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Preface

This text helps the student complete the transition from purely manipulative
to rigorous mathematics. It spells out in all detail what is often treated too
briefly or vaguely because of lack of time or space. It can be used either for sup-
plementary reading or as a half-year course. It is self-contained, though usually
the student will have had elementary calculus before starting it. Without the
“starred” sections and problems, it can be (and was) taught even to freshmen.
The three chapters are fairly independent and, with small adjustments, may
be taught in arbitrary order. The chapter on n-space “imitates” the geometry
of lines and planes in 3-space, and ensures a thorough review of the latter, for
students who may not have had it. A wealth of problems, some simple, some
challenging, follow almost every section.
Several years’ class testing led the author to these conclusions:

(1) The earlier such a course is given, the more time is gained in the follow-
up courses, be it algebra, analysis or geometry. The longer students
are taught “vague analysis”, the harder it becomes to get them used to
rigorous proofs and formulations and the harder it is for them to get rid of
the misconception that mathematics is just memorizing and manipulating
some formulas.

(2) When teaching the course to freshmen, it is advisable to start with Sec-
tions 1-7 of Chapter 2, then pass to Chapter 3, leaving Chapter 1 and
Sections 8-10 of Chapter 2 for the end. The students should be urged to
preread the material to be taught next. (Freshmen must learn to read
mathematics by rereading what initially seems “foggy” to them.) The
teacher then may confine himself to a brief summary, and devote most
of his time to solving as many problems (similar to those assigned) as
possible. This is absolutely necessary.

(3) An early and constant use of logical quantifiers (even in the text) is ex-
tremely useful. Quantifiers are there to stay in mathematics.

(4) Motivations are necessary and good, provided they are brief and do not
use terms that are not yet clear to students.



About the Author

Elias Zakon was born in Russia under the czar in 1908, and he was swept
along in the turbulence of the great events of twentieth-century Europe.

Zakon studied mathematics and law in Germany and Poland, and later he
joined his father’s law practice in Poland. Fleeing the approach of the German
Army in 1941, he took his family to Barnaul, Siberia, where, with the rest of
the populace, they endured five years of hardship. The Leningrad Institute of
Technology was also evacuated to Barnaul upon the siege of Leningrad, and
there he met the mathematician I. P. Natanson; with Natanson’s encourage-
ment, Zakon again took up his studies and research in mathematics.

Zakon and his family spent the years from 1946 to 1949 in a refugee camp
in Salzburg, Austria, where he taught himself Hebrew, one of the six or seven
languages in which he became fluent. In 1949, he took his family to the newly
created state of Israel and he taught at the Technion in Haifa until 1956. In
Israel he published his first research papers in logic and analysis.

Throughout his life, Zakon maintained a love of music, art, politics, history,
law, and especially chess; it was in Israel that he achieved the rank of chess
master.

In 1956, Zakon moved to Canada. As a research fellow at the University of
Toronto, he worked with Abraham Robinson. In 1957, he joined the mathemat-
ics faculty at the University of Windsor, where the first degrees in the newly
established Honours program in Mathematics were awarded in 1960. While
at Windsor, he continued publishing his research results in logic and analysis.
In this post-McCarthy era, he often had as his house-guest the prolific and
eccentric mathematician Paul Erd6s, who was then banned from the United
States for his political views. Erdés would speak at the University of Windsor,
where mathematicians from the University of Michigan and other American
universities would gather to hear him and to discuss mathematics.

While at Windsor, Zakon developed three volumes on mathematical analysis,
which were bound and distributed to students. His goal was to introduce
rigorous material as early as possible; later courses could then rely on this
material. We are publishing here the latest complete version of the first of
these volumes, which was used in a one-semester class required of all first-year
Science students at Windsor.



Chapter 1
Some Set Theoretical Notions

81. Introduction. Sets and Their Elements

The theory of sets, initiated by Georg Cantor (1845-1918), constitutes the
basis of almost all modern mathematics. The set concept itself cannot be
defined in simpler terms. A set is often described as a collection (“aggregate”,
“class”, “totality”, “family”) of objects of any specified kind. However, such
descriptions are no definitions, as they merely replace the term “set” by other
undefined terms. Thus the term “set” must be accepted as a primitive notion,
without definition. Examples of sets are as follows: the set of all men; the set
of all letters appearing on this page; the set of all straight lines in a given plane;
the set of all positive integers; the set of all English songs; the set of all books
in a library; the set consisting of the three numbers 1, 4, 17. Sets will usually
be denoted by capital letters, A, B, C, ..., X, Y, Z.

The objects belonging to a set A are called its elements or members. We
write € A if  is an element of the set A, and = ¢ A if it is not.

Example.

If N is the set of all positive integers, then 1 € N, 3 € N, +v/9 € N, but
\/?¢N70¢N7 71¢N7%¢N

It is also convenient to introduce the so-called empty (“void”, “vacuous”)
set, denoted by 0, i.e., a set that contains no elements at all. Instead of saying
that there are no objects of some specific kind, we shall say that the set of these
elements is empty; however, this set itself, though empty, will be regarded as
an existing thing.

Once a set has been formed, it is regarded as a new entity, that is, a new
object, different from any of its elements. This object may, in its turn, be an
element of some other set. In fact, we can consider whole collections of sets
(also called “families of sets”, “classes of sets”, etc.), i.e., sets whose elements
are other sets. Thus, if M is a collection of certain sets A, B, C, ..., then
these sets are elements of M, i.e., we have A ¢ M, Be M, C € M, ...;
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but the single elements of A need not be members of M, and the same applies
to single elements of B, C, .... Briefly, from p € A and A € M, it does
not follow that p € M. This may be illustrated by the following examples.
Let a “nation” be defined as a certain set of individuals, and let the United
Nations (U.N.) be regarded as a certain set of nations. Then single persons are
elements of the nations, and the nations are members of U.N., but individuals
are not members of U.N. Similarly, the Big Ten consists of ten universities,
each university contains thousands of students, but no student is one of the
Big Ten. Families of sets will usually be denoted by script letters: M, N, P,
etc.

If all elements of a set A are also elements of a set B, we say that A is a
subset of B, and write A C B. In this instance, we also say that B is a superset
of A, and we can write B D A. The set B is equal to Aif AC Band BC A,
i.e., the two sets consist of exactly the same elements. If, however, A C B but
B # A (i.e., B contains some elements not in A), then A is referred to as a
proper subset of B; in this case we shall use the notation A C B. The empty
set () is considered a subset of any set; it is a proper subset of any nonempty
set. The equality of two sets A and B is expressed by the formula A = B.!
Instead of A C B we shall also write B D A; similarly, we write B D A instead
of A C B. The relation “C” is called the inclusion relation.? Summing up, for
any sets A, B, C, the following are true:

(a) ACA.

(b) If AC B and B C C, then ACC.
(¢) IfAC B and BC A, then A= B.
(d) 0 C A

(e) If AC (), then A= 0.

The properties (a), (b), (c) are usually referred to as the reflexivity, tran-
sitivity, and anti-symmetry of the inclusion relation, respectively; (c) is also
called the aziom of extensionality.’

A set A may consist of a single element p; in this case we write A = {p}.
This set must not be confused with the element p itself, especially if p itself is
a set consisting of some elements a, b, ¢, ..., (recall that these elements are not
regarded as elements of A; thus A consists of a single element p, whereas p may
have many elements; A and p then are not identical). Similarly, the empty set

! The equality sign, here and in the sequel, is tantamount to logical identity. A formula
like “A = B” means that the letters A and B denote one and the same thing.

2 Some authors write A C B for A C B. We prefer, however, to reserve the sign C for
proper inclusion.

3 The statement that A = B if A and B have the same elements shall be treated as an
aziom, not a definition.
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() has no elements, while {@} has an element, namely §). Thus § # {0} and, in

general, p # {p}.
If A contains the elements a, b, c, ..., we write

A={a,b,c, ...}

(the dots in this symbol imply that A may contain some other elements). If A
consists of a small number of elements, it may be convenient to list them all in
braces. In particular, if A consists of two elements a, b, we write A = {a, b}.
Similarly for a set of three elements, A = {a, b, c}, etc. If confusion is unlikely,
a finite set may be indicated by the use of dots and a terminal member, as with
{1,2,3,...,10}, or {2,4,6,..., 100}, or {1, 3,5, ..., 2n — 1}.

It should be noted that the order in which the elements of a set follow each
other does not affect the equality of sets as stated above. For instance, we
have {a, b} = {b, a} because the two sets consist of the same elements. Also,
if some element is mentioned several times, it still counts as one element only.
Thus we have {a, a} = {a}. In this respect, a set consisting of two elements a
and b must be distinguished from the ordered pair (a,b); and, more generally, a
set consisting of n elements, {1, z2, ..., Z,}, should not be confused with the
ordered n-tuple (z1,...,x,). Two ordered pairs (a,b) and (x,y) are considered
equal iff* @ = x and b = y, whereas the sets {a, b} and {z, y} are also equal if
a=1vy and b= 2. A similar distinction applies to ordered n-tuples.®

If P(x) is some proposition or formula involving a variable z, we shall use
the symbol

{z | P(z)}

to denote the set of all objects x for which the formula P(zx) is true. For
instance, the set of all men can be denoted by {z | = is a man}. Similarly,
{z | = is a number, z < 5} stands for “the set of all numbers less than 5.
We write {x € A | P(z)} for “the set of all elements of A for which P(x) is
true.” The variable x in such symbols may be replaced by any other variable;
{z | P(z)} is the same as {y | P(y)}.

Thus the set of all positive integers less than 5 can be denoted either by
{1, 2, 3, 4}, or by {x | x is an integer, 0 < x < 5}. Note: The comma in such
symbols stands for the word “and”.

§2. Operations on Sets

We now proceed to define some operations on sets.

4 “iff” means “if and only if”.
5 We shall not attempt at this stage to give a definition of an ordered pair or n-tuple,
though this can be done (cf. Problem 6 after §2).
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Definition 1.
For any two sets A and B, we define as follows:

(a) The union, or join, of A and B, denoted by A U B, is the set of all
elements z such that z € A or € B (i.e., the set of all elements of
A and B taken together).!

(b) The intersection, or meet, of A and B, denoted by AN B, is the set
of all elements z such that z € A and z € B simultaneously (it is
the set of all common elements of A and B).

(¢) The difference A— B is the set of all elements that are in A but not
in B (B may, but need not, be a subset of A).

In symbols,
AUB={z|zcAorze B}, ANB={z|z€ A, z€ B}, and
A-B={x|z€ A, x¢ B}.

The sets A and B are said to be disjoint iff AN B = 0, i.e., iff they have
no elements in common. The symbols U and N are called “cup” and “cap”,
respectively; sometimes the symbols + and - are used instead. Note that, if A
and B have some elements in common, these elements need not be mentioned
twice when forming the union A U B. The difference A — B is also called the
complement of B relative to A (briefly, “in A”).2

Examples.
(1) fA={1,2,3,4,5} and B ={2, 4, 6}, then
AUB={1,2,3,4,5,6}, AnNB={2,4},
A-B={1,3,5}, B-—A={6}.

(2) If A is the set of all soldiers and B the set of all students, then AU B
consists of all persons who are either soldiers or students or both; AN B
is the set of all studying soldiers; A — B is the set of all soldiers who do
not study; and B — A consists of those students who are not soldiers.

When speaking of sets, we shall always tacitly assume that we are given some
“master set”, called the space, from which our initial elements are selected.
From these elements we then form the various sets (subsets of the space);
then we proceed to form families of sets, etc. The space will often remain
unspecified, so that we retain the possibility of changing it if required. If S is

L The word “or” is used in mathematics in the inclusive sense; that is, “c € A or x € B”?
means “x € A or x € B or both”.

2 Some authors write A \ B for A — B; some use this notation only if B C A. Others use
the terms “sum” and “product” for “union” and “intersection”, respectively. We shall not
follow this practice.
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the space, and F is its subset (i.e., E C S), we call the difference S — E simply
the complement of E and denote it briefly by —E; thus —E = S — F (provided
that S is the space and E C S).3

The notions of union, intersection, and difference can be graphically illus-
trated by means of so-called “Venn diagrams”* on which they appear as the
shaded areas of two or more intersecting circles or other suitable areas. In Fig-
ures 1, 2, and 3, we provide Venn diagrams illustrating the union, intersection,
and difference of two sets A and B.

FiGure 1: AUB FIGURE 2: ANB FiGure 3: A— B

Theorem 1. For any sets A, B, and C, we have the following:

Yy AUA=A; ANA=A

) AUB=BUA; ANB=BnNA
) (AUB)UC =AU(BUC)
> |
)
)

(a (idempotent laws).
(b (commutative laws).
(

(c

d (associative laws).

)
(ANB)NC=ANn(BNC)
e) (AUB)NC=(AnC)u(BNCQC)
f (AmB)uC:(AUC)m(BuC)}
g) AUD=A; AnD=0; A—-0P=A4; A—A=0.

(distributive laws).

(
(
(

To verify these formulas, we have to check, each time, that every element
contained in the set occurring on the left-hand side of the equation also belongs
to the right-hand side, and conversely. For example, we shall verify formula (e),
leaving the proof of the remaining formulas to the reader. Suppose then that
some element x belongs to the set (A U B) N C; this means that z € (AU B)
and, simultaneously, x € C; in other words, we have z € A or z € B and,
simultaneously, € C. It follows that we have (x € A and z € C) or (z € B
and z € C); that is, z € (ANC) or x € (BNC), whence z € [(ANC)U(BNC)].
Thus we see that every element x contained in the left-hand side of (e) is also
contained in the right-hand side. The converse assertion is proved in the same
way by simply reversing the order of the steps of the proof.

In Figures 4 and 5, we illustrate the distributive laws (e) and (f) by Venn
diagrams; the shaded area represents the set resulting from the operations
involved in each case.

3 Other notations in use for complement are as follows: ~E, E, E~, CE, E', etc.
4 After the logician John Venn (1834-1923).
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c c

(AUB)NC =(ANC)U(BNC) (ANB)UC = (AUC)N (BUC)

FIGURE 4 FIGURE 5

Because of the associative laws, we may omit the brackets in expressions
occurring in formulas (¢) and (d). Thus we may write AUBUC and ANBNC
instead of (AU B) U C and (AN B) N C, respectively.® Similarly, unions and
intersections of four or more sets may be written in various ways:

AUBUCUD=(AUB)U(CUD)=AU(BUCUD)=(AUBUC)UD;
ANBNCND=(ANnBNC)ND=(ANB)N(CND), etc.

As we noted in §1, we may consider not just one or two, but a whole family
of sets, even infinitely many of them. Sometimes we can number the sets under
consideration: Xi, X, X3, ..., X, ... (compare this to the numbering of
buildings in a street, or books in a library). More generally, we may denote
all sets of a family M by one and the same letter (say, X ), with some indices
(subscripts or superscripts) attached to it: X; or X¢ where i runs over a
suitable (sufficiently large) set I of indices, called the index set. The indices
may, but need not, be numbers. They are just “labels” of arbitrary nature,
used solely to distinguish the sets from each other, in the same way that a good
cook uses labels to distinguish the jars in the kitchen. The whole family M
then is denoted by {X; | i € I}, briefly {X;}. Here i is a variable ranging over
the index set I. This is called index notation.

The notions of union and intersection can easily be extended to arbitrary
families of sets. If M is such a family, we define its union, |JM, to be the
set of all elements x, each belonging to at least one set of the family. The
intersection, [| M, consists of those elements x that belong to all sets of the
family simultaneously. Instead of |J M and (| M, we also use

U{X | X e M} and ﬂ{X | X € M}, respectively.

Here X is a variable denoting any arbitrary set of the family. Note: = € | JM
iff z is in at least one set X of the family; = € (| M iff 2 belongs to every set
X of the family.

5 As will be seen, unions and intersections of three or more sets can be defined indepen-
dently. Thus, in set theory, such formulas as ANBNC = (ANB)NC or AUBUC = (AUB)UC
are theorems, not definitions.

§2. Operations on Sets 7

Thus ()M is the common part of all sets X from M (possibly (M = 0),
while | J M comprises all elements of all these sets combined.

If M ={X;|ieI} (index notation), we also use symbols like

Utxilieny=Jx;=Jxi=JXi and

icl

ﬂ{X”ie]}:ﬂXi:mXi:ﬂXi

i€l

for (JM and (M, respectively. Finally, if the indices are integers, we use
symbols like

[an7 ﬁXm GX,“ XiUuXoUu-- UX, U

n=1 n=1 n=k

or the same with |J and [ interchanged, imitating a similar notation known
from elementary algebra for sums and products of numbers.
The following theorem has many important applications.

Theorem 2 (de Morgan’s duality laws®). Given a set E and any family of
sets {A;} (where i ranges over some index set I), we always have

@) E7UAZ-:Q(E7AZ-); (ii) EfmAi:U(EfAi).

Verbally, this reads as follows:

(i) The complement (in E) of the union of a family of sets equals the inter-
section of their complements (in E).

(ii) The complement (in E) of the intersection of a family of sets equals the
union of their complements (in E).

Proof of (i). We have to show that the set E — [ J; A; consists of exactly the
same elements as the set (,(E — 4,), i.e., that we have

zeE—|JAiiffz e[ )(E - A).
This follows from the equivalence of the following statements (we indicate log-

6 Augustus de Morgan, mathematician and logician (1806-1871).
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ical inference by arrows):”

$€E*UA7;,
:reEbutxgéUAi,

x € E but z is not in any of the sets A;,

x is in each of the sets £ — A;,

ze(\(E-A).

Similarly for part (ii), which we leave to the reader. O

Note: In the special case where E is the entire space, the duality laws can

be written more simply:
O —UJAa =4 () -4 = 4.
1 1 K3 K3

Note: The duality laws (Theorem 2) hold also when the sets A; are not
subsets of E.

The importance of the duality laws consists in that they make it possible to
derive from each general set identity its so-called “dual”, i.e., a new identity that
arises from the first by interchanging all “cap” and “cup” signs. For example,
the two associative laws, Theorem 1(c) and (d), are each other’s duals, and so
are the two distributive laws, (e) and (f).

To illustrate this fact, we shall show how the second distributive law, (f),
can be deduced from the first, (e), which has already been proved. Since
Theorem 1(e) holds for any sets, it also holds for their complements. Thus we
have, for any sets A, B, C,

(-A)N(-BU-C)=(-ANn-B)U(-An-=0C).
But, by the duality laws, —BU —C = —(B N C); similarly,
—AN-B=—-(AUB)and —AN-C=—-(AUCQC).
Therefore, we obtain
—-ANn—-(BNC)=—-(AUB)U—-(AUCQ),
or, applying again the duality laws to both sides,

—[Au(BNC)|=-[(AuB)N(AuC)],

7 Sometimes horizontal arrows are used instead of the vertical ones (to be explained in

§3).

§2. Operations on Sets 9

whence AU(BNC) =(AUB)N(AUC), as required. This procedure is quite
general and leads to the following duality rule: Whenever an identity holds for
all sets, so also does its dual.®

As an exercise, the reader may repeat the same procedure for the two asso-
ciative laws (prove one of them in the ordinary way and then derive the second
by using the duality laws), as well as for the following theorem.

Theorem 3 (Generalized distributive laws). If E is a set and {4;} is any set
family, then

Q) En{JAi=UJEn4); () BEu[)Ai=[)EUA).

3

Problems in Set Theory

1. Verify the formulas (c), (d), (f), and (g) of Theorem 1.
2. Prove that —(—A) = A.

3. Verify the following formulas (distributive laws with respect to the sub-
traction of sets), and illustrate by Venn diagrams:

(a) AN(B-C)=(ANB)-(ANC);
b)) (A-C)N(B-C)=(ANnB)-C.
4. Show that the relations (AUC) C (AUB) and (ANC) C (AN B), when
combined, imply C' C B. Disprove the converse by an example.

5. Describe geometrically the following sets on the real line:
(i) {z [z <0}
(iii) {z | |z —a| <e};
v) {z|a<z<b}

(i) {2 | [z <1}

(iv) {z | |=[ <0}

(vi) {z]a <z <b}.

6. If (z,y) denotes the set { {z}, {z,y} }, prove that, for any z, y, v, u, we
have (z,y) = (u,v) iff x = v and y = v. Treat this as a definition of an

ordered pair.
[Hint: Consider separately the two cases x = y and x # y, noting that {z, 2} = {z}]

7. Let A = {z1, 22, ..., x,} be a set consisting of n distinct elements.
How many subsets does it have? How many proper subsets?

8. Prove that
(AUB)N(BUC)N(CUA) =(ANB)U(BNC)U(CNA)

8 More precisely, this applies to set identities involving no operations other than N and U;
cf. also Problem 10 (iii) below.
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10.

11.

12.

13.

14.

15.
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in two ways:
(i) using definitions only;
(ii) using the commutative, associative, and distributive laws.

(In the second case, write AB for AN B and A+ B for AU B, etc., and
proceed to remove brackets, noting that A+ A=A = AA.)

. Show that the following relations hold iff A C E:

(i) (E—A)UA=E;

(i) E—(E—-A) = A4
(ii) AUE = E;
(iv) ANE = 4;
v) A—E=10

Prove de Morgan’s duality laws:
() E-NXi=UE - X);
(i) E-UX: =NE - X,);
(iii) if A C B, then (E — B) C (E — A).
Prove the generalized distributive laws:
(i) AnUX: =UANX,);
(i) AUNX; =NAUX,);
(iif) X UAY; =, (X UYj);
(iv) UXinUY; =U, ;(XiNYj).
In Problem 11, show that (i) and (ii) are duals (i.e., follow from each
other by de Morgan’s duality laws) and so are (iii) and (iv).

Prove the following:

) (Nx) - a=nes-ar @ (Ux) -a=Ue -

(generalized distributive laws with respect to differences).

If (x,y) is defined as in Problem 6, which of the following is true?

z€(zy); A{z}e(my);  ye(ny);
{y} € (z,9); {z, v} € (z,y); {2} =(z,2); {{z}}=(z,2).
Prove that

i) A-B=ANn-B=
(i) ANB=A—(

(=B) = (=4) = —((-A) U B) and
—B)=B - (-A4) = —(~AU-B).

§2. Operations on Sets 11

Give also four various expressions for A U B.
16. Prove the following:
(i) AuUB)-B=A-B=A-(ANB);
(i) (A—-B)—C=A—(BUCQ);
(iii) A—-(B-C)=(A-B)U(ANC);
(iv) (A—B)Nn(C—-D)=(ANnC)—- (BUD,).
17. The symmetric difference of two sets A and B is
AANB=(A-B)U(B-A).
Prove the following:
(i) AAB=DBAA4;
*(ii) AAN(BAC)=(AAB)AC;
(i) AAD = A
(ivy HANnB=0, AAB=AUB;
(v) fTAD B, AAB=A-B;
(vi) AAB=
i)
)
)
) (

(AUB)— (ANB)=(AUuB)N(-AU-=-B);
(vi)) AN A=
(viii) AAB = (—A)A(-B);
(ix) —(AAB)=AA(-B)=(-A)AB=(ANB)U(—AN-B);
(x) (AAB)NC =(ANC)A(BNO).

*18. For n =2, 3, ... define the following:

AAi= A DA DAy = (A DAL DAy 1) A Ay

i=1

Prove that @ € A, A; iff z € A; for an odd number of values of i.

19. Use Venn diagrams to check the consistency of this report: Of 100 pa-
tients, 47 were inoculated against smallpox, 43 against polio, 51 against
tetanus, 21 against both smallpox and polio, and 19 against tetanus and
polio, while 7 had to obtain all three shots.

*20. (Russell paradox.) A set M is said to be abnormal ifft M € M, i.e., iff
it contains itself as one of its members (such as, e.g., the family of “all
possible” sets); and normal iff M ¢ M. Let N be the class of all normal
sets, L.e, N ={X | X ¢ X}. Is V/ itself normal? Verify that any answer
to this question implies its own negation, and thus the very definition of
N is contradictory, i.e., A is an impossible (“contradictory”) set. (To
exclude this and other paradoxes, various systems of axioms have been
set up, so as to define which sets may, and which may not, be formed.)
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§3. Logical Quantifiers

From logic we borrow the following widely-used abbreviations:

“(Vx € A) ...” means “For each member x of A, it is true that ....”
“(3z € A) ...” means “There is at least one = in A such that ....”
“(3z € A) ...” means “There is a unique x in A such that ....”

The symbols “(Vz € A)” and “(3z € A)” are called the universal and
ezistential quantifiers, respectively. If confusion is ruled out, we simply write
“(Vx)?, “(3z)”, and “(3lz)” instead. For example, if N is the set of all naturals
(positive integers), then the formula

“YneN)(3meN)m>n"

means “For each natural n there is a natural m such that m > n.” If we agree
that m, n denote naturals, we may write “(Vn) (3m) m > n” instead. Some
more examples follow:

Let M = {A; | ¢ € I} be an indexed set family (see §2). By definition,
z € |J; A; means that « is in at least one of the sets A;. In other words, there
is at least one index i € I for which x € A;; in symbols, (Fi € I) x € A;. Thus

x € U A iff (Jiel)xzeA;; similarly, z € ﬂA, iff (Vi) = € A,.

iel i
Also note that = ¢ |, A; iff x is in none of the A;, i.e., (Vi) x ¢ A;. Similarly,
x ¢ (), A; iff z fails to be in some A;, i.e., (3i) x ¢ A;. Thus

r¢ﬂAZ iff (F) x ¢ Ay ;rgéUAZ iff (Vi) x ¢ A;.

As an application, we now prove Theorem 2 of §2, using quantifiers:

JIEE—UAi., er—mAi,
x € E but = ¢ UA;, x € E but x ¢ NA,,

(i) |z € Eand (Vi) z ¢ Ay, (i) |z € Fand (Ji)x¢gA;,|. O
(Vi) v € E— A, (F) z € E— A,

ze((E-4). ze| JE - A).

The reader should practice such examples thoroughly. Quantifiers not only
shorten formulations but often make them more precise. We shall therefore
briefly dwell on their properties.

Order. The order in which quantifiers follow each other is essential; e.g.,
the formula
“YneN)(E3meN)m>n"
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(each natural n is exceeded by some m € N) is true; but
“dmeN) (Vne N)m>n”

is false since it states that some natural m exceeds all naturals. However, two
consecutive universal quantifiers (or two consecutive existential ones) may be
interchanged. Instead of “(Vz € A) (Vy € A)” we briefly write “(Vz, y € A)”.
Similarly, we write “(3z, y € A)” for “(3z € A) 3y € A)”, “(Vx, y, z € A)”
for “(Vz € A) (Vy € A) (Vz € A)”, and so on.

Qualifications. Sometimes a formula P(z) holds not for all z € A, but
only for those with some additional property @(z). This will be written as
“Vz € A| Q(x)) P(x),” where the vertical stroke | stands for “such that”. For
example, if N is again the naturals, then the formula

“VxeN|z>3) z>4" (1)

means “For each natural x such that x > 3, it is true that = > 4.” In other
words, for naturals, x > 3 implies x > 4; this is also written

“WzeN) [z>3 = z>4]

(the arrow = stands for “implies”). The symbol <= is used for “iff” (“if
and only if”). For instance,

“WVzeN) [z>3 < z>4]

means “For natural numbers z, we have x > 3 if and only if x > 4.”

Negations. In mathematics, we often have to form the negation of a for-
mula that starts with one or several quantifiers. Then it is noteworthy that each
universal quantifier is replaced by an existential one (and vice versa), followed
by the negation of the subsequent part of the original formula. For example, in
calculus, a real number p is called the limit of a sequence x1, x2, ..., Tp, ...
iff the following is true: “For every real € > 0, there is a natural k (depending
on €) such that for all integers n > k, we have |z, — p| < . If we agree that
lower-case letters (possibly with subscripts) denote real numbers, and that n,
k denote naturals, this sentence can be written thus:

(Ve >0) (3k) (YVn>k) |z, —p|l <e. (2)

Here “(Ve > 0)” and “(Vn > k)” stand for “(Ve | € > 0)” and “(Vn | n > k).
Such self-explanatory abbreviations will also be used in other similar cases.
Now let us form the negation of (2). As (2) states that “for all ¢ > 07
something (i.e., the rest of the formula) is true, the negation of (2) starts with
“there is an € > 0”7 (for which the rest of the formula fails). Thus we start
with “(3e > 0)” and form the negation of the rest of the formula, i.e., of “(3k)
(Vn > k) |z, —p| < €”. This negation, in turn, starts with “(Vk)” (why?), and
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so on. Step by step, we finally arrive at
(3> 0) (¥K) Gn > k) |oa—pl e,

i.e., “there is at least one £ > 0 such that, for every natural k, one can find an
integer n > k, with |z, — p| > 7. Note that here the choice of n may depend
on k. To stress it, we write ny for n. Thus the negation of (2) emerges as

(Fe > 0) (Vk) 3ng > k) |xn, —p| > e 3)

Rule: To form the negation of a quantified formula, replace all universal
quantifiers by existential ones, and conversely; finally, replace the remaining
(unquantified) formula by its negation. Thus, in (2), “|z, — p| < €” must be
replaced by “|z, — p| > &7, or rather by “|z,, —p| > €”, as explained.

Note 1. Formula (3) is also the negation of (2) when (2) is written as
“(Ve>0) (3k) (Vn) [n>k = |z, —p| <e].

In general, to form the negation of a formula containing the implication sign
= , it is advisable first to re-write all without that sign, using the notation
“Va |...)” (here: “(Vn|n > k)”).

Note 2. The universal quantifier in a formula (Vz € A) P(z) does not imply
the existence of an = for which P(x) is true. It is only meant to imply that
there is no x in A for which P(x) fails. This remains true even if A = 0); we
then say that “(Vz € A) P(z)” is vacuously true. For example, the statement
“all witches are beautiful” is vacuously true because there are no witches at
all; but so also is the statement “all witches are ugly”. Similarly, the formula
0 C B, ie., (Vz €0) z € B, is vacuously true.

Problem. Redo Problems 11 and 13 of §2 using quantifiers.

§4. Relations (Correspondences)

We already have occasionally used terms like “relation”, “operation”, etc., but
they did not constitute part of our theory. In this and the next sections, we
shall give a precise definition of these concepts and dwell on them more closely.

Our definition will be based on the concept of an ordered pair. As has
already been mentioned, by an ordered pair (briefly “pair”) (z,y), we mean
two (possibly equal) objects = and y given in a definite order, so that one of
them, x, becomes the first (or left) and the other, y, is the second (or right)
part of the pair.! We recall that two pairs (a,b) and (z,y) are equal iff their
corresponding members are the same, that is, iff @ = x and b = y. The pair

I For a more precise definition (avoiding the undefined term “order”), see Problem 6 after
§2.
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(y, ) should be distinguished from (z, y); it is called the inverse to (x,y). Once
a pair (x,y) has been formed, it is treated as a new thing (i.e., as one object,
different from z and y taken separately); = and y are called the coordinates of
the pair (z,y).

Nothing prevents us, of course, from considering also sets of ordered pairs,
i.e., sets whose elements are pairs, (each pair being regarded as one element of
the set). If the pair (z,y) is an element of such a set R, we write (z,y) € R.
Note: This does not imply that  and y taken separately, are elements of R;
(then we write z, y € R).

Definition 1.

By a relation, or correspondence, we mean any set of ordered pairs.?

If R is a relation, and (x,y) € R, then y is called an R-relative of = (but
z is not called an R-relative of y unless (y,x) € R); we also say in this case
that y is R-related to = or that the relation R holds between x and y. Instead
of (z,y) € R, we also write xRy. The letter R, designating a relation, may be
replaced by other letters; it is often replaced by special symbols like <, >, ~,
=, etc.

Examples.

(1) Let R be the set of all pairs (z,y) of integers x and y such that z is
less than y.® Then R is a relation (called “inequality relation between
integers”). The formula z Ry means in this case that x and y are integers,
with = less than y. Usually the letter R is here replaced by the special
symbol <, so that “zRy” turns into “x < y”.

(2) The inclusion relation C introduced in §1 may be interpreted as the set
of all pairs (X,Y) where X and Y are subsets of a given space, with X a
subset of Y. Similarly, the €-relation is the set of all pairs (z, A) where
A is a subset of the space and x is an element of A.

(3) 0 is a relation (“an empty set of pairs”).

If P(z,y) is a proposition or formula involving the variables z and y, we
denote by {(z,y) | P(x,y)} the set of all ordered pairs for which the formula
P(z,y) is true. For example, the set of all married couples could be denoted
by {(z,y) | = is the wife of y}.* Any such set is a relation.

2 This use of the term “relation” may seem rather strange to a reader unfamiliar with
exact mathematical terminology. The justification of this definition is in that it fits exactly
all mathematical purposes, as will be seen later, and makes the notion of relation precise,
reducing it to that of a “set”.

3 Though the theory of integers and real numbers will be formally introduced only in
Chapter 2, we feel free to use them in illustrative examples.

4 This set could be called “the relation of being married”.



16 Chapter 1. Some Set Theoretical Notions

Since relations are sets, the equality of two relations, R and S, means that
they consist of exactly the same elements (ordered pairs); that is, we have
R = S iff Ry always implies xSy, and vice versa. Similarly, R C S means
that xRy always implies Sy (but the converse need not be true).

By replacing all pairs (z,y) belonging to a relation R by their inverses (y, )
we obtain a new relation, called the inverse of R and denoted by R~!. Clearly,
we have xR~y iff yRx; thus

R ={(z,y) | yRa} = {(y, ) | =Ry}

This shows that R, in its turn, is the inverse of R71; i.e.,, (R7!)~! = R. For
example, the relations < and > between numbers are inverse to each other; so
also are the relations C and D between sets.

If a correspondence R contains the ordered pairs (z,z'), (y,v'), (2,%'), ...,

we shall write
R:(x’ 5’ 2 )’ @

i.e., the pairs will be written in vertical notation, so that each left coordinate
of a pair is written above the corresponding right coordinate (i.e., above its
R-relative). Thus, e.g., the symbol

(2211) ®

denotes the relation consisting of the four pairs (1,2), (4,2), (1,1), and (3,1).
The inverse relation is obtained by simply interchanging the upper and the
lower rows.

Definition 2.
The set of all left coordinates of pairs contained in a relation R is called
the domain of R, denoted Dg. The set of all right coordinates of these
pairs is called the range or co-domain of R, denoted D’,. Clearly, x € Dp
iff Ry for some y. Thus (note these formulas)

Dpg = {z | xRy for some y}; D%, = {y | zRy for some z};

or, using quantifiers,

Dr ={z| (3y) xRy}; D ={y| (3z) 2Ry}.

In symbols of the form (1), the domain and range appear as the upper and
the lower row, respectively; thus, e.g., in (2) the domain is {1, 4, 3} and the
range is {2, 1}. Clearly, if all pairs of a relation R are replaced by their inverses,
then the left coordinates turn into the right ones, and conversely. Therefore,
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the domain of the inverse relation R™' coincides with the range of R, and the
range of R™1 is the domain of R; that is,

DR—l = D;%7 }ifl = DR (3)

Definition 3.
Given a relation R and any set A we say that R is
(i) reflezive on A iff we have xRz for all elements x of A;
(ii) symmetric on A iff x Ry implies yRz for any x and y in A;

(iii) transitive on A iff xRy combined with yRz implies xRz for all x, y,
and z in A;

(iv) trichotomic on A iff, for any z and y in A, we always have either
xRy, or yRx, or x = y, but never two of these together.

Examples.

(a) The inequality relation < between real numbers is transitive and tri-
chotomic because ¢ < y and y < z always implies < z (transitivity);
and we always have either x < y, or y < z, or z = y (trichotomy); we
shall dwell on these properties more closely in Chapter 2.

(b) The inclusion relation C between sets is reflexive (because A C A) and
transitive (because A C B and B C C implies A C C); but it is neither
symmetric nor trichotomic, the latter because it may well happen that
neither of two sets contains the other, and because A C B and A = B
may both hold.

(¢) The relation of proper inclusion, C, is only transitive.

(d) The equality relation, =, is reflexive, symmetric, and transitive because
we always have © = x, r = y always implies y = x, and * = y = z implies
x = z. It is, however, not trichotomic. (Why?)

(e) The € relation between an element and a set is neither reflexive nor
symmetric, nor transitive, nor trichotomic (on the set A consisting of all
elements and all subsets of a given space).

Definition 4.

The image of a set A under a relation R (briefly, the R-image of A) is
the set of all R-relatives of elements of A; it is denoted by R[A] (square
brackets always!). The inverse image (the R~!-image) of A, denoted
R71[A], is the image of A under the inverse relation, R~!. The R-image
of a single element x (or of the set {x}) is simply the set of all R-relatives
of z. It is customary to denote it by R[z] instead of the more precise
notation R[{z}]. Note: R[A] may be empty!
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To form R[A], we first find the R-relatives of every element z of A (if any),
thus obtaining R[z] for each x € A. The union of all these R[x] combined is
the desired image R[A].

Example.
Let

1112233334
32(1345341351)'
Then R[] = {1,3,4}; R[2] = {3,5}; R[3] = {1,3,4,5}; R[5 = 0;
RO ={1, 3,4} R7'[2) = 0; R7'[3] = {1, 2, 3} R7[4] = {1, 3}.

If, further, A = {1,2} and B {2, 4}, then R[A4] = {1, 3,4, 5};
R[B] = {1, 3, 5}; R™'[A] = {1, 3, 4}; and R~'[B] = {1, 3}.

By definition, R[] is the set of all R-relatives of x. Hence y € R[z] means
that y is an R-relative of x, i.e., that (z,y) € R, which can also be written as
xRy. Thus the formulas

(z,y) € R, xRy and vy € R[z]

are equivalent. More generally, y € R[A] means that y is an R-relative of some
element x € A; i.e., there is x € A such that (z,y) € R. In symbols, y € R[A4]
is equivalent to (3z € A) (x,y) € R, or (Jz € A) zRy.

Note that the expressions R[A], R71[A], Rlx] and R™[x] are defined even
if A or x are not contained in the domain (or range) of R. These images may,
however, be empty. In particular, R[z] = 0 iff ¢ Dg.

We conclude this section with an important example of a relation. Given
any two sets A and B, we can consider the set of all ordered pairs (x,y) with
x € A and y € B. This set is called the Cartesian product, or cross product, of
A and B, denoted A x B. Thus

Ax B={(z,y) |z €A, ye B}

In particular, A x A is the set of all ordered pairs that can be formed of elements
of A. Note: Ax(=0x A=0. (Why?)

The Cartesian product A x B is a relation since it is a set of ordered pairs.
Its domain is A and its range is B (provided that A and B are not empty).
Moreover, it is the “largest” possible relation with this domain and this range,
because any other relation with the same domain and range is a subset of Ax B,
i.e., it contains only some of the ordered pairs contained in A x B. Thus, to
form a relation with domain A and range B means to select certain pairs from
A x B. The inverse of A X B is B x A (the set of all inverse pairs).

On the other hand, the formation of Cartesian products may also be treated
as a new operation on sets (called cross multiplication). This operation is not
commutative since, in general, the inverse relation B x A is different from A x B,
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so that A x B # B x A. It is also not associative; i.e., we have, in general,
(Ax B) x C # Ax (B xC). (Why?) Nevertheless, we can speak of cross
products of more than two sets if we agree to write A x B x C for (A x B) x C
(but not for A x (B x (). Similarly, we define

AXBxCxD=(AxBxC)xD, AXBxCxDxXE=(AxBxCxD)xE,

etc. Instead of A x A, we also write A%. Similarly, A3 = A x A x A, A* =
AX Ax AX A, ete.

There is a simple and suggestive v

graphic representation of the Carte- } }
sian product A x B. Take two per- - th ————————— jtli—
pendicular straight lines OX and OY'. \ |
Represent A and B symbolically as B } }
line segments on OX and OY, re- L \ \
spectively. Then the rectangle PQRS B pt ********* j§ -
(see diagram) represents A x B. Of o) h A g
course, this representation is symbolic X

only since the sets A and B need not FIGURE 6

actually be line segments, and A x B need not actually be a rectangle in the
zy-plane. This is similar to Venn diagrams, where sets are symbolically repre-
sented by discs or other areas.

Problems in the Theory of Relations

1. For each of the following relations R, find its domain Dp, its range D',
and the inverse relation R~!. Specify some values (if any) of x and y
such that xRy is true, and some for which it is false; similarly for xR~ 1y.

A 11237 } 37 1 —15 2
(1)3_(3 L 44 0)v (11)3—(1 8 2 —20 9)

)

-1 0 . 35 7 9 11 2
(m)R:(l 1>§ (W)R:(Q 401 1 5)?
1234567 .
(V)R:<1 111 1 1 1)3 (vi) R =0.
1’. In Problem 1(i)—(vi), find R[A] and R™![A], given that
wa={3} () A= {1};
c) A= {7} (d) A={0};
A=0; (f) A = {0, 3, —15};

(h) A={3,8,2,4,5};
(i) A = FE' (= the entire real axis); (j) A= {r € E'| -20 <z < 5}.
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2. Describe the following sets in the zy-plane:

(vii

(v

(W) {(z,9) [z <y} zy) | o® +y® <1}

i) {(z,y)
(i) {(z,y) | max(|z[, [y]) < 1}; ( v) L, y) | ol + |yl < 4}
) {(@,y) | (@ =2+ (y+5)?2>9) (i) {(z,y) [ y* > 2}
) {(z,y) | 2® +y <1} (viii) {(z,y) | 2* — 22y +y* < O}
x) {(

(i

z,y) | 2 — 22y +y* = 0}.

Treating each of these sets as a relation R, answer the same questions
as in Problem 1. Then find R[A] and R™![A] as in Problem 1'.

. Prove the following: If A C B, then R[A] C R[B]. Disprove the converse

by giving an example in which R[A] C R[B] but A ¢ B.

. Prove the following:

(i) R[AU B] = R[A]U R[B];

(ii) R[AN B] C R[A] N R[B];

(iii) R[A — B] 2 R[A] — R[B].
Generalize formulas (i) and (ii) by proving them with A, B replaced by
an arbitrary family of sets {A;} (¢ € I). Disprove the reverse inclusions
in (ii) and (iii) by counterexamples (thus showing that equality may
fail). Also, try to prove them and explain where and why the proof
fails.

. State and prove necessary and sufficient conditions for the following;:

(i) Rlz] = 0; (i) R '[x] =0; (iii) R[A] =0; (iv) R™'[A] = 0.

. In what case does R[z] C A imply z € R~1[A]? Give a proof.

7. Which of the relations specified in Problems 1 and 2 are transitive,

reflexive, symmetric, or trichotomic on A if

() A= DrUDR? (i) A={1}? (i) A =07

. In Problem 1, add (as few as possible) new pairs to each of the relations

R, so as to make them reflexive, symmetric, and transitive.
achieve the same results by dropping some pairs.

Try to

. Solve (as far as possible) Problem 8 for t¢richotomy.

.Is R71

10.

reflexive, symmetric, transitive, or trichotomic on a set A if R
is? (Give a proof or a counterexample.) Consider the general case and
the case A= DgU D,
Let R be a relation with Dgr = Dy = A. Show that

(i) R is symmetric on A iff R= R},
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(if) R is reflexive on A iff R D 14, where I4 = {(z,z) | x € A} is the
identity relation on A;

(iii) R is trichotomic on A if RN R~1
RUR™'U Ia.

=0 =RNIyand Ax A C

11. Let R be a transitive relation on A # @ with Dp = D}, = A, and let
S ={(z,y) € R| (y,x) ¢ R}. Prove that S is transitive and show by
example that it may or may not be trichotomic.

*12. Show by examples that a relation R may have any two of the properties

“reflexive” | “symmetric”, and “transitive” on a set A, without possessing
the third one (i.e., the three properties are independent of each other).

13. Which of the properties “reflexive”, “symmetric”, “transitive”, and “tri-
chotomic” (on A = DrU D) does the relation R possess if z Ry means
(i) x is a brother of y;
(ii) z is an ancestor of y;

(iii) @ is the father of y;

)
)
(iv)
) @
i)

z and y are integers, such that z divides y;

(v

and y are concentric disks in a plane such that x C y;
(v

14. Treat A X B as a relation. What are its inverse, domain, and range?
What if A = () or B = (0?7 How many elements (ordered pairs) does
A X B contain if A has m elements and B has n elements (both finite)?
How many subsets?®

r € Aandy € A

15. Prove the following identities, and illustrate by diagrams. (In each case
show that a pair (z,y) is in one set iff it is in the other.)

(i) (AUB)x C=(AxC)U(BxC);
(ii) (AnB)x (CND)=(AxC)N (B x D);
) (X xY)— (X' xY)=[(XNX)x (Y -YHU[(X-X')xY].
16. Prove the following:
(i) AxB)N([CxD)=pif ANC=0or BND =10
(i) A x B = C x D iff each product has () as one of the factors or
A=C and B = D;

51In this and the following problems, we shall be satisfied with the intuitive notion of a
finite set and the number of its elements. A precise definition of a finite set will be given in
§8.
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(iii) If Ax B = (A" x B") U (A” x B"), with all three products not
void, then we have A = A’UA"”, B= B'UB”, and at least one of
AN=A"B =B" AxB CA' xB" or A x B'CA'x B

(iv) fA#0#Band (Ax B)U(Bx A)=CxC,then A=B=C.

(v) If A has at least two elements p and ¢, then (Ax {p})U({q} x A) #
Ax A.

17. Prove the following:
(i) (UAi) x B =U(Ai x B);
(i) (MNAi) x B =(4i x B);
(i) (U; 4i) < (U; Bj) = U, ;(Ai x By);
(iv) Mi(Ai x Bi) = () 4:) x (N Bi);
(v) M;(Ai x Bi x Ci) = (M; Ai) < (N); Bi) x (N; Ci)-

*18. We say that a family M of sets is closed under intersections iff M
contains the intersection of any two of its members, i.e., iff

VX, YeM) XNYeM.

Let M; and M3 be two such set families, and let P be the family of all
cross products X x Y, with X € M, Y € My. Show that P is likewise
closed under intersections.

[Hint: Use Problem 15(ii).]

*19. In Problem 18 assume that the families M; and My also have the
following property: The difference X — Y of any two sets X, Y € M,
can always be represented as a union of finitely many disjoint members
of M; (i =1, 2). Show that, then, the family P also has this property.
[Hint: First, verify the following identity (see Problem 15 (iii)):

(XxY)— (X' xY)=[(X - X) x Y]U[(X NX') x (Y —Y")].

Note that the union on the right side is disjoint. (Why?) Now, if X, X’ € M; and
Y,Y’ € Ma, then X — X’ and Y — Y’ can be represented as finite disjoint unions,
say X — X' =%, Xi, Y =Y = Up_, Ye, with X; € My, Y3, € Mz, and the
required decomposition of (X x Y) — (X’ x Y’) is obtained by Problem 17 (iii).]

§5. Mappings

We shall now consider an especially important class of relations, called map-
pings or functions. The mapping concept is a generalization of that of a func-
tion as usually given in calculus.
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Definition 1.

A relation R is a mapping, a map, or a function iff the image R[x] for
every element z € Dp consists of a single element (in other words, every
element x € Dy has a unique relative under R). This unique element is
denoted by R(z) and is called the function value at x. (Thus R(z) is the
unique element of R[z].)! Equivalently, R is a mapping iff no two pairs
belonging to R have the same first coordinate. (Explain!)

If, in addition, different elements of Dg have different images, R is
called a one-to-one-mapping or a one-to-one correspondence. In this case,

x # y implies R(z) # R(y),
provided that z, y € Dg. Equivalently,
R(z) = R(y) implies x = y for z, y € Dp.

Mappings will usually be denoted by the letters f, g, h, F, ¢, 1, etc.

A mapping f is said to be “from A to B” if Dy = A and D} C B. In
this case we write f: A — B. If, in particular, Dy = A and D’ = B, we
say that f is a mapping of A onto B and write f: A = B. If f is both

onto and one-to-one, we write f: A Rxdt B. We shall also use expressions

like “f maps A into B” and “f maps A onto B” instead of f: A — B
and f: A - B, respectively.

Since every element # € Dy has a unique f-relative, f(z), under a mapping
f, all pairs belonging to f have the form (z, f(z)), where f(x) is the function
value at x. Therefore, in order to define a function f, it suffices to define its
domain Dy and to indicate the function value f(z) for every x € D;.2 We
shall often use such definitions.

It is customary to say that a function f is defined on a set A if A= D3

Examples.

(1) The relation R = {(z,y) | = is the wife of y} is a one-to-one map of the
set of all wives onto the set of all husbands. Under this map, every
husband is the (unique) R-relative of his wife. The inverse relation, R},
is a one-to-one map of the set of all husbands onto the set of all wives.

(2) The relation f = {(z,y) | y is the father of 2} is a mapping of the set of
all people onto the set of their fathers. It is not one-to-one since several

1 R(z) is often called the image of  under R if confusion with R[z] is irrelevant. Note
that R(z) is defined only if x € Dg, whereas R[z] is always defined. If x ¢ Dg, R[z] = 0.

2 Note, however, that it does not suffice to give a formula for f(z) only, without indicating
the domain Dy.

3In this connection, Dy is often referred to as the domain of definition of the function,
while D} is called its range of values.
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persons may have one and the same father, and thus x # 2’ does not
imply f(z) # f(z').

(3) Let g be the set of the four pairs (1,2), (2,2), (3,3), (4,8). Then g is
a mapping from D, = {1, 2, 3, 4} onto D = {2, 3, 8}, with g(1) = 2,
9(2) =2, g(3) =3, g(4) = 8. (These formulas could serve as the definition
of g.)* Tt is not one-to-one since g(1) = ¢(2), i.e., two distinct elements
of the domain have one and the same image.

(4) Let the domain of a mapping f be the set of all integers, J, with f(z) = 2z
for every integer x. By what has been said above, f is well defined. f is
one-to-one since x # y implies 2z # 2y. The domain of f is J; its range,
however, consists of even integers only. Thus f: J — J, but it is not onto
J. This example shows that a mapping may be one-to-one without being
onto.®

(5) The identity map (denoted I) is the set of all pairs of the form (z,z)
where z ranges over some given space (i.e., it is the set of all pairs with
equal left and right coordinates). It can also be defined by the formula
I(x) = x for each z; that is, the function value at z is « itself. This map
is clearly one-to-one and onto.%

If f is a mapping, its inverse, f~1, is always a certain relation (namely, the
set of all ordered pairs inverse to those contained in f). However, this relation
may fail to be a mapping. For example, let

(1 2 3 4\ 1_ (2 3 3 8
f‘<2 3 3 8>’ then  f _(1 2 3 4)'
Here f is a mapping (see Example (3)), but =1 is not, because f~1[3] = {2, 3}
consists of two elements (not of one). On the other hand, as is easily seen, the
mappings given in Examples (1), (4), and (5) yields inverse relations that are
mappings likewise. This justifies the following definition.

Definition 2.

A mapping f is said to be invertible iff its inverse, f~!, is a map itself.
In this case f~! is called the inverse map or inverse function.

Equivalently,
a mapping (function) is invertible iff it is one-to-one.

4 As we have noted, such a definition suffices provided that the domain of the function is
known.

5 Note, however, that we may also regard it as a map of J onto the smaller set E of all
even integers: f:J < E.

onto
6 We may also consider the relation {(x,z) | = € A}, denoted I4, where A is a proper
subset of the given space S. Then I4: A — S is one-to-one but not onto S (it is onto A
only). I4 is called the identity map on A.
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For, if f is one-to-one, then no distinct elements of its domain can have one
and the same function value y. But this very fact means that f~![y] cannot
consist of more than one element, i.e., that f~1 is a function.

The function value f(z) is also sometimes denoted by fxz, zf, or f,. In the
latter case (called “index notation”), the domain of f is also referred to as an
indez set, and the range of f is denoted by {f.}. It is convenient to regard z
in such symbols as a variable ranging over the domain of f (index set). Then
also the function value f(z) (respectively, fx, zf, or f,) becomes a variable
depending on z; we call it then the variable function value. If, in particular, Dy
and D} are sets of real numbers, we obtain what is called a real-valued function
of a real variable. Such functions are considered in the elementary calculus.
Our function concept is, however, much more general since we consider maps
with arbitrary domains and ranges (not necessarily sets of numbers).

Note 1. We shall strictly distinguish between the function value f(x) and
the function f itself. The latter is a set of ordered pairs while the former, f(x),
is only a single (though possibly variable) element of the range of values of
f. These two notions are very often confused in elementary calculus, e.g., in
such expressions as “the function f(z) = 2z.” What is actually meant is “the
function f defined by the formula f(z) = 22.” Another correct way of express-
ing this is by saying that “f is the function that carries (or transforms) each
x € Dy into 2x” or, briefly, that “f is the map v — 2x” or “f assigns to x the
value 2x,” etc.

Note 2. Mappings are also often referred to as transformations.

Note 3. If index notation is used, the range of function values D’f, also
written as {f,}, can be regarded as a certain set of objects {f,} that are
distinguished from each other by the various values of the variable index . We
have already encountered this notation in §2, with respect to families of sets.

As we have already mentioned, the domain and range of a function f may
be quite arbitrary sets.” In particular, we can consider functions in which
each element of the domain is itself an ordered pair, (z,y). Such mappings
are called functions of two variables. Similarly, we speak of a function of n
variables if the domain Dy of that function is a set of ordered n-tuples. To

any such n-tuple, (x1,22,...,x,), the function f assigns a unique function
value, denoted by f(x1,2,...,%,), provided that the n-tuple belongs to Dy.
Note that each n-tuple (z1,...,2,) is treated as one element of Dy and is

assigned only one function value. Usually (but not always) the domain Dy
consists of all n-tuples that can be formed from elements of a given set A; that
is, Dy = A™ (the Cartesian product of n sets, each equal to A). The range
may be any arbitrary set. The formula f: A — B is used to denote such a

7 These sets may even be empty. Then also f = () (“an empty set of ordered pairs”). Thus
0 is a mapping, with Dy = D’f =0.
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function. Similarly, we write f: (A x B) — C for a function of two variables,
with Dy = A x B and D C C, etc.

Note 4. Functions of two variables are also called (binary) operations.
When this terminology is used, we usually replace the function symbols f,
g, F, ... by special symbols +, -, U, N, etc., and write x + y, x - y, etc., in-
stead of f(z,y). The function value f(z,y) then is called the sum (product,
composite, etc.) of x and y.

Problems on Mappings

1. Which of the following relations, or their inverses, are mappings?

{(z,y) | y is the mother of z}; {(z,y) | = is the father of y};
{(z,y) | y is a child of z}; {(z,y) | = is a friend of y};

{(z,y) | y is the oldest son of z}; {(x,y) | z is the oldest cousin of y};
{(z,y) | @ real, y = 2?}; {(z,y) |y veal, = °}.

2. Are there any mappings among the relations specified in Problems 1 and
2 of §47 Which, if any, are one-to-one? Why or why not?

3. Let f: N — N, where N is the set of all positive integers (naturals).
Specify f[N] (i.e., D) and determine whether f is one-to-one and onto
given that, for all z € N,

(i) f2) =zl +2 (i) f(z) =2% (i) f(2) =4z +5;

(iv) f(z) = 2*; V) flz) =1

(vi) f(z) is the greatest common divisor of = and 15.

4. Do Problem 3 assuming that N is the set of all integers. Do cases (i)—(v)
also with N = set of all real numbers.

5. In Problems 3 and 4, find (in all cases) f~1[A] and f[A] given that
(a) A={x € N |z >0}; (b) A={zeN|-1<z<0};
(c)A={zreN|-1<z<A4}

6. Prove that, for any mapping f, any set 4, and any x, we have z € f~![A]

iff x € Dy and f(z) € A.
7. Using the result of Problem 6, prove for any mapping f that
(i) fTHAUB] = fHAJU fHB);
(i) 71 AN Bl = fHAIN fHB;
(iii) f'[A - B] = f[A] - f1[B].
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10.

11.

12.

*13.

*14.

Compare this with Problem 4 of §4. In what case do these formulas hold
with “f~17 replaced by “f”? In what case are they true for both f and

£

. Generalize formulas (i) and (ii) of Problem 7 by proving them with A,

B replaced by an arbitrary family of sets, {A;}; i.e., prove that

(i) f*I{UAi} =Js Al G f*l[ﬂAi] = f"A

. If f is a mapping, show that f[f~1[A4]] C A and that if A C D’f7 then

fIf~'[A]] = A. In what case do we have f~[f[4]] = A? Give a proof.

Which (if any) of the relations C and D holds between the sets f[A]N B
and f[AN f~1[B]]? Give a proof.

The characteristic function C'4 of a set A in a space S is defined on S
by setting Cy(z) =1if v € A, and Ca(z) =0if z ¢ A. Given A C S,
B C S, prove the following:
(i) If A C B, then Cp_a(x) = Cp(x) — Ca(x) for x € S. (Briefly:
Cp_a=Cp—0Cy.)

(ii) With a similar notation, we have Cynp = C4-Cp, and if ANB =),
then Caup = Ca + Cp.

(iii) Caup = max(Ca,Cp), the larger of C4 and Cp.
(iv) Ca+Cp =Caug + Cang.

(v) AC Biff C4 < Cp.

(vi) A= B iff C4 = Cp.

Use Problem 11(vi) to give another proof of the set identities specified
in the following problems of §2: 1, 2, 3, 8, 9, 14, 15.

[Hint: Use the results of Problem 11 to show that the characteristic functions of the
left and right sides of the required identities coincide.]

An ordered triple (x,y, z) can be defined as an ordered pair ((z,y), 2) in
which the first coordinate is itself an ordered pair, (x,y). Accordingly,
every function f of two variables is a set of ordered triples ((x,y), z) in
which the pairs (x,y) form the domain Dy of f; and, for each such pair,
z = f(x,y), so that z is uniquely determined by (z,y). Is every set T of
ordered triples a function of two variables? If not, what condition must
T satisfy? Give a proof.

[Hint: T must not contain two different triples (z,v, z) and (z’,vy’,2’) with z = 2’
and y = y'.]

Using Problem 13, investigate which of the following sets of ordered
triples are functions of two variables. If they are, specify the function
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value f(z,y), as well as Dy and D}. (Below, z, y, and z denote real
numbers.)

0) f=Ay.2) lz<y<zh () f={(z,9,2) |2 <y==z}
(ili) f={(z,y,2) [z =y+2}; (iv) f={(z,y,2) |z ==y}
(V) f= {(:c,y, Z) | z= 1}; (Vi) f= {(Ia% Z) | z? +y2 = Zz}‘

15. Let N be the set of all positive integers. Define a function of two vari-
ables f: (N x N) — N by setting, for z, y € N,

Fley) = @ty —1) (@ +y)+ (- ).

Verify whether this function is one-to-one and onto N.

*§6. Composition of Relations and Mappings!

A relation R can be treated as a mechanism that transforms any given set A
into its image R[A]. If S is another relation, we can apply it to the set R[A]
to obtain its image under S, i.e., S[R[A]]. Given a third relation 7', we can
apply it to the set S[R[A]] to obtain its image, T'[S[R[A]]], and so on. This
process of successively applying several relations leads to the important notion
of composition of relations. Before defining this notion, it is useful to prove the
following lemma.

Lemma. Two relations R and S are equal iff R[z] = S[z] for every element
.

Proof. Recall that R and S are equal iff they consist of exactly the same
ordered pairs, that is, iff (z,y) € R < (x,y) € S, for all z, y. But, as was
shown in §4, this can also be written as

y € Rlz] < y € S[z] for all  and y.

Fixing x, we see from this that, whenever some element y belongs to the set
RJx], it also belongs to S[z], and vice versa. In other words, the two sets R[x]
and S[z] consist of the same elements. Thus we have

R[z] = S[z] for every z,

as required. The converse is obtained by reversing the steps of the proof. Thus
the lemma is proved. [

L This and other “starred” sections may be omitted in the first reading of Chapter 1.
Indeed, the beginner is advised to postpone them, pending further directives.
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This lemma shows that a relation R is uniquely determined if the sets R[z]
are given for all z. (Indeed, if any relation has the same image sets, it must
coincide with R, by the lemma.) Therefore, a relation can be defined by indi-
cating the sets R[] for all z.2 We shall now apply this method to define the
notion of the composite relation.

Definition.

By the composite of two relations R and S, denoted RoS or RS, we mean
the relation with images defined by

(Ro S)[z] = R[S[z]] for every z. (1)

In other words, the image of any element x under the composite relation
Ro S is obtained by first taking its image under S, i.e., S[z], and then taking
the image of the set S[z] under R. Thus all images under Ro.S are well defined;
hence so is Ro S. Note that formula (1) defines implicitly also the domain of
R o S; it consists of those x whose images under R o S are nonvoid.

1 2 3 2 3
n=(y54) s=(1 %)

Then RS consists of the pair (2,2) alone, while SR consists of (1,1) and
(2,5). This example shows that RS # SR; that is, the composition of
relations is, in general, not commutative (even when they are mappings,
as in this example). It is, however, associative, as is shown next.

Example.
Let

Theorem 1. For any relations R, S, T, we have (RS)T = R(ST).

Proof. By the lemma, it suffices to show that ((RS)T)[z] = (R(ST))]x], for
every z. But, by definition (see formula (1) above), we obtain

((RS)T) [x] = (RS) [T[a]] = R[S [T[]]] .
Similarly, (R(ST))[z] = R[S[T[z]]]. Thus the images coincide, as required,
and all is proved. [
Theorem 2. For any relations R and S, we have (RS)™! = S~1R™1L.
The proof is left as an exercise (see Problem 4 below).
Theorem 3. If R and S are functions, so also is RS. In particular, if R and

S are one-to-one mappings, so is RS.

2 This is analogous to defining a function R by indicating R(x) for all x € Dg. In the
present case, however, it is unnecessary to specify D because R[z], unlike R(z), is defined
for all x.
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Proof. Formula (1) above shows that (RS)[z] contains at most one element
if R[S[x]] does, and this is clearly the case when S and R are mappings. The
second clause likewise follows easily from Theorem 2. O

Problems on the Composition of Relations

1. Find (RS)T, R(ST), (RT)S, and R(T'S) by actual computation, if

1123 1225 4356 7
R*(3244)’ S*<2213>’ T*(12345)'

Comment on associativity and commutativity in these examples.

. For any relation R and any positive integer n, define R® = RoRo---oR

(n times). Using the relations R, S, T of Problem 1, find the following:
(i) R®o (R™Y)% (i) R?o(S™H)2oT; (iii) T2S?R~1.
Also, setting R~" = (R™!)", find the following:
(iv) R728%771; (v) ST3TR™2

3. Prove that Ro S = {(z,y) | (32) 25z, zRy} = {(z,y) | y € R[S[z]]}.
4. Using the result of Problem 3, show that (RS)™! = S~1o R71. State

and prove a similar formula for three relations and for n relations. Verify
it also, by actual computation, for the three relations of Problem 1.

. Which of the properties “reflexive”, “symmetric”, “transitive”, and “tri-

chotomic” does the relation R possess if Ro R C R? Give a proof and
compare with Problem 10 of §4.

. Show that, for any relations R and S, Drg C Dg and Diyg C DY;. If,

further, D C Dg, then Dpg = Dg. (Use Problem 3.)

. Show that, for every mapping f: A — B, we have fo f~! = I'g, where
onto

I = {(y,y) | y € B} (= identity map on B); if, instead, f: A — B is
one-to-one, we have f 1o f = I4 = {(z,7) | z € A} (= identity map on
A). Show by counterexamples that the second formula may fail if f is
not one-to-one, and the first may fail if f is not onto B.

. Let T be the family of all one-to-one maps of a set A onto itself. Prove

the following:
(i) f f,g €T, then fogeT.
(i) If f € T, then f7L € T,and fof !t =flof=1I4 (= identity
map on A).
(iii) If f € T, then folq =1I4x0 f = f. Note: By Theorem 1, we also
have (fog)oh= fo(goh) for all f, g, h € T. (A reader familiar
with group theory will infer from all this that 7T is a group.)
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9.

10.

11.

12.

13.

Define a map of the zy-plane into itself by

f(z,y) =(x-cosf —y-sinf,x -sinf +y-cosh) (rotation).
Show that f is one-to-one and onto, and give a similar formula for

the mapping f~' o go f, where (i) g(z,y) = (z + 1,y), (i) g(z,y) =
(x4 1,y +1). Interpret geometrically.

Prove that a mapping f: A — B is one-to-one iff there is a map g: B —
A with go f = 14.

[Hint: If f is one-to-one, fix some a € A. Then define g(y) = f~1(y) ify € D}, and
g(y) =aify & D]

Prove that a mapping f: A — B is onto B if there is a map h: B — A
such that foh = Ip (= identity map on B). Combining this with
Problem 10, infer that f is one-to-one and onto if there are two maps g,
h: B— Asuch that go f =14 and foh = Ig.

[Hint: If f o h = Ip, choose any b € B and find some = € A such that f(z) =b. (It
suffices, e.g., to take © = h(b). Why?)]

Prove the following:

(i) f: A — B is one-to-one iff fog = foh implies g = h for all maps
g, h: B— A.

(ii) If A has at least two elements, then f: A — Bisonto Biff go f =
ho f implies g = h for all maps g, h: B — A.
[Hint for part (ii): If f is not onto B, fix some zg,z1 € A (zo # z1) and define two
maps g, h: B — A, setting: (Vy € B) g(y) = wo; and h(y) = zo = g(y) if y € DY,
while h(y) = z1 ify ¢ D’f. Verify that go f = ho f, though g # h. Thus go f = ho f
does not imply g = h if f is not onto.]

An equilateral triangle ABC' (see Fig-
ure 7) is carried into itself by these rigid
motions: clockwise rotations about its
center through 0°, 120°, and 240° (call
them rg, r1, re) and reflections in its
altitudes AA’, BB’', CC' (call these
reflections hg, hy, he, respectively).
Treat these motions as mappings of the
triangle onto itself, and set up for them B
a composition table (i.e., compute their
mutual composites). Thus verify that
the composite of any two of them is such a map itself; e.g., r1ry = 19
(= the identity map); 71hq = he; hor1 = hp, ete. (Note that hery is the
result of carrying out first the rotation r; and then the reflection hy.)
The maps rg, 1, 72, hq, hp, he are called the symmetries of the triangle.

FIGURE 7
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14. Set up and solve problems similar to 13 for
(i) the symmetries of the square (4 rotations and 4 reflections);
(ii) the symmetries of the rectangle (2 rotations and 2 reflections);

(iii) the symmetries of the regular pentagon (5 rotations and 5 reflec-
tions).

*87. Equivalence Relations

In mathematics, as in everyday life, it is often convenient not to distinguish
between certain objects that, however different, serve the same purpose and
thus may be “identified” (i.e., regarded as the same) as far as this purpose is
concerned. For example, different coins and bills of the same value may be
regarded as equivalent in all money transactions. Parallel lines may be treated
as the same in all angle measurements. Congruent figures may be “identified”
in geometry. In all such cases some relation (like parallelism or congruence)
plays the same role as equality. Such relations, called equivalence relations,
resemble equality in that they are reflexive, symmetric and transitive. Usually
they also have, to a certain degree, the so-called substitution property; that is,
within certain limits, equivalent objects may be substituted for each other. We
now give precise definitions.

Definition 1.

A binary relation F is called an equivalence relation on a set A if F is
reflexive, symmetric, and transitive on A and moreover its domain Dg
and its range D/, coincide with A.!

Equivalence relations are usually denoted by special symbols resembling
equality, such as =, =, ~, etc. The formula (z,y) € E or zEy, where E
is such a symbol, is read “x is equivalent to y,” “r is congruent with y,”
etc. Sometimes the phrase “modulo E” is added. Thus we write z = y, or
x =y (mod E), for xFy. If such a formula is true, we say that x and y are
FE-equivalent, or equivalent modulo E, or, briefly, equivalent.

Definition 2.
An equivalence relation F is said to have the substitution property with
respect to another relation R if xRy implies 2’ Ry’ whenever x = '

(mod E)andy =y’ (mod E). In this case we also say that E is consistent
with R. In other words, consistency means that the formula xRy does not

I Note that the domain Dg of E must coincide with its range DY, due to symmetry.
Explain!
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alter its validity or nonvalidity if x and y are replaced by some equivalent
elements, ¥’ =z, and ¢y = v.

Similarly, we say that E is consistent with an operation o in a set A,
or that E has the substitution property with respect to o, if zoy =2’ o9/
whenever z, 2/, y, vy € A, 2’ =z, and ¥ = y (all mod E).

The equality relation (i.e., the identity map on a set A) is itself an equivalence
relation since it is reflexive, symmetric, and transitive. It has the (unlimited)
substitution property since we have defined it as logical identity. Other exam-
ples (such as parallelism of lines, or congruence of figures) have been mentioned
above; see also the problems below.

Definition 3.

If E is an equivalence relation on A, and if p € Dg, we define the E-class,
or equivalence class modulo E, generated by p in A to be the set of all
those elements of A that are F-equivalent to p. Thus it is the set

{y € A|pEy} = E[p] (= image of p under E).

If confusion is ruled out, we denote it simply by [p] and call it the E-class
of p (in A); pis called a generator or representative of [p].2 The family of
all FE-classes, generated in A by different elements, is called the quotient
set of A by E, denoted A/E. Note: By definition, = € [p] iff =z =p.
Examples.
(a) If E = I, (the identity map on A), then E[z] = [p] = {p} for each p € A.
Thus here each E-class consists of a single element (its generator).

(b) Under the parallelism relation between straight lines, an equivalence class
consists of all lines parallel to a given line in space.

(¢) Under congruence, an equivalence class consists of all figures congruent
to a given figure.
Theorem 1. If E is an equivalence relation on a set A, then we have the
following:
(i) Every element p € A is in some E-class; specifically, p € [p] C A.

(ii) Two elements p, ¢ € A are E-equivalent iff they are in one and the same
equivalence class, i.e., iff [p] = [q]-

(iii) Any two E-classes in Q are either identical or disjoint.
(iv) The set A is the (disjoint) union of all E-classes.

2 As we shall see (Theorem 1(ii) below), any other element ¢ = p is likewise a generator
of [p] because the E-classes generated by p and q coincide if ¢ = p (i.e., ¢ € [p]).
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Proof. (i) By definition, = € [p] iff x = p. Now, if p € A, reflexivity of E
yields p = p, whence p € [p] C A, as asserted.

(ii) If p = g, then, by symmetry and transitivity, (Vx € A) p=z iff ¢ = x.
This means that « € [p] iff x € [¢], i.e., [p] = [¢g]. Conversely, if [p] = [q¢], then
part (i) yields g € [¢] = [p], i.e., ¢ € [p], when p = ¢, by the definition of [p].

(iii) Suppose [p]N[q] # 0, i.e., (3z) x € [p] N [g]. Then z € [p] and z € [¢],
ie., x = p = ¢, whence, by (ii), [p] = [¢]. Thus [p] and [¢] cannot have a
common element unless [p] = [q].

(iv) is a direct consequence of (i) and (iii). Thus all is proved. O

Part (iv) of this theorem shows that every equivalence relation E on A
defines a partition of A into E-classes. The converse is likewise true, as we
show next.

Theorem 2. FEvery partition of a set A into disjoint sets A; (i € I) uniquely
determines an equivalence relation E on A, such that the sets A; are exactly
the E-classes in A.

Proof. Given A = [JA4; (disj.),® define E as the set of all pairs (z,y) such
that x and y belong to one and the same A;. The relation F is easily shown
to be reflexive, symmetric and transitive on A, with Dy = D; = A, so that £
is an equivalence relation in A (we leave the details to the reader). Moreover,
the E-classes clearly coincide with the sets A;. Thus E has all the required
properties.

Next, let £’ be another equivalence relation on A, with the same properties,
and take any p € A. Then, by assumption, E[p] = A;, where A; is the partition
set that contains p; also, E'[p] = A; for the same i. It follows that (Vp)
E[p] = E'[p], and this implies that £ = E’ (by the lemma of §6). Thus any
two such E and E’ must coincide, i.e., F is unique. [

We see that there is a close connection between all equivalence relations on
A and all partitions of A: Every equivalence relation defines (or, as we shall say,
induces) a partition, and vice versa. Note that the quotient set A/FE is exactly
the family of the disjoint sets A; whose union equals A, i.e., the family of the
disjoint equivalence classes, under the equivalence relation E that corresponds
to a given partition.

Now we can give a more exact mathematical interpretation to the procedure
of “identifying” equivalent elements (see introductory remarks to this section).
This procedure applies whenever an equivalence relation E' is consistent with
some operation or relation R, so that the substitution property holds with
respect to R. Then, as far as R is concerned, equivalent elements behave as
if they were identical, so that they may be treated as “copies” of one element.

3 We use this notation to indicate that A is the union of disjoint sets A;(i € I).
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We achieve actual identity if we replace each element p of the set A by the
equivalence class [p] generated by p. Indeed, then, all E-equivalent elements
are replaced by one and the same equivalence class and thus become one thing.
Thus, from the mathematical point of view, the “identification” of equivalent
elements amounts to replacing the set A by the quotient set A/E. In what
follows, we shall often speak of “identifying” certain objects. The reader should,
however, be aware of the fact that what is meant is actually the procedure
outlined here, i.e., the replacement of A by the quotient set A/FE.

Problems on Equivalence Relations

1. Prove in detail that the relation E defined in the proof of Theorem 2 is
reflexive, symmetric, and transitive on A and that D = D = A.
2. Which of the following relations on the set J of all integers are equiva-
lence relations? If so, describe the E-classes, i.e., J/FE.
(i) E={(z,y) |z, y € J; and z — y is divisible by a fixed n € J};
(if) E={(z,y) |2,y € J; x —yis odd};
iii) E={(z,y) |z, y € J; and z — y is a prime}.
3. Are the equivalence relations of Problem 2 consistent with the addition,
multiplication, and inequality relation (<) defined in J?
Problems 4-10 are of theoretical importance for the construction of the rational
number system from natural numbers (including 0), i.e., nonnegative integers.
4. Let N be the set of all integers > 0, so that N x N is the set of all
ordered pairs of nonnegative integers. Assuming the arithmetic of such
integers to be known, let (z,y)E(p, q¢) mean that x + ¢ = y + p, and let
(z,y) < (p,q) mean that x + g < y + p, where z, y, p, ¢ € N. Without
ever using subtraction or minus signs, show that F is an equivalence
relation on N x N, consistent with <. (Write = for E.) Also show that
the relation < is transitive and “quasi-trichotomic”; i.e., we have either

(#,y) < (p,q) or (p,q) < (z,y) or (z,9) = (p, q),
but never two of these together.

5. Continuing Problem 4, define addition and multiplication in N x N,
setting
(z.9) +(p.a) = (@ +py+q)
and
(z,9) - (p,q) = (xp + yq, yp + zq).
Show that F is consistent with these operations. Also verify the follow-
ing laws:
(i) If (z,y) and (p, q) belong to N x N, so do their sum and product.
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(i) (z,9) + (p.a) = (P, @) + (=,9); (x,9) - (p,0) = () - (z,9).
(iii) {(ar:l7 y)l—i- P, @)} +(r,s) = (x,y) +{(p,q) + (r,s)}, and similarly for
multiplication:

{(‘T7 y) ’ (p7 q)} ’ (T7 S) = (;v,y) ' {(p7 Q) : (T’ 5)}

z,y) +(0,0) = (z,9); (z,y) - (1,0) = (z,9)-

(iv) (

(v) (z,9) + (y,2) = (0,0). (Hence we may write —
) (
)

(z,y) for (y,x).)
T, y) : {(p> q) + (r7 5)} = (‘T7 y) ’ (p7 q) + (Iay) ' (r7 5)

(vii) If (p,q) < (r,s) then (p,q) + (z,y) < (r,s) + (x,y). Similarly for
multiplication, provided, however, that (0,0) < (z,y).

(vi

Observe that (z,y) < (0,0) iff z < y (verify!); we call the pair (z,y)
“negative” in this case. Show that (z,y) < (0,0) iff —(z,y) > (0,0).

6. The laws proved in Problems 4 and 5 show that ordered pairs (z,y) in

N x N, with inequalities and operations defined as above, “behave” like
integers (positive, negative and 0) except that equality “=" is replaced
by “=”. To avoid the latter we pass to equivalence classes. Let [z,y]
denote the E-class of the pair (z,y). Define addition and multiplication
of such FE-classes by

[z,9] + [p,qdl = [z +p,y+4ql, [,y [pq = [xp+yq,yp + zq].

Using the consistency of E (proved in Problem 5), show that these
definitions are nonambiguous; i.e., the sum and product remain the same
also when z, y, p, q are replaced by some 2/, ¢/, p/, ¢’ such that (z,y) =
(z',y) and (p,q) = (p',¢'). Then show that the laws (ii)—(vi) are valid

for E-classes of the pairs involved, with all equivalence signs “=" turning
into “=".

7. Continuing Problems 4-6, define [z,y] < [p, ¢] to mean that (z,y) <

(p,q), as in Problem 4. Show that this is unambiguous, i.e., the inequal-
ity holds also if (z,y) or (p,q) is replaced by an equivalent pair. Verify
that Problem 5(vii), as well as the transitivity and “trichotomy” laws
of Problem 4, hold for E-classes, with “=” replaced by “=". (We now
define “integers” to be the equivalence classes [z, y].)

8. Let J be the set of all integers (positive or not), and let @ be the set of

all ordered pairs (z,y) € J x J, with y > 0. Assuming the arithmetic
of integers to be known, let (z,y)E(p,q) mean that zq = yp, and let
(z,y) < (p,q) mean that xq < yp, for (z,y) and (p,q) in Q. Without
using division or fraction signs, answer the questions of Problem 4, with
N x N replaced by Q. (Subtraction and minus signs are now permitted.)
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9.

10.

11.

In Problem 8, show that E is consistent with addition and multiplication
defined in @ as follows:
(z,y) + (p,q) = (zq +yp, qy) and (z,y) - (p,q) = (zp, yq)-

For such sums and products, establish the laws of Problem 5, with (iv)
and (v) replaced by

) (z,9) +(0,1) = (,9) = (z,y) - (1, 1);
() (2, y) + (—2,y) = (0,1);
(v") if 2 > 0, then (z,y) - (y,z) = (1,1); and
(V") if x <0, then (z,y) - (—y, —z) = (1,1).

(iv/

Observe that pairs (z,y) € @ behave like fractions z/y in ordinary
arithmetic (with “=” replaced by “=” here).

Continuing Problems 8 and 9, let [z,y] denote the E-class of the pair
(z,y) € @, with E as in Problem 8. For such E-classes, define in-
equalities, addition and multiplication as for pairs in Problems 8 and 9,
replacing (z,y) by [z, y]. Verify that these definitions are unambiguous,
i.e., independent of the particular choice of the “representative pairs”
(z,y) and (p,q) from the E-classes [z,y] and [p,q] (use the consistency
properties of E). Verify that all laws proved in Problems 8 and 9 hold
also for E-classes (with “=” now turning into “=").

Note. Problems 4-10 show how, starting with nonnegative integers,
one can construct first a system N X N and then a system @ that (on
passage to suitable equivalence classes) behave exactly like integers and
rational numbers, respectively. This is how integers and rationals are
constructed from nonnegative integers, in precise mathematics.

A reader acquainted with group theory will verify that, if A is a group,
and B its subgroup, then each of the following relations is an equivalence
relation on A (we use multiplicative notation):

(i) E={(z,y) |z, yc A, a7y € B};
(i) E={(z,y) |z,y€ A, yz~t € B}.

Also show that if the group operation is commutative (i.e., zy = yz)
then in both cases F is consistent with that operation.

88. Sequences

One of the basic notions of analysis is that of a sequence (infinite or finite).

It is closely connected with the theory of mappings and sets. Therefore we



38 Chapter 1. Some Set Theoretical Notions

consider it here, even though it involves the notion of integers, to be formally
introduced in Chapter 2, along with real numbers.

Definition 1.

By an infinite sequence we mean a mapping (call it u) whose domain
D,, consists of all positive integers 1, 2, 3, ... (it may also contain 0).
A finite sequence is a mapping v in which D, consists of positive (or
nonnegative) integers less than some fixed integer p. The range D), may
consist of arbitrary objects (numbers, points, lines, sets, books, etc.).

Note 1. In a wider sense, one may speak of “sequences” in which D, also
contains some negative integers, or excludes some positive integers. We shall
not need this more general notion.

Note that a sequence, being a mapping, is a set of ordered pairs. For exam-

ple,
1 2 3 ... n ...
““(2 4.6 ... 2n .”) )
is an infinite sequence, with D, = {1, 2, 3, ... }; its range D!, consists of the
function’s values

Instead of u(n), we usually write u,, (“index notation”), and call u,, the n-th
term of the sequence. If n is treated as a variable, u,, is called the general term
of u, and {u,} is used to denote the entire sequence, as well as its range D).
The formula {u,} C B means that D) is contained in a set B; we then call
u a sequence of elements of B, or a sequence from B, or in B. To uniquely
determine a sequence u, it suffices to define its general term (by some formula
or rule) for every n € D,. In Example (1) above, u, = 2n.

Since the domain of a sequence is known to consist of integers, we often
omit it and give only the range D), specifying the terms u,, in the order of
their indices n. Thus, instead of (1), we briefly write 2, 4, 6, ..., 2n, ... or,
more generally, w1, ua, ..., Uy, ..., along with the still shorter notation {u,,}.
Nevertheless, whatever the notation, the sequence u (a set of ordered pairs)
should not be confused with D], (the set of single terms u,).

A sequence need not be a one-to-one mapping; it may have equal (“re-
peating”) terms: u,, = u, (m # n). For instance, in the infinite sequence
1,1,...,1, ..., with general term u, = 1, all terms are equal to 1, so that
its range D), has only one element, D] = {1}. Nevertheless, by Definition 1,
the sequence itself is infinite. This becomes apparent if we write it out in full

notation:
123 ... n ...
“= (1 11 .01 ...)' @)
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Indeed, it is now clear that D,, contains all positive integers 1, 2, 3, ..., and u
itself contains infinitely many pairs (n,1),n =1, 2, ..., even though D/, = {1}.

Sequences in which all terms are equal are referred to as constant or stationary.

In sequences (1) and (2) we were able to define the general term by means
of a formula: u, = 2n or u,, = 1. This is not always possible. For example,
nobody has yet succeeded in finding a formula expressing the general term of
the sequence

1,2,3,5,7, 11, 13, 17, 19, 23, 29, 31, 37, 41, ... (3)

of so-called prime numbers (i.e., integers with no positive divisors except 1 and
themselves).! Nevertheless, this sequence is well defined since its terms can be
obtained step by step: start with all positive integers, 1, 2, 3, ... ; then remove
from them all multiples of 2 except 2 itself; from the remaining set remove all
multiples of 3 except 3 itself, etc., ad infinitum. After the first step, we are left
with

1,2, 3,5,7,9,11, 13, 15, 17, 19, 21, .. .;

after the second step, we obtain
1,2,3,5, 7,11, 13, 17, 19, 23, 25, ...,

and so on, gradually obtaining (3).

Other cases of such “step-by-step” definitions (also called algorithmic or
inductive definitions) will occur in the later work. In general, a sequence is
regarded as well defined if some formula (or formulas) or rule has been given
that makes it possible to find all terms of the sequence, either directly or
by some “step-by-step” or other procedure. One should carefully avoid the
misconception that, if several terms in a sequence conform to some law or
formula, then the same law applies to all the other terms. For instance, if only
the first three terms of (3) were given, it would be wrong to conclude that the
sequence is necessarily 1, 2, 3,4, 5, ..., n, ..., with general term u,, = n. Thus
an infinite set can never be defined by giving a finite number of terms only;
in this case one can only make a “plausible” guess as to the intended general
term. Moreover, one may well think of sequences in which the terms have been
chosen “at random,” without any particular law. Such a “law” may, but need
not, exist.

As noted above, the terms of a sequence need not be numbers; they may
be arbitrary objects. In particular, we shall often consider sequences of sets:
A1, Aa, ..., A,, ..., where each term A, is a set (treated as one thing). The
following definitions will be useful in the later work.

1 For our purposes it is convenient to include 1 in this sequence, though usually 1 is not
regarded as a prime number.
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Definition 2.

A sequence of sets {A,}, n =1, 2, ..., is said to be ezpanding iff each
term A, is a subset of the next term A, 4, i.e.,

AngAn+1a TL:].,Q,...

(except if A, is the last term in a finite sequence).
The sequence {A,} is contracting iff

A7L2An+1a TL:].,Q,...

(with the same remark). In both cases, {A,} is called a monotonic, or
monotone, set sequence.

This definition imitates a similar definition for number sequences:
Definition 3.

A sequence of real numbers {u, }, n =1, 2, ..., is said to be monotonic or
monotone iff it is either nondecreasing (i.e., up < Upy1) Or nonincreasing
(i.e., Uy > up41) for all terms. Notation: {u,}1 and {u,}|.

If the strict inequalities, u, < npt1 (un > upy1, respectively) hold,
the sequence is said to be strictly monotonic (increasing or decreasing).

Note 2. Sometimes we say “strictly increasing” (or “strictly decreasing”)
in the latter case.

For example, the sequences (1) and (3) above are strictly increasing. Se-
quence (2) (and any constant number sequence) is monotonic, but not strictly
so; it is both nondecreasing and nonincreasing. Any sequence of concentric
discs in a plane, with increasing radii, is an expanding sequence of sets (we
treat each disc as the set of all points inside its circumference). If the radii
decrease, we obtain a contracting sequence.

By a subsequence of a sequence {u,} is meant (roughly speaking) any se-
quence obtained by dropping some terms from {u, }, without changing the order
of the remaining terms, which then form the subsequence. More precisely, to
obtain a subsequence, we must prescribe the terms that are supposed to remain
in it. This is best done by indicating the subscripts of these terms. Note that
all such subscripts necessarily form an increasing sequence of integers:

ng<nNg<ng<---<np<---.

If these subscripts are given, they uniquely determine the corresponding terms
of the subsequence:

Unyy Ung, Ung,y - - -
with general term (or k-th term)

Up,, k=1,2,....

§8. Sequences 41

The subsequence is briefly denoted by {u,, }; in special cases, also other nota-
tions are used. Thus we have the following.
Definition 4.

Let {u,} be any sequence, and let {ny} be a strictly increasing sequence
of integers from D,,. Then the sequence {uy, }, with k-th term equal to
Up,, is called the subsequence of {u,}, determined by the sequence of
subscripts {ng} C Dy, k=1,2,3,....

For example, let us select from (3) the subsequence of terms with subscripts
2,4,6,...,2, ...
(i.e., consisting of the 2nd, 4th, 6th, ..., 2k-th, ... terms of (3)). We obtain
2,5, 11, 17, 23, 31, 41, ... .

If, instead, the terms
U, U3, Usy « -y U2k—15 - - -

were selected, we would obtain the subsequence
1,3,7, 19,29, 37, ....

The first subsequence could briefly be denoted by {usr} (here ny = 2k); the
second subsequence is {ugk—1}, nk =2k —1, k=1,2, ....

Observe that, in every sequence u, the integers belonging to its domain
D, are used to “number” the terms of u, i.e., the elements of the range D.;
e.g., uy is the first term, us the second, and so on. This procedure is actually
well known from everyday life: by numbering the buildings in a street or the
books in a library, we put them in a certain order or sequence. The question
now arises: given a set A, is it always possible to “number” its elements by
integers? More precisely, is there a sequence {u,}, finite or infinite, such that
A is contained in its range:

ACD, ={uy, ug, ..., Un, ... }7

As we shall see later, this question must, in general, be answered in the negative;
the set A may be so large that even all integers are too few to number its
elements. At this stage we only formulate the following definition.

Definition 5.

A set A is said to be countable iff A is contained in the range of some
sequence (briefly: “A can be put in a sequence”).

If, in particular, this sequence can be chosen finite, we call A a finite set
(0 is finite, since @ C D!, always). Thus all finite sets are countable.

Sets that are not finite are called infinite.

Sets that are not countable are called uncountable.
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A finite set A is said to have exactly n elements iff it is the range of a
sequence of n distinct terms; i.e., the range of a one-to-one map u with domain
D, =11, 2, ..., n}. The simplest example of an infinite countable set is N =

{12 ...}

Problems on Sequences

1. Find the first six terms of the sequence of numbers with general term:

(a) un =25 (d) um = (=1)";
(¢) up =n?—1; (d) tm =-m/(m+1).
2. Find a suitable formula, or formulas, for the general term of a sequence
that starts with
(a) 2,5, 10, 17, 26, . ..; (b) 2,-2,2,-2,2, ...;
(c) 2, =2, =6, —10, —14, ...; (d) 1,1, -1, —-1,1,1, =1, =1, ...;
3240 500 611 8 61125
1747 9 7 16 7 2-373-4°4-5"5-6"6-7 """
3. Which of the sequences in Problems 1 and 2 are monotonic or constant?
Which have finite ranges (even though the sequences are infinite)?

—

4. Find the general term of the sequence obtained from {u,} by dropping
(a) the first term;
(b) the first two terms;
(c) the first p terms.
5. (Lagrange interpolation formula.) Given the first p terms a4, ..., a, of
a number sequence, let f(n, k) be the product of the p — 1 numbers
n—1,n-2...,n—(k=1),n—(k+1),...,n—p
(excluding n — k), forn=1,2,...,and k=1,2, ..., p.
Setting by = f(k, k), verify that by # 0 and that, forn=1,2, ..., p,
we have
Ap = alf(n7 1)/b1 + a2f(na 2)/62 + -+ apf(nvp)/bp' (*)

Thus (*) is a suitable formula for the general term of the sequence.
Using it, find new answers to Problem 2(a)—(d), thus showing that there
are many “plausible” answers to the questions posed.

6. Find the general term u, of the number sequence defined inductively?

2 Problems 6-8 may be postponed until induction and other properties of natural numbers
have been studied in more detail (Chapter 2, §§5-6).
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by
(i) u1 = @, Upt1 = up +d, n =1, 2, ... (arithmetic sequence; a, d
fixed);
(ii) w1 = @, Upt+1 = ung, n =1, 2, ... (geometric sequence; a, q fixed);

*8.

*9.

10.

11.

(iii) $1 =wu1, Snt1 = Sn + Uny1, With u, as in case (i); same for (ii);

(iv) u1 = a, uzg = b, Upy2 = %(unH +un),n=1,2,... (a, b fixed).
[Hint: wni2 = uz + (ua — uz) + (us — u4) + -+ + (Unt2 — Un41), Where
uz = %(a + b). Show that the bracketed terms (ug41 — uy) form a geometric
series with ratio %, and compute its sum.]

. Show that if a number sequence {u, } has no largest term, then it has a

strictly increasing infinite subsequence {uy,, }.

[Hint: Define Un,, step by step. Let un; = ui. Then let ny be the least subscript
such that up, > un, (why does such u,, exist?). Next take the least n3 such that
Ung > Uns,, and so on.]

Let {u,} be an infinite sequence of real numbers. By dropping from it
the first k& terms, we get a subsequence ug41, Uk+2, - - -y Ugtn, - - (call
it the “k-subsequence”). Show that if every k-subsequence (k = 1, 2,
3, ...) has a largest term (call it gx, for a given k), then the original
sequence {u,} has a nonincreasing subsequence formed from all such
qr-terms.

[Hint: Show that g > qx+1, k=1, 2, ..., i.e., the maximum term g cannot increase
as the number k of the dropped terms increases. Note that {u,} may have several

terms equal to gi for a given k; choose the one with the least subscript inside the
given k-subsequence.]

From Problems 7 and 8 infer that every infinite sequence of real numbers
{un} has an infinite monotonic subsequence.

[Hint: There are two possible cases:
(i) either every k-subsequence (as described in Problem 8) has a largest term, or

(ii) some k-subsequence has no largest term (then apply to it the result of Prob-
lem 7 to obtain an increasing subsequence of it and hence of {un}).]

How many finite sequences of p terms, i.e., with domain {1, 2, ..., p},
can one form, given that the range of the sequences is a fixed set of m
elements?

Let {A,} be an infinite sequence of sets. For each n, let

00 oo
Dn = ﬂ Ak7 En = U Ak:
k=n

n n
Bn = U Akn Cn = ﬂ Ak7
k=1 k=1 k=n

Show that the sequences {B,,} and {D,,} are expanding, while {C,,} and
{E,} are contracting.
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*12. Given a sequence of sets {A,}, n =1, 2, ..., we define
o0 oo [e o] oo
limA, = (] |J 4x and lim 4, = | ] () 4«
n=1k=n n=1k=n

and call these sets the upper limit and the lower limit of the sequence
{A,}, respectively. If they coincide, the sequence is said to be conver-
gent, and we put

lim A, =lim A, =lim A, (= limit of A,).
Prove the following:
() M, An C lim A, € TmA, € U, An.
(ii) If A, € B,,n=1,2,..., then
lim A4,, C lim B,, and lim A, C lim B,,.

iii) Every monotonic sequence of sets is convergent, with lim A, =
y g
No2, A, if {A,} is contracting, and lim 4,, = J°_, 4, if {A,} is

n=1 n=1
expanding.

*13. Continuing Problem 12, prove the following:
(i) E—1lim A, =lim(E — 4,) and E —lim A,, = lim(F — A,,) for any
set E.

(i) lim(A,NB,) = lim A,Nlim B,, and lim(A4,UB,,) = lim 4,,Ulim B,,.

(iii) lim(A,UB,) 2 lim A,,Ulim B,, and lim(A,NB,,) C lim A4,,Nlim B,,.
Investigate whether inclusion signs can be replaced by equality if
one or both sequences are convergent.

*14. Continuing Problem 12, prove the following:
(i) If the sets A, are mutually disjoint, then lim A,, = lim A,, = 0.
(ii) If A, = A for all n, then lim A,, = lim 4,, = A.

(iii) {A,} converges iff for no x are there infinitely many n with z € A,,
and infinitely many n with = ¢ A,,.

*89. Some Theorems on Countable Sets

We now derive some consequences of Definition 5 of §8.

Theorem 1. If a set A is countable or finite, so also is any subset B C A,
and so is the image f[A] of A under any mapping f.

*89. Some Theorems on Countable Sets 45

Proof. If A C D), for a sequence u (finite or not), then certainly B C A C D).
Thus B can be put in the same sequence, proving our first assertion.

Next, let f be any map, and suppose first that Dy O A. We may assume that
A fills a sequence (if not, drop some terms); say, A = {u1, uz, ..., Up, ... }.
Then f[A] consists ezactly of the function values f(uy), f(u2), ..., f(un), ... .
But this very fact shows that f[A] can be put in a sequence {v,}, with general
term v, = f(u,). Thus f[A] is countable (finite if A is), as claimed. The case
A ¢ Dy is treated in Problem 1 below. Thus all is proved. O

Theorem 2. If a set A is uncountable, so also is any set B D A, and so is
flA] under any one-to-one map f, with Dy D A. (Similarly for infinite sets.)

Proof. The set B D A cannot be countable or finite. Otherwise, its subset A
would have the same property, by Theorem 1, contrary to assumption.

Next, if f is one-to-one, so is its inverse, f~'. If further A C Dy, then
A= f71[f[A]] by Problem 9 of §5. Now, if f[A] were countable or finite then,
by Theorem 1, so would be its image under any map, such as f~'. Thus the
set f71[f[A]] = A would be countable or finite, contrary to assumption. [

Corollary 1. If all terms of an infinite sequence u are distinct (different from
each other), then its range is an infinite, though countable, set.

Proof. By assumption, u is a one-to-one map (its terms being distinct), with
D, =N ={1, 2, ...}. Therange of u is the u-image of its domain N, i.e., u[N].
Now, as N is infinite,! so also is u[N] by Theorem 2. [

Theorem 3. If the sets A and B are both countable, so is A x B.

Proof. If A or B is empty, then A x B = (), and all is proved.

Thus let A and B be nonempty. As before, we may assume that they fill
two sequences, A = {a,,} and B = {b,,}. For convenience, we also assume that
these sequences are infinite (if not, repeat some terms). Then, by definition,
A X B is the set of all ordered pairs of the form (ay,, by, ), where n and m take
on independently the values 1, 2, ... . Call n+m the rank of the pair (an, by, ).
The only pair of rank 2 is (a1,b1). Of rank 3 are (aj,b2) and (az,b1). More
generally,

(a1,b,«_1), (ag,br_g), ey (ar_l,bl) (1)

are the r — 1 pairs of rank r.

We now put all pairs (an,b,,) in one sequence as follows. We start with
(a1, b1); then take the two pairs of rank 3; then the three pairs of rank 4, and
so on. At the (r — 1)-th step, we take all pairs of rank 7 in the order shown in
(1). Continuing this process for all ranks ad infinitum, we obtain the sequence
of pairs

(al,bl),(al,bg),(ag,bl),(al,bg),(ag,bg),....

1 A proof of this fact will be suggested in Chapter 2, §6, Problem 15.
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By construction, this sequence contains all pairs of any rank, hence all pairs
that form the set A x B (for every such pair has some rank r; so it must occur
in the sequence). Thus A x B is put in a sequence. [J

As an application, consider the set @ of all positive rationals, i.e., fractions
n/m where n and m are naturals. Let n+m be called the rank of n/m, where
n/m is written in lowest terms. By the same process (writing the fractions in
the order of their ranks), we put @ in an infinite sequence of distinct terms:

1/1,1/2,2/1,1/3,3/1,1/4,2/3,3/2, ....
Hence we obtain the following.

Corollary 2. The set R of all rational numbers is countable.

Indeed, we only have to insert the negative rationals and 0 in the above
sequence, as follows:
1 1 1 1
77_7727 _27 Q) 97
27 2 37 3

A similar “ranking” method also yields the following result.

0,1, -1, 3, -3, ...

Theorem 4. The union of any sequence of countable sets {A,} is countable.

Proof. We must show that A = [J,, A, can be put in one sequence. Now, as
each A, is countable, we may set

Ap ={an1, an2, -, Gumy -

where the double subscripts are to distinguish the sequences representing dif-
ferent sets A,. As before, we may assume that all sequences are infinite.
Clearly |J A, consists of the elements of all A,, combined, i.e., of all apm,
(n, m € N). Call n + m the rank of the term a,,,. Proceed as in Theorem 3
to obtain
A= UAn = {11117 ai2, a21, A13, G22, 431, }

Thus A can be put in a sequence. [

Note 1. Theorem 4 is briefly stated as “Any countable union of countable
sets is countable” (“countable union” means “union of a countable family of
sets,” i.e., one that can be put in a finite or infinite sequence {A,}).

Note 2. In particular, Theorem 4 applies to finite unions. Thus, if A and
B are countable sets, so is AU B. (So also are AN B and A — B since they are
subsets of the countable set A; see Theorem 1.)

In the proof of Theorem 4, we see a set A whose elements a.,,, carried two
subscripts. To any pair (n,m) of such subscripts there corresponds a unique
element ay,, of A. Thus we can define a function u (of two variables, n and
m) by setting

u(n,m) = apm, n, mée N.
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Its domain is the set N x N of all pairs (m,n) of positive (or nonnegative)
integers. Such a function is called an infinite double sequence, briefly denoted
by {unm}. Its range D), may consist of arbitrary objects, namely the function
values u(n, m), briefly wnm,.

Exactly as in Theorem 4, we obtain the following result.

Corollary 3. The range of any double sequence {un.m} is a countable set.

To show that uncountable sets exist also, we shall now prove the uncount-
ability of the interval [0,1), i.e., the set of all reals  such that 0 < z < 1.
We assume as known that each real z € [0,1) has a unique infinite decimal
expansion 0.x12x3 ... T, ..., where the xz,, are the decimal digits, possibly zeros,
and the sequence {z,} does not terminate in nines (e.g., instead of 0.4999. . .,
we write 0.50000. ..). This fact is proved in Chapter 2, §13.

Theorem 5. The interval [0,1) of the real axis is uncountable.

Proof. We must show that no sequence can comprise all of [0,1).

Indeed, take any sequence {u,} from [0,1). Write each term w,, as an infinite
decimal fraction; say, u, = 0.G4,10n2 - . . Gpm - - . - Then construct a new decimal
fraction z = 0.z122 ... 2, ..., choosing the digits x,, as follows.

If apy (ie., the nth digit of u,) is 0, take z,, = 1; otherwise, take z,, = 0.
Thus, in all cases, x,, # annp, i.€., z differs from each u,, in at least one decimal
digit (namely the nth digit). It follows that z differs from all u,, and hence is
not in the sequence {u,}, even though z € [0,1). Thus, no matter what the
choice of {u,} was, we found some z € [0, 1), not in the range of that sequence.
Hence no {u,} contains all of [0,1). O

Note 3. Observe that the members a,,, used in that proof form the “diag-
onal” of the indefinitely extending square consisting of all ay,,:

ail a12 A1z ... A1n
as as2 a23 ...... aon
asy aszy aA33 ... asn
apl  Ap2 Ap3 ... .. App

Therefore the method used above is called the diagonal process (due to
Cantor).

Now, by Corollary 2, all rationals can be put in a sequence. But, as shown
above, no such sequence can cover all of [0,1). Thus [0,1) must contain num-
bers that are not rational, i.e., cannot be written as ratios of integers, n/m.
Moreover, such numbers, called irrational, must form an uncountable set, for
otherwise its union with the countable set of all rationals in [0,1) would be
countable (by Note 2), whereas actually this union is the uncountable set [0, 1).
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The same argument applies to any other line interval with endpoints a and
b (a < b), since any such interval is uncountable (see Problem 2). Thus we
have the following.

Corollary 4. Between any two real numbers a and b (a < b) there are un-
countably many irrational numbers.

Note 4. By Theorem 2, any superset of [0, 1) is uncountable. In particular,
so is the entire set of real numbers (the real axis).

We thus see that the irrationals form an uncountable set. In this sense, there
are many more irrationals than rationals. Both sets are infinite. Thus there
are different kinds of “infinities”.

Problems on Countable and Uncountable Sets

1. Show that Theorem 1 holds also if A € Dy.
[Hint: Define a new map g on AU Dy by g(z) = f(z) if € Dy and g(z) = =
if z ¢ Dy. Noting that Dy D A, infer from what was already proved that g[A] is
countable, and hence so is f[A] (why?).]

2. Let a and b be real numbers, a < b. Define a mapping f on [0,1) by
setting f(x) = a+x(b—a). Show that f is one-to-one and that it is onto
[a,b). Then, from Theorems 2 and 5, infer that [a, ) is uncountable.

3. Show that if B is countable but A is not, then A — B is uncountable.
[Hint: If A — B were countable, so would be (A — B)U B 2D A]

4. Show that every infinite set A contains a countable infinite set.
[Hint: Fix any element z; € A; A cannot consist of x; alone (why?), so there is
another element zo € A — {z1}. Again, A # {z1,z2} (why?), so there is an element
xz3 € A— {x1,x2}, and so on. Proceeding step by step, we select from A an infinite
sequence {zn} of distinct terms. Then C = {z1,z2,...,2n,...} is the required
subset of A. (A reader acquainted with axiomatic set theory will observe that this
proof uses the so-called aziom of choice.)]

5. Infer from Problem 4 that if A is infinite, then there is a mapping f: A —
A that is one-to-one but not onto A.
[Hint: Choose C = {z1,x2,...,Zn ...} as in Problem 4. Then define f as follows: If
x € A—C, then f(z) = z; if, however, © = z,, for some n, then f(z) = f(zn) = Tz+41.
Observe that never f(z) = z1, and so f is not onto A. Verify however that f is
one-to-one.]

6. Let f: A — B be a one-to-one map such that B C A, and let 1 € A—B.
Inductively (step by step) define an infinite sequence:
2 = f(z1), 23 = f(22), ..oy g1 = f(xn), ..., m=1,2,....

Observe that all z, except x1 are in B (why?), and so =, # z1, n =
2,3,.... Show that all x,, are distinct (i.e., different from each other)
and hence B is an infinite set by Corollary 1.
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[Hint: Seeking a contradiction, suppose there is an n such that z, = z, for some
m > n, and take the least such n. Then n — 1 does not have this property, and so
Tp—1 # Tm for all m > n — 1. As f is one-to-one, we get f(zn—1) # f(zm), ie.,
Tn # Tm+1, for all m > n — 1 (contradiction!).]

Combining this with Problem 5, infer that a set A is infinite iff there is
a map f: A— A that is one-to-one but not onto A.

7. Using the result of Problem 6, show that the number n of elements in
a finite set A is uniquely determined. More precisely, if A = the range
of a sequence u of distinct terms with D, = {1,2,...,n}, it is not the
range of any sequence v with D, = {1,2,...,m}, m # n.

[Hint: Suppose this is the case, with m < n, say. Then show that the composite

map u - v~ ! is one-to-one (by Theorem 2 of §6) but not onto A, though its domain
is A. Infer that A is infinite (contradiction!).]



Chapter 2
The Real Number System

81. Introduction

Historically, the real number system is the result of a long gradual develop-
ment that started with positive integers (“natural numbers”) 1,2, 3, ..., later
followed by the invention of the rational numbers (i.e., fractions p/q where p
and ¢ are integers); it was completed by the discovery of irrational numbers.

It is possible to reproduce this gradual development also in exact theory, that
is, to build up the real number system step by step from natural numbers. At
this stage, however, we shall assume the set of all real numbers as already given,
without attempting to reduce the notion of real number to simpler concepts.
Also without definition (i.e., as so-called primitive concepts) shall we introduce
the notions of the sum (a + b) and the product, (a - b) or (ab), of two real
numbers a and b, as well as the inequality relation < (read: “less than”). The
set of all real numbers taken together will be denoted by E' (read: “E one”).
The formula “z € E'” means that x is in E', i.e., x is a real number.

Thus our primitive concepts are E* (set of all reals), + (plus sign), - (mul-
tiplication sign), and < (inequality sign).

Remark. Every mathematical theory must start with certain concepts ac-
cepted as primitive (i.e., without definition), since it is impossible to define
all terms used. Indeed, any definition can only explain some terms by means
of others. If the latter, too, were to be defined, new defining terms would be
needed, and this process would never end. It is often only a matter of con-
vention, which notions to accept as the first (i.e., the primitive) ones. Once,
however, the choice has been made, all other notions should be defined in terms
of the primitive ones. Similarly, it is impossible to prove all statements of a
deductive theory. Certain propositions (called azioms) must be accepted as
the first ones, without proof. Once, however, the axioms have been stated, all
the following propositions (called theorems) must be proved, i.e., deduced in a
strictly logical way from the axioms. This procedure characterizes every exact
deductive science.
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We now proceed to state a system of axioms for real numbers. The first
nine axioms will be given in §2 (for a reason to be explained later, they will be
called “azioms of an ordered field”). The last (10th) axiom will be formulated
in a later section.

82. Axioms of an Ordered Field

We shall assume as axioms (i.e., without proof) the following simple properties
of real numbers. (The reader is certainly familiar with these properties from
school algebra, where they are often regarded as “obvious”, so that it might
seem superfluous to mention them. We must, however, state them as axioms
in accordance with our introductory remarks made in §1. Each axiom has a
name given in parenthesis.)
A. Axioms of addition and multiplication.

I (Closure law) The sum x +y and the product xy of any two real numbers

x and y are themselves real numbers. In symbols:
(Vz,y € BY) (v +y) € B, (2y) € B

II (Commutative laws) (Vz,y € EY) 2 +y =y +x, 2y = y.
IIT (Associative laws) (Va,y,2z € EY) (x4+y)+2 =2+ (y+2), (zy)z = 2(y2).
IV (Existence of neutral elements)

(a) There exists a (unique) real number, called “zero” (0), such that,
for all real x, x + 0 = x.

(b) There exists a (unique) real number, called “one” (1), such that
1+#0 and, for all real x, x -1 = z. In symbols:

(F0cEY) V2 EY) z+0=ua,

(A1ecEY (VzcEY) z-1=xz 1#0.
The numbers 0 and 1 are called the neutral elements of addition and
multiplication, respectively.

V (Existence of inverses)

(a) For every real number x, there is a (unique) real number, denoted
—x, such that x + (—z) = 0.

(b) For every real number x, other than 0, there is a (unique) real num-
ber denoted =1, such that x -2~ = 1. In symbols:

(Vz € El) FA—z e El) x+ (=) =0,
(Vee B' |2 #0) 2t eFBY) z-27' =1
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The numbers —z and 27! are called, respectively, the additive inverse (or
the symmetric) and the multiplicative inverse (or the reciprocal) of x.

VI (Distributive law) (Va,y,z € E') (z + y)z = 2z + y2.

Note. The uniqueness assertions in Axioms IV and V could actually be
omitted since they can be proved from other axioms.

B. Axioms of order.

VII (Trichotomy) For any real numbers x and y, we have either x < y or
y <z orx =y, but never two of these relations together.

VIII (Transitivity) If x, y, z are real numbers, with x < y and y < z, then
z < z. In symbols:

(V,y,2z € B') <y < zimplies z < z.

IX (Monotonicity of addition and multiplication)
(a) (Va,y,2 € EY) z <y implies v + 2 < y + z.
(b) (Vz,y,2 € E') x <y and 0 < z implies xz < yz.

Note 1. As has already been mentioned, one additional (10th) axiom will
be stated later.

Note 2. While every real number has an additive inverse (Axiom V(a)),
only nonzero numbers have reciprocals. The number 0 has no reciprocal. (Ax-
iom V(b).)

Note 3. Note the restriction 0 < z in Axiom IX(b). It is easy to see that
without this restriction the axiom wo