p being the only singularity in (a,b).

§4. Convergence of Parametrized Integrals and Functions

I. We now consider C-integrals of the form
¢ [ ftt.u)dmee),

where m is Lebesgue or LS measure in E'. Here the variable u, called a param-
eter, remains fized in the process of integration; but the end result depends on
u, of course.

We assume f: E? — E (E complete) even if not stated explicitly. As before,
we give our definitions and theorems for the case

o0
c / .
a
The other cases (C' ffoo, C ff_, etc.) are analogous; they are treated in Prob-
lems 2 and 3. We assume

a,b, ¢,z t,u,v € B

throughout, and write “dt” for “dm(t)” iff m is Lebesgue measure.
If

C’/OO ft,u)dm(t)
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converges for each v in a set B C E',! we can define a map F: B — E by
oo xr
F(u) = C/ f(t,u)dm(t) = lim / f(t,u) dm(t).
a Tr—r00 a
This means that

(1) (VueB) (Ve>0)(3b>a) (Vz>0b)

/z f(t,u)dm(t) — F(u)| <e,

so |F| < oo on B.

Here b depends on both e and u (convergence is “pointwise”). However, it
may occur that one and the same b fits all w € B, so that b depends on € alone.
We then say that

C’/OO ft,u)dm(t)
converges uniformly on B (i.e., for u € B), and write
F(u) = C’/ f(t,u) dm(t) (uniformly) on B.
Explicitly, this means that.

(2) (Ve>0)(3b>a) (VueB) (Vz>b)

/I ft,u)dm(t) — F(u)| < e.

Clearly, this implies (1), but not conversely. We now obtain the following.

Theorem 1 (Cauchy criterion). Suppose

/ " f(t u) dm()

ezists forx > a andu € B C Bl (This is automatic if E C E*; see Chapter 8,
§5.)
Then

oo
C/ f(t, w) dm(t)
a
converges uniformly on B iff for every e > 0, there is b > a such that

(3) (Vov,z € [b,00)) (Vu € B) /T ft,w) dm(t)‘ <e?

and

‘/a.bf(t, u) dm(t)‘ < 0.

! This statement shall imply that [T f(t,u)dm(t) # £oo exists for 2 > a, u € B.
2 For LS-integrals, replace f; by f(I‘U] here and in the proof below.
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Proof. The necessity of (3) follows as in Theorem 2 of §3. (Verify!)

To prove sufficiency, suppose the desired b exists for every € > 0. Then for
each (fized) u € B,

C/ ft,u)dm(t)
satisfies Theorem 2 of §3. Hence
T—00

(4) F(u) = lim /l f(t,u)dm(t) # too

exists for every u € B (pointwise). Now, from (3), writing briefly [ f for

J F(t,w) dm(t), we obtain
Joal=| - [ )<

forallu € B and all z > v > b.
Making  — oo (with v and v temporarily fixed), we have by (4) that

(5) ‘Fwyflvﬂgs

whenever v > b.

But by our assumption, b depends on € alone (not on u). Thus unfixing u,
we see that (5) establishes the uniform convergence of

/:of,

Corollary 1. Under the assumptions of Theorem 1,

C/OO f(t, u) dm(t)

as required.> [

converges uniformly on B if

C/Oc | f(t, w)| dm(t)

does.

Indeed,

/sz|§/uwl,f|<6~

3 Note that Theorem 1 essentially depends on the assumed completeness of E.
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Corollary 2 (comparison test). Let f: E2 — E and M: E* — E* satisfy
|f(t,u)| < M(t, u)

fov"ueBQE1 andt > a.
Then

0/wuwwwmm

converges uniformly on B if

C/OO M (t,u)dm(t)

does.

Indeed, Theorem 1 applies, with

/ f ‘ < / M <e.

Hence we have the following corollary.

Corollary 3 (“M-test”). Let f: E*> - E and M : E' — E* satisfy
|f(t, u)] < M(t)

foruw e BC E' and t > a. Suppose

c / M) dm(t)

converges. Then
¢ [ 1fu)ldm(o

converges (uniformly) on B. So does

C/OO f(t,u)dm(t)

by Corollary 1.

Proof. Set
h(t,u) = M(t) > |f(t u)l.

Then Corollary 2 applies (with M replaced by h there). Indeed, the conver-

gence of
C/h:C/M

is trivially “uniform” for u € B, since M does not depend on w at all. [
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Note 1. Observe also that, if h(t,u) does not depend on u, then the (point-
wise) and (uniform) convergence of C [ h are trivially equivalent.
We also have the following result.

Corollary 4. Suppose
¢ [ sttu)dmie

converges (pointwise) on B C E'. Then this convergence is uniform iff

(oo}

lim C f(t,u) dm(t) = 0 (uniformly) on B,

i.e., iff
(Ve>0) (3b>a) (Yue B) (Vv >b) ‘C/oof(t,u)dm(t)’ <e.

The proof (based on Theorem 1) is left to the reader, along with that of the
following corollary.

Corollary 5. Suppose

b
/ f(t,u)dm(t) # too
exists for eachuw € B C E*'.

Then -
C/ f(t,u) dm(t)

converges (uniformly) on B iff

C/b ft,u)dm(t)

does.

II. The Abel-Dirichlet tests for uniform convergence of series (Problems 9
and 11 in Chapter 4, §13) have various analogues for C-integrals. We give two
of them, using the second law of the mean (Corollary 5 in §1).

First, however, we generalize our definitions, “unstarring” some ideas of
Chapter 4, §11. Specifically, given

H: E?> —» E (E complete),

we say that H(z,y) converges to F(y), uniformly on B, as x — q (¢ € E*),
and write

liin H(z,y) = F(y) (uniformly) on B

x—rq
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iff we have
6) (Ve>0) (3G~ (VyeB) (Ve eGy) [H(z,y) - Fy) <e;

hence |F| < co on B.
If here g = oo, the deleted globe G4 has the form (b, o). Thus if

H(z,u) = /w f(t,u)dt,

(6) turns into (2) as a special case. If (6) holds with “(3G-4)” and “(Vy € B)”
interchanged, as in (1), convergence is pointwise only.
As in Chapter 8, §8, we denote by f(-,y), or f¥, the function of = alone
(on E') given by
fx) = flz,y).
Similarly,
fa(y) = f(2,y).
Of course, we may replace f(z,y) by f(¢, u) or H(t, u), etc.
We use Lebesgue measure in Theorems 2 and 3 below.
Theorem 2. Assume f,g: E?> — E' satisfy
(1) Cfaoo g(t,u) dt converges (uniformly) on B;
(i) each g* (u € B) is L-measurable on A = [a,0);
(iii) each f* (u € B) is monotone (| or 1) on A;* and
(iv) |f] < K € E' (bounded) on A x B.
Then

oo
¢ [ syt d
a
converges uniformly on B.
Proof. Given ¢ > 0, use assumption (i) and Theorem 1 to choose b > a so that

< 575>

€
2K

(7) ’L/I g(t,u)dt

v

e

for all w € B and > v > b, with K as in (iv).

written briefly as

<

=
2K’

4 Briefly: “f(t,u) is monotone in t, and g(t,u) is measurable in t (t € A).” It should be
well noted that all f* and g* are functions of t on E*.
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Hence by (ii), each ¢g* (u € B) is L-integrable on any interval [v,z] C A, Examples.
with > v > b. Thus given such u and [v, z], we can use (iii) and Corollary 5 (A) The integral

from §1 to find that

ROy WY

for some ¢ € [v, z].
Combining with (7) and using (iv), we easily obtain

’L/:f(au)g(au) dt‘ <e

whenever v € B and © > v > b. (Verify!)
Our assertion now follows by Theorem 1. [

Theorem 3 (Abel-Dirichlet test). Let f,g: E? — E* satisfy
(a) flim f(t,u) = 0 (uniformly) foru € B;
[— 00
(b) each f* (u € B) is nonincreasing (1) on A = [0, 00);
(c) each g* (u € B) is L-measurable on A; and
(d) 3K € B') (Va € A) (Yue B) |L [ g(t,u)dt| < K.
Then

* sintu
T
0 t

converges uniformly on Bs = [d, 00) if 6 > 0, and pointwise on B = [0, 00).
Indeed, we can use Theorem 3, with

g(t,u) = sintu
and

fltw =1, fO.w=1,

say. Then the limit

is trivially uniform for u € By, as f is independent of u. Thus assumption
(a) is satisfied. So is (d) because

/sintudt‘:'lf sin@d@'glﬂ.
0 U Jo 4

(Explain!) The rest is easy.

Note that Theorem 2 fails here since assumption (i) is not satisfied.
(B) The integral
1
/ —e " sinat dt
o ¢t

converges uniformly on B = [0,00). It does so absolutely on Bs = [d, c0),
By Lemma 2 in §1, obtain if§>0.

C/OO ft,u)g(t,u)dt

converges uniformly on B.

Proof Outline. Argue as in Problem 13 of §3, replacing Theorem 2 in §3 by
Theorem 1 of the present section.

L . T Here we shall use Theorem 2 (though Theorem 3 works, too). Set
L rel=lron [ e <K e
v a f(t7 ’LL) = eitu
forue Band z > v > a. and
Then use assumption (a) to fix k so that sin at
b ( ) g(t,u): i ’ g(O,u):a.
[t )] < 5=
) 2K Then oo
fort >kandue B. O / g(t,u)dt
0

Note 2. Via components, Theorems 2 and 3 extend to the case g: E? — . . . )
E"(C™). converges (substitute x = at in Problem 8 or 15 in §3). Convergence is

trivially uniform, by Note 1. Thus assumption (i) holds, and so do the

Note 3. While Corollaries 2 and 3 apply to absolute convergence only, other assumptions. Hence the result.

Theorems 2 and 3 cover conditional convergence, too (a great advantage!). The
theorems also apply if f or g is independent of u (see Note 1). This supersedes
Problems 13 and 14 in §3. M(t) = e,

For absolute convergence on Bg, use Corollary 3 with
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so M > |fgl|.
Note that, quite similarly, one treats C-integrals of the form

/ e‘t“g(t)dt,/ e~ ug(t) dt, ete.,

| ot
converges (a > 0).

In fact, Theorem 2 states (roughly) that the uniform convergence of
C [ g implies that of C [ fg, provided f is monotone (in ¢) and bounded.

provided

III. We conclude with some theorems on uniform convergence of functions
H: E? - F (see (6)). In Theorem 4, m is again an LS (or Lebesgue) measure
in E'; the deleted globe Gz, is fixed.

Theorem 4. Suppose
lim H(z,y) = F(y) (uniformly)®
T—q
fory € B C E'. Then we have the following:
(i) If all H, (z € G%,) are continuous® or m-measurable on B, so also is F.

(ii) The same applies to m-integrability on B, provided mB < oco; and then

(8) lim/ |H, — F| = 0;
B

T—q

hence
(8" lim Hz:/ F:/(lim Hz)
r—q | B B \z—q

Formula (8) is known as the rule of passage to the limit under the integral
Stgn.

Proof. (i) Fix a sequence x — ¢ (zj in the deleted globe qu), and set
H,=H, (k=1,2,...).
The uniform convergence

H(z,y) = F(y)

5 Pointwise or a.e. convergence suffices for m-measurability in clause (i).
6 Here and in Theorem 5, as functions of y: Hy(y) = H(x,y). Continuity may be relative
or uniform.
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is preserved as x runs over that sequence (see Problem 4). Hence if all Hy, are
continuous or measurable, so is F' (Theorem 2 in Chapter 4, §12 and Theorem 4
in Chapter 8, §1). Thus clause (i) is proved.

(ii) Now let all H, be m-integrable on B; let

mB < oo.
Then the Hy, are m-measurable on B, and so is F, by (i). Also, by (6),

(Ve >0) (3Goy) (Va € Goy) / \H, — F| < / (€) = emB < oo,
B B
proving (8). Moreover, as
/ |H, — F| < o0,
JB
H, — F is m-integrable on B, and so is

F=H,— (H, - F).

/]BHW/BF’: /B(HFF)IS/B\HT,FHQ

as z — ¢, by (8). Thus (8) is proved, too. O

Hence

Quite similarly (keeping E complete and using sequences), we obtain the
following result.

Theorem 5. Suppose that

(i) all H, (z € G*,) are continuous and finite on a finite interval B C E*,
and differentiable on B — Q, for a fized countable set Q;

(ii) lim H(z,yo) # Loo exists for some yo € B; and
(iii) lim DoH(z,y) = f(y) (uniformly) exists on B — Q.

Then f, so defined, has a primitive F' on B, exact on B — @ (so F' = f on
B — Q); moreover,

F(y) = lim H(z,y) (uniformly) for y € B.

Ty

Outline of proof. Note that

d
DyH(z,y) = @Hz(y)

Use Theorem 1 of Chapter 5, §9, with F,, = H,, , ,, = ¢. O

Note 4. If + — ¢ over a path P (clustering at ¢), one must replace G-,
and G%, by PN G-, and PNGZ, in (6) and in Theorems 4 and 5.
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Problems on Uniform Convergence
of Functions and C-Integrals

1. Fill in all proof details in Theorems 1-5, Corollaries 4 and 5, and exam-
ples (A) and (B).

1’. Using (6), prove that

lim H(z,y) (uniformly)
T—q

exists on B C Eliff
(Ve >0) (3G-) (Vy € B) (Y2 € G-g) |H(z,y) - H(z',y)| < =.

Assume E complete and |H| < oo on G—4 X B.
[Hint: “Imitate” the proof of Theorem 1, using Theorem 2 of Chapter 4, §2.]

2. State formulas analogous to (1) and (2) for [ fabf, and fab+

3. State and prove Theorems 1 to 3 and Corollaries 1 to 3 for

a b— b
/ , / , and / .
—00 a a+

In Theorems 2 and 3 explore absolute convergence for

b— b
/ and / .
a a+

Do at least some of the cases involved.
[Hint: Use Theorem 1 of §3 and Problem 1/, if already solved.]

4. Prove that
lim H(x,y) = F(y) (uniformly)

Tr—rq

on B iff
lim H(x,, -)=F (uniformly)

n—o0

on B for all sequences x,, — q (x,, # q).
[Hint: “Imitate” Theorem 1 in Chapter 4, §2. Use Definition 1 of Chapter 4, §12.]
5. Prove that if
lim H(z,y) = F(y) (uniformly)

T—q

on A and on B, then this convergence holds on A U B. Hence deduce
similar propositions on C-integrals.

6. Show that the integrals listed below violate Corollary 4 and hence do not
converge uniformly on P = (0,5)7 though proper L-integrals exist for

7 Here and below, § > 0 is arbitrarily small.
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each u € P. Thus show that Theorem 1(ii) does not apply to uniform
convergence.

1
wdt
(®) /0+ PR

12 g2
(b) / udt;
0

" (t2 + u2)2

(C)/O Mdt.

MCCESRE

[Hint for (b): To disprove uniform convergence, fix any €,v > 0. Then

v u27t2 v
dt = — =
/(; (t2 + u?)2 v2 4+ u? )
as u — 0. Thusifv<%,

v u27t2 1
Jue P ————dt> — > .
Fu ) /0 (82 + u2)? 2v el

7. Using Corollaries 3 to 5, show that the following integrals converge (uni-
formly) on U (as listed) but only pointwise on P (for the latter, proceed
as in Problem 6). Specify P and M(t) in each case where they are not
given.

(a) / e dt U = [0,0); P = (0,9).
0

[Hint: Set M (t) = e~% for t > 1 (Corollaries 3 and 5).]

(b) /OO e Ut costdt (a > 0); U = [J,00).
0

(c) /1 t*=tdt; U = [6, 00).
0

(c)) /0+ " (Int)" dt; U = [8,00).

1
(d) / Usintdt; U = [0,0], 0< 6 < 2 P = [5,2); M(t) = 115
0+
[Hint: Fix v so small that

sint 1
> —.
t 2

(Vt e (0,v))

Then, if u — 2,

v 1 /v dt
/ t~“sintdt > —/ — 00.]
0 2 0 tu—1
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10.

11.

12.

13.

=14.
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. In example (A), disprove uniform convergence on P = (0, 00).

[Hint: Proceed as in Problem 6.

. Do example (B) using Theorem 3 and Corollary 5. Disprove uniform

convergence on B.

Show that

> sintu
/ costdt
o+

converges uniformly on any closed interval U, with +1 ¢ U.
[Hint: Transform into

% /oj_o %{sin[(u + 1)t] + sin[(u — 1)¢] } dt.]
Show that -
/ t sint® sintu dt
0

converges (uniformly) on any finite interval U.
[Hint: Integrate

Y P
/ t sint® sin tu dt
x

by parts twice. Then let y — oo and  — 0.]

Show that - .
[t
0+ te

converges (uniformly) for u > 0.
[Hints: For ¢ — 0+, use M(t) = t~%. For t — 0o, use example (B) and Theorem 2.]

Prove that
" cos tu
dt
ta
0+

converges (uniformly) for u > § > 0, but (pointwise) for u > 0.
[Hint: Use Theorem 3 with g(¢,u) = costu and

T
[
0

" costu _ > cos z
/ —dt = w1t ——dz - ©
v t vu z

if v =1/u and u — 0. Use Corollary 4.]
Given A, B C E!' (mA < o0) and f: E? — E, suppose that

(i) each f(z, -) = fz (z € A) is relatively (or uniformly) continuous
on B; and

(ii) each f(-,y) = fY (y € B) is m-integrable on A.

0<a<l)

(0<a<1)

sin zu 1
- <)
5

u

For v > 0,
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=15.

Set
Flo) = [ f@y)dm(a), yeB.
Then show that F is relatively (or uniformly) continuous on B.
[Hint: We have
(Ve € A) (Ve > 0) (Vyo € B) (36 > 0) (Vy € BN Gy, (5))

1) = P < [ 1) = f@u)ldm(a) < [ () dm =<

Similarly for uniform continuity.]

Suppose that
(a) C [7° f(t,y)dm(t) = F(y) (uniformly) on B = [b,d] C E;
(b) each f(x, -) = fu (z > a) is relatively continuous on B; and

(c) each f(-,y) = fY (y € B) is m-integrable on every [a,z] C E',
T > a.

Then show that F'is relatively continuous, hence integrable, on B and

that
/F: lim H,,
B Tr— 00 B
where

Hmwafﬂwmwy

(Passage to the limit under the [-sign.)
[Hint: Use Problem 14 and Theorem 4; note that

¢ [T sty dm(e) = Jim_ Hiz,y) (uniformiy)]
0
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Abel-Dirichlet test
for convergence of improper integrals,
400
for uniform convergence of parametrized
C-integrals, 408
Absolute
extrema, 82
maxima, 82
minima, 82
Absolute continuity of the integral, 275
Absolute convergence of improper inte-
grals, 393
Absolutely continuous functions on E*,
378
and L-integrals, 380
Absolutely continuous with respect to a set
function ¢, 197
Additive extensions of set functions, 129
Additive set functions, 126, 126
Additivity of the integral, 260, 290
Additivity of volume
countable, 104
of intervals, 101
o-additivity, 104
Almost everywhere (a.e.), 231
convergence of functions, 231
Almost measurable functions, 231, 231
Almost uniform convergence of functions,
239
Egorov’s theorem, 240, 283
Antiderivatives, 357
and L-integrals, 357
and R-integrals, 362
change of variable in, 363
primitives, 359

Baire categories (of sets), 70
sets of Category I, 71
sets of Category II, 71
Baire’s theorem, 71
Banach spaces, 76

integration of functions with values in,
285-291, 305
open map principle, 75
uniform boundedness principle, 75
Banach-Steinhaus uniform boundedness
principle, 75
Basic covering of a set, 138
Basic covering value of a set, 138
Basis of a vector space, 16
Bicontinuous maps, 70
Bijective
functions, 52
linear maps, 53
Borel
fields, 162
measurable functions, 222
measures, 162
restrictions of measures, 162
sets, 162

Boundedness, linear, 9

Co-sets, 104
volume of, 107
C-simple sets, 99
C’, family of C-simple sets, 99
C-integrals, see Improper integrals
parametrized, 402; see also Parametrized
C-integrals
Cantor’s set, 76
Carathéodory property (CP), 145, 146, 157
Cauchy criterion
for convergence of improper integrals,
391
for uniform convergence of parametrized
C-integrals, 403
Cauchy integrals (C-integrals), see Im-
proper integrals
parametrized, 402; see also Parametrized
C-integrals
Cauchy principal value (CPV), 402
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Chain rule
classical notation for, 31
for differentiable functions, 28
on E™ and C™, 30
Change of measure in generalized integrals,
332
Change of variable
in antiderivatives, 363
in Lebesgue integration, 386
Characteristic functions, 246
Clopen maps, 61
Closed maps, 59
Closed sets in topologies, 161
Compact regular (CR) set functions on
topological spaces, 209
Comparison test
for improper integrals, 393, 399
for uniform convergence of parametrized
C-integrals,405
Complete measures, 148
Complete normed spaces, see Banach
spaces
Completions of measures, 159
completions of generalized measures, 205
Completely additive set functions, see o-
additive set functions
Continuous
functions between topological spaces,
161
linear map, 13
set functions, 131, 147
with respect to a set function ¢ (¢-
continuous), 197
Continuously differentiable functions, 38,
57
Convergence of functions
almost everywhere, 231
almost uniform, 239
Egorov’s theorem, 240, 283
in measure, 239, 280
Lebesgue’s theorem, 240, 283
Riesz’ theorem, 280
Convergence of improper integrals, 388
absolute, 393
Cauchy criterion for, 391
comparison test for, 393, 399
conditional, 391
Abel-Dirichlet test for, 400
Convergent sequences of sets, 180
Countably-additive set functions, see o-
additive set functions

Index

Coverings of sets, 137

basic, 138

M-coverings of a set, 137

Q-coverings of a set, 213

Vitali, 180; see also Vitali coverings
CP, the Carathéodory property, 145
Critical points, 82

Darboux sums (upper and lower), 307
Decompositions

Lebesgue, 342

of generalized measures, 344
Derivates

of point functions, 373

of set functions (D(p), D(p)), 187
Derivatives

directional, see Directional derivatives

of set functions, 210

Radon—-Nikodym, 338, 351

partial, see Partial derivatives
Determinants

functional, 49

of matrices, 47, 96
Differentiable functions, 17

and directional derivatives, 19

chain rule for, 28

continuously, 38, 57

differentials of, 17

and partial derivatives, 19, 22

in a normed space, 17

m times differentiable, 38
Differentiable set functions, 210
Differentials, 17

chain rule for, 28

of functions in a normed space, 17

of order m, 39
Differentiation of set functions, 210-216

K-differentiation, 211

Lebesgue differentiation, 211, 351

Q-differentiation, 211, 353
Directional derivatives, 1

differentiable functions and, 19

Finite Increments Law for, 7

higher order, 35

of linear maps, 15
Discriminant of a quadratic polynomial, 80
Disjoint set families, 99
Dominated convergence theorem, 273, 327
Dot products, linear functionals on E™ and

C™ as, 10

Double series, 110, 115

Index

En
intervals in, 97
volume of open sets in, 108
Elementary functions, 218
integrable, 241
integrals of, 241
integration of, 241-250
Euler’s theorem for homogeneous func-
tions, 34
Extended-real functions
integration of, 251-267; see also Integra-
tion of extended-real functions
integrable, 252
lower integrals of, 251
upper integrals of, 251
Extremum, extrema
absolute, 82
conditional, 88
local, 79, 89

Fatou’s lemma, 272
Fields of sets, 116
generated by a set family, 117
Finite Increments Law for directional
derivatives 7
Finite set functions, 125
Finite with respect to a set function ¢ (¢-
finite), 197
Finitely additive set functions, 126, 126
Fréchet’s theorem, 237
Fubini
map, 294
theorem, 298, 301, 305, 334
Functional determinants, 49
Functionals, linear, see Linear functionals
Functions. See also Maps
bijective, 52
continuous, 161
differentiable, see Differentiable func-
tions
homeomorphisms, 70
homogeneous, 34
implicit function theorem, 64
inverse function theorem, 61
partially derived, 2
Fundamental theorem of calculus, 360

Generalized integration, 323ff.
change of measure, 332
dominated convergence theorem, 327
Fubini property in, 334
indefinite integrals in, 330
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Generalized measure spaces, 194
integration in, 323ff.
Generalized measures, 194
completion of, 205
decomposition of, 344
signed measures, 194, 199
Gradient of a function, 20

Hadamard’s theorem, 96

Hahn decomposition theorem, 201

Hereditary set families, 123

Homeomorphisms, 70

Homogeneous functions, 34
Euler’s theorem for, 34

Implicit
differentiation, 66, 87
function theorem, 64
Improper integrals, 388
absolute convergence of, 393
Cauchy criterion for, 391
Cauchy principal value (CPV) of, 402
comparison test for, 393, 399
conditional convergence of, 391
Abel-Dirichelet test for convergence of,
400
iterated, 394
convergence of, 388
singularities of, 387
Indefinite integrals, 263, 293, 330
indefinite L-integrals, 366
Independence, linear, 16
Inner products representing linear func-
tionals on E™ and C™, 10
Integrable functions
elementary, 241
extended-real, 252
with values in complete normed spaces,
285
Riemann, 307, 317
Integrals
Cauchy (C-integrals), 388; see also Im-
proper integrals
in generalized measure spaces, 323ff.
indefinite, 263, 293, 330
improper, 388; see also Improper inte-
grals
iterated, 294
Lebesgue, 357
Lebesgue integrals and Riemann inte-
grals, 313
lower, 251
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of elementary functions, 241
orthodox, 247
parametrized C-integrals, 402; see also
Parametrized C-integrals
Riemann (R-integrals), 308ff.; see also
Riemann integrals
Riemann—Stieltjes, 318
Stieltjes, 319, 321ff.
unorthodox, 247
upper, 251
with respect to Lebesgue measure (L-
integrals), 357
Integration
absolute continuity of the integral, 275
additivity of the integral, 260, 290
by parts, 321
dominated convergence theorem, 273,
327
Fatou’s lemma, 272
in generalized measure spaces, 323ff.
of elementary functions, 241-250
of extended-real functions, 251-267
of functions with values in Banach
spaces, 285-291, 305
linearity of the integral, 267, 288
monotone convergence theorem, 271
weighted law of the mean, 269
Intervals in E™, 97
additivity of volume of, 101
simple step functions on, 218
step functions on, 218
Inverse function theorem, 61
Iterated integrals, 294
iterated improper integrals, 394
Fubini map, 294
Fubini theorem, 298, 301, 305, 334

Jacobian matrix, 18

Jacobians, 49

Jordan components, 203

Jordan decompositions, 202
Jordan components, 203

Jordan outer content, 140

K (the set of all cubes in E™), 186, 210

L-measurable, see Lebesgue-measurable.
L-integrable, see Lebesgue-integrable.
L-integrals, 357
and absolutely continuous functions, 380
indefinite, 366
L-primitive, 366

Index

Lagrange form of the remainder in Taylor’s

Theorem, 42

Lagrange multipliers, 89
Lebesgue

decompositions, 342

extensions, 154, 168

Lebesgue-integrable functions, 241

Lebesgue-measurable functions, 222

Lebesgue-measurable sets, 168

measure, 168-175

outer measure, 138

nonmeasurable sets under Lebesgue
measure, 173

points of functions, 382

premeasure, 126, 138, 168

premeasure space, 138

sets of functions, 382

Lebesgue—Stieltjes

measurable functions, 222

measures, 176

measures in E™, 179

outer measures, 146, 176

premeasures, 176

set functions, 127, 135, 176

signed Lebesgue-Stieltjes measures, 206,

335

Left-continuous set functions, 131
Linear boundedness, 9
Linear functionals, 7

on E™ and C™ as dot products, 10

Linear independence, 16
Linear maps, 7

as a normed linear space, 13

bijective, 53

bounded, 9

continuous, 9, 13

directional derivatives of, 15

matrix representation of composite, 12
matrix representation of, 11

norm of, 13

uniformly continuous on E™ or C", 10

Linear operator, 7
Linear subspaces of a vector space, 16
Linearity of the integral

of extended-real functions, 267
of functions with values in Banach
spaces, 288

Lipschitz condition, 25, 384

uniform, 9

Local

extremum, extrema, 79, 89
maximum, maxima, 79

Index

minimum, minimima, 79
Lower

Darboux sums, 307

integrals, 251

Riemann integrals, 308
LS, see Lebesgue—Stieltjes.
Luzin’s theorem, 234

M-test for uniform convergence of param-
etrized C-integrals, 405

Maps. See also Functions
bicontinuous, 70
clopen, 61
closed, 59
linear, see Linear maps
open, 59
open map principle, 75

Matrix, matrices
as elements of a vector space, 15
determinants of, 47, 96
Jacobian, 18

n X n matrices as a noncommutative ring

with identity, 15
of composite linear maps, 12
representation of a linear map, 11
Maximum, maxima
absolute, 82
conditional, 88
local, 79
Meagre sets, 71
Measurable covers of sets, 156
Measurable functions
almost, 231
Borel, 222
Fréchet’s theorem, 237
Lebesgue (L), 222
Lebesgue—Stieltjes (LS), 222
Luzin’s theorem, 234
M-measurable functions, 218
m-measurable functions, 231
Tietze’s theorem, 236
Measurable sets, 147
nonmeasurable sets under Lebesgue
measure, 173
outer, 149
Measurable spaces, 217
Measure spaces, 147
almost measurable functions on sets in,
231
probability spaces as, 148
topological, 162
Measures, 147, 194. See also Set functions
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Borel restrictions of, 162
as extensions of premeasures, 154
Borel, 162
complete, 148
completions of, 159
constructed from outer measures, 152
generalized, 194
Lebesgue, 168-175
Lebesgue extensions, 154
Lebesgue—Stieltjes, 176
Lebesgue—Stieltjes measures in E™, 179
outer, 138, 139; see also Outer measures
product, 293
regular, 162
rotation-invariant, 192
signed, 194, 199
signed Lebesgue-Stieltjes, 206, 335
strongly regular, 162
totally o-finite, 169
translation-invariant, 171
Metric spaces
as topological spaces, 161
networks of sets in, 212
Minimum, minima
absolute, 82
conditional, 88
local, 79
Monotone convergence theorem, 271
Monotone set functions, 136, 117

Networks of sets in metric spaces, 212

Nonmeasurable sets under Lebesgue mea-
sure, 173

Norm of a linear map, 13

Normal Vitali coverings, 192

Nowhere-dense sets, 70

Q-coverings of a set, 213
Q-differentiation, 211

and Radon—Nikodym derivative, 353
Open map principle, 75
Open maps, 59
Open sets

in topologies, 161

volume of, 108
Operator, linear, 7
Orthodox integrals, 247
Outer content, 140

Jordan, 140
Outer measurable sets, 149
Outer measure spaces, 149
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Outer measures, 138, 139
Carathéodory property (CP), 145
constructing measures from, 152
Lebesgue outer measure, 138, 146, 176
Lebesgue—Stieltjes, 146
outer measurable sets, 149
regular, 155, 156

P(S), the power set of S, 116
Parametrized C-integrals, 402
Abel-Dirichlet test for uniform conver-
gence of, 408
Cauchy criterion for uniform conver-
gence of, 403
comparison test for uniform convergence
of, 405
M-test for uniform convergence of, 405
Partial derivatives, 3
differentiable functions and, 19, 22
higher order, 35
Partially derived function, 2
Partitions of sets, 195, 217
elementary functions on, 218
refinements of, 218, 308
simple functions on, 218
Permutable series, 110
Polar coordinates, 46, 50, 55, 306, 395
Positive series, 111
Power set P(S), 116
Premeasures, 137, 147
measures as extensions of, 154
induced outer measures from, 138
Lebesgue, 126, 138, 168
Lebesgue—Stieltjes, 176
Premeasure spaces, 138
Lebesgue, 138
Primitives, see Antiderivatives
Probability spaces, 148
Product measures, 293
Products of set families, 120
Pseudometric spaces, 165
Pseudometrics, 165

Quadratic forms, symmetric, 80

R-integrals, see Riemann integrals
Radon—-Nikodym derivatives, 338

and Lebesgue differentiation, 351

and Q-differentiation, 353
Radon-Nikodym theorem, 338
Refinements of partitions of sets, 218, 308

Index

Regular measures, 162
Regular set functions, 140

compact, 209

outer measures as, 155, 156
Regulated functions, 312
Residual sets, 71
Riemann-integrable functions, 307, 317
Riemann integrals, 308ff.

Darboux sums (lower and upper), 307

Lebesgue integrals and, 313

lower, 307

regulated functions, 312

Riemann sums, 321

upper, 307
Riemann sums, 321
Riemann-—Stieltjes integrals, 318
Right-continuous set functions, 131
Ring

n X n matrices as a noncommutative ring

with identity, 15

Rings of sets, 101, 115

generated by a set family, 117
Rotation-invariant measures, 192

o-additive set functions, 126, 147
o-additivity of volume, 104
o-algebras of sets, 116. See also o-field
o-fields of sets, 116

Borel fields, 162

generated by a set family M, 117
o-finite set functions, 140

totally, 140, 169
o-rings of sets, 116, 147

Borel fields, 162

generated by a semiring, 119

generated by a set family, 117
o-subadditive set functions, 137, 147
oO-finiteness, 167
Semifinite set functions, 126
Semirings of sets, 98
Separable sets, 223
Series

double, 110, 115

permutable, 110

positive, 111
Sets

Borel, 162

Co, 104

C-simple, 99

Cantor’s set, 76

convergent sequences of, 180

Index

families of, see Set families
Lebesgue-measurable, 168
meagre, 71
measurable, 147
nonmeagre, 71
nowhere dense, 70
of Category I, 71
of Category II, 71
outer measurable, 149
partitions of, 195
residual, 71
rings of, 101, 115
o-algebras of, 116
o-fields of, 116
o-rings of, 116
semirings of, 98
separable, 223
symmetric difference of, 122
Vitali coverings of, 180
volume of, see Volume
Set algebras, 116. See also Set fields.
Set families, 98
set algebras, 116
C-simple sets C, 99
disjoint, 99
fields, 116
hereditary, 123
products of, 120
rings, 101, 115
o-algebras, 116
o-fields, 116
o-rings, 116
semirings, 98
Set fields, 116
generated by a set family, 117
Set functions, 125
absolutely continuous with respect
to a set function ¢ (absolutely t-
continuous), 197
additive, 126, 137
additive extension of, 129
compact regular (CR) set functions on
topological spaces, 209
continuous, 131, 147
continuous with respect to a set function
t (t-continuous), 197
derivates of (D(p), D(p)), 187
derivatives of, 210
differentiable, 210
finite, 125
finite with respect to a set function ¢ (¢-
finite), 197
finitely additive, 126, 126
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generalized measures, 194

Lebesgue premeasure, 126

Lebesgue—Stieltjes, 127, 135, 176

left-continuous, 131

monotone, 136, 147

outer measures, 138; see also Outer mea-
sures

premeasures, 137

regular, 140, 155

right-continuous, 131

rotation-invariant, 192

o-additive, 126

o-finite, 140

o-subadditive, 137

semifinite, 126

signed measures, 194, 199

signed Lebesgue-Stieltjes measures, 206,
335

singular with respect to a set function ¢
(t-singular), 341

total variation of, 194

totally o-finite, 140, 169

translation-invariant, 171

volume of sets, see Volume

Set rings, 101, 115
generated by a set family, 117
Signed Lebesgue—Stieltjes measure spaces,

206
induced by a function of bounded varia-
tion, 206

integration in, 335
Signed measure spaces, 194, 199
Hahn decomposition theorem, 201
Jordan components, 203
Jordan decompositions, 202
negative sets in, 199
positive sets in, 199
Simple functions, 218
simple step functions, 218
Singular with respect to a set function ¢
(t-singular), 341
Singularities of improper integrals, 387
Span of vectors in a vector space, 16
Step functions, 218
simple, 218
Stieltjes integrals, 319, 321ff.
integration by parts, 321
laws of the mean, 322
Strongly regular measures, 162, 234, 237,
347
Sylvester’s theorem, 80
Symmetric difference of sets, 122
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Symmetric quadratic forms, 80 of sets, 125
Sylvester’s theorem, 80 o-subadditivity of, 109
Taylor polynomial, 43 Weighted law of the mean, 269

Taylor’s Theorem, 40
generalized, 45
Lagrange form of remainder, 42
Taylor polynomial, 43
Tietze’s theorem, 236
Topological measure spaces, 162
Topological spaces, 161
compact regular (CR) set functions on,
209
continuous functions between, 161
metric spaces as, 161
pseudometric spaces as, 165
Topologies, 161
closed sets in, 161
open sets in, 161
Total variation of set functions, 194
Totally o-finite set functions, 140, 169
Translation-invariant set functions, 171

Uniform boundedness principle of Banach
and Steinhaus, 75

Uniformly normal Vitali coverings, 192
Universal Vitali coverings, 192
Unorthodox integrals, 247
Upper

Darboux sums, 307

integrals, 251

Riemann integrals, 307

V-coverings, see Vitali coverings
Vectors
span of a set of, 16
Vector spaces
basis of, 16
dimension of, 16
linear subspaces of, 16
matrices as elements of, 15
span of vectors in, 16
Vitali coverings, 180
normal, 192
uniformly normal, 192
universal, 192
Volume
additivity of volume of intervals, 101
monotinicity of, 109
of Co-sets in E™, 107
of open sets in E™, 108



	Mathematical Analysis II 
	Copyright Notice 
	Contents 
	Preface 
	About the Author 
	6 Differentiation on En and Other Normed Linear Spaces 
	1 Directional and Partial Derivatives 
	Problems on Directional and Partial Derivatives 

	2 Linear Maps and Functionals. Matrices 
	Problems on Linear Maps and Matrices 

	3 Differentiable Functions 
	Problems on Differentiable Functions 

	4 The Chain Rule. The Cauchy Invariant Rule 
	Further Problems on Differentiable Functions 

	5 Repeated Differentiation. Taylor's Theorem 
	Problems on Repeated Differentiation and Taylor Expansions 

	6 Determinants. Jacobians. Bijective Linear Operators 
	Problems on Bijective Linear Maps and Jacobians 

	7 Inverse and Implicit Functions. Opens and Closed Maps 
	Problems on Inverse and Implicit Functions, Open and Closed Maps 

	8 Baire Categories. More on Linear Maps 
	Problems on Baire Categories and Linear Maps 

	9 Local Extrema. Maxima and Minima 
	Problems on Maxima and Minima 

	10 More on Implicit Differentiation. Conditional Extrema 
	Further Problems on Maxima and Minima 


	7 Volume and Measure 
	1 More on Intervals. Semirings of Sets 
	Problems on Intervals and Semirings 

	2 C_sigma-Sets, Countable Additivity. Permutable Series 
	Problems on C_sigma-Sets, Sigma-Additivity, and Permutable Series 

	3 More on Set Families 
	Problems on Set Families 

	4 Set Functions. Additivity. Continuity 
	Problems on Set Functions 

	5 Nonnegative Set Functions. Premeasures. Outer Measures 
	Problems on Premeasures and Related Topics 

	6 Measure Spaces. More on Outer Measures 
	Problems on Measures and Outer Measures 

	7 Topologies. Borel Sets. Borel Measures 
	Problems on Topologies, Borel Sets, and Regular Measures 

	8 Lebesgue Measure 
	Problems on Lebesgue Measure 

	9 Lebesgue-Stieltjes Measures in E1 
	Problems on Lebesgue Measures 

	10 Vitali Coverings on En 
	Problems on Vitali Coverings 

	11 Generalized Measures. Absolute Continuity 
	Problems on Generalized Measures 

	12 Differentiation of Set Functions 
	Problems on Differentiations of Set Functions 


	8 Measurable Functions. Integration 
	1 Elementary and Measurable Functions 
	Problems on Measurable and Elementary Functions in (S,M)


	2 Measurability of Extended-Real Functions 
	Further Problems on Measurable Functions in (S,M)


	3 Measurable Functions in (S,M,m) 
	Problems on Measurable Functions in (S,M,m)


	4 Integration of Elementary Functions 
	Problems on Integration of Elementary Functions 

	5 Integration of Extended-Real Functions 
	Problems on Integration of Extended-Real Functions 

	6 Integrable Functions. Convergence Theorems 
	Problems on Integrability and Convergence Theorems 

	7 Integration of Complex and Vector-Valued Functions 
	Problems on Integration of Complex and Vector-Valued Functions 

	8 Product Measures. Iterated Integrals 
	Problems on Product Measures and Fubini Theorems 

	9 Riemann Integration. Stieltjes Integrals 
	Problems on Riemann and Stieltjes Integrals 

	10 Integration in Generalized Measure Spaces 
	Problems on Generalized Integration 

	11 The Radon-Nikodym Theorem. Lebesgue Decomposition 
	Problems on Radon-Nikodym Derivatives and Lebesgue Decomposition 

	12 Integration and Differentiation 
	Problems on Differentiation and Related Topics 


	9 Calculus Using Lebesgue Theory 
	1 L-Integrals and Antiderivatives 
	Problems on L-Integrals and Antiderivatives 

	2 More on L-Integrals and Absolute Continuity 
	Problems on L-Integrals and Absolute Continuity 

	3 Improper (Cauchy) Integrals 
	Problems on Cauchy Integrals 

	4 Convergence of Parametrized Integrals and Functions 
	Problems on Uniform Convergence of Functions and C-Integrals 


	Index 

